\subsection{Some test runs and results} For the modifications \begin{equation} f(x,y)={\frac {\sqrt {x}\left (1-x\right ){y}^{1/10}\left (1-y\right )^ {2}}{3}} \end{equation} and $N=10$ made to the listed code, we have the following relative errors: For $f$, $$ \left [\begin {array}{ccccc} 0.03479& 0.02597& 0.02024& 0.02052& 0.01858\\\noalign{\medskip}- 0.007716&- 0.003380&- 0.007902&- 0.003937 &- 0.006782\\\noalign{\medskip}- 0.01327&- 0.008304&- 0.01731&- 0.02282 &- 0.02138\\\noalign{\medskip} 0.01171& 0.004684& 0.005910& 0.0001523&- 0.0004227\\\noalign{\medskip} 0.001112&- 0.009258&- 0.007214&- 0.01015 &- 0.01108\end {array}\right ] $$ \noindent for $\partial f/\partial x$: $$ \left [\begin {array}{ccccc} 0.02671&- 0.008716& 0.02433& 0.009778&- 0.01909\\\noalign{\medskip}- 0.03521&- 0.07032& 0.03061&- 0.006469&- 0.07817\\\noalign{\medskip} 0.004837&- 0.04405&- 0.06126&- 0.04526& 0.05540\\\noalign{\medskip} 0.02411& 0.001753&- 0.01669&- 0.04427& 0.04858\\\noalign{\medskip}- 0.003292&- 0.01564&- 0.01042&- 0.04122& 0.01453\end {array}\right ] $$ \noindent for $\partial f/\partial y$: $$ \left [\begin {array}{ccccc} 0.07000& 0.2547& 0.07463&- 0.2004&- 0.1303\\\noalign{\medskip} 4.226& 2.744& 4.528& 4.940& 4.182 \\\noalign{\medskip}- 0.6513&- 0.4244&- 0.6238&- 0.5545&- 0.5229 \\\noalign{\medskip}- 0.03197& 0.05759&- 0.01336&- 0.04826&- 0.03390 \\\noalign{\medskip} 0.1819& 0.1774& 0.2088& 0.1813& 0.1747\end {array} \right ] $$ \noindent on the grid with x-values $$ \left [\begin {array}{ccccc} 0.01& 0.05750& 0.1050& 0.1525& 0.2000 \\\noalign{\medskip} 0.01& 0.05750& 0.1050& 0.1525& 0.2000 \\\noalign{\medskip} 0.01& 0.05750& 0.1050& 0.1525& 0.2000 \\\noalign{\medskip} 0.01& 0.05750& 0.1050& 0.1525& 0.2000 \\\noalign{\medskip} 0.01& 0.05750& 0.1050& 0.1525& 0.2000\end {array} \right ] $$ \noindent and y-values $$ \left [\begin {array}{ccccc} 0.01& 0.01& 0.01& 0.01& 0.01 \\\noalign{\medskip} 0.05750& 0.05750& 0.05750& 0.05750& 0.05750 \\\noalign{\medskip} 0.1050& 0.1050& 0.1050& 0.1050& 0.1050 \\\noalign{\medskip} 0.1525& 0.1525& 0.1525& 0.1525& 0.1525 \\\noalign{\medskip} 0.2000& 0.2000& 0.2000& 0.2000& 0.2000\end {array} \right ] $$ With the ``nicer'' function \begin{equation} f(x,y)={\frac {\sqrt {x}\left (1-x\right ){y}^{3/5}\left (1-y \right )^{2}}{3}} \end{equation} and $N=10$, using the same $(x,y)$ grid, we have the relative errors $$ \left [\begin {array}{ccccc} 0.0147& 0.00644&0& 0.00147&0 \\\noalign{\medskip}- 0.00757&0&- 0.00646&0&- 0.00524 \\\noalign{\medskip}- 0.0102&- 0.00641&- 0.0150&- 0.0175&- 0.0202\\\noalign{\medskip}- 0.00261&- 0.0114&- 0.00445&- 0.0156&- 0.0144\\\noalign{\medskip} 0.00249&- 0.00545&- 0.00425&- 0.00744&- 0.0103\end {array}\right ] $$ $$ \left [\begin {array}{ccccc} - 0.0100&- 0.0281& 0.00918&0&- 0.0380\\\noalign{\medskip}- 0.0309&- 0.0695& 0.0319&- 0.00540 &- 0.0754\\\noalign{\medskip} 0.00896&- 0.0420&- 0.0589&- 0.0438& 0.0583\\\noalign{\medskip} 0.00532&- 0.00748&- 0.0293 &- 0.0520& 0.0375\\\noalign{\medskip}- 0.00254&- 0.0143&- 0.00932&- 0.0408& 0.0138\end {array}\right ] $$ \noindent and $$ \left [\begin {array}{ccccc} 0& 0.0259&- 0.00289&- 0.0379&- 0.0304\\\noalign{\medskip}- 0.0569& 0.00499&- 0.0700&- 0.0954 &- 0.0693\\\noalign{\medskip} 0.0378&- 0.0295& 0.0273&0&- 0.00349\\\noalign{\medskip} 0.0994&- 0.0181& 0.0622& 0.0867& 0.0665\\\noalign{\medskip} 0.102& 0.0185&- 0.0764&- 0.00744&- 0.00688\end {array}\right ] $$ % for $f$, $\partial f/\partial x$ and $\partial f/\partial y$, respectively. With the non-separable function \begin{equation} f(x,y)=\sqrt [4]{{x}^{2}+{y}^{2}} \end{equation} and $N=10$, again on the same grid, we get the following results. Notice that this function is {\sl not} in $L_{\alpha}$ on the unit square, so poor results can be expected. \begin{equation} \left [\begin {array}{ccccc} - 0.0841&0& 0.00616&- 0.0153& 0.00894\\\noalign{\medskip}- 0.0124&0&- 0.00289&- 0.0198&- 0.00438\\\noalign{\medskip}- 0.00616&- 0.00289&- 0.0104&- 0.0372&- 0.0168\\\noalign{\medskip}- 0.0179&- 0.0248&- 0.0209 &- 0.0345&- 0.0179\\\noalign{\medskip} 0.0134&- 0.00658&- 0.00421&- 0.0160&- 0.00752\end {array}\right ] \end{equation} % \begin{equation} \left [\begin {array}{ccccc} - 0.0875& 0.324&- 0.235& 0.0705& 0.254\\\noalign{\medskip}- 1.80& 0.231&- 0.205& 0.0173& 0.161 \\\noalign{\medskip}- 0.103& 0.388&- 0.396&- 0.0199& 0.271 \\\noalign{\medskip} 2.29& 0.538&- 0.317&- 0.00657& 0.274 \\\noalign{\medskip}- 4.27& 0.367&- 0.362&- 0.0546& 0.265 \end {array}\right ] \end{equation} % \begin{equation} \left [\begin {array}{ccccc} - 0.138&- 0.110&- 2.13&- 13.6&- 16.1\\\noalign{\medskip} 0.289& 0.377& 0.147&- 0.357&- 0.499 \\\noalign{\medskip}- 0.215&- 0.268&- 0.210&- 0.162&- 0.200 \\\noalign{\medskip} 0.118& 0.0173& 0.0606& 0.130& 0.101 \\\noalign{\medskip} 0.302& 0.207& 0.170& 0.179& 0.158 \end {array}\right ] \end{equation} % for $f$, $\partial f/\partial x$ and $\partial f/\partial y$, respectively. Next, an $L_{\alpha}$ function with a radial singularity at $(0,0)$. \begin{equation} f(x,y)=-{y}^{3/2}\left (-1+y\right )\left (x-1\right )+\sqrt [4]{{x}^{2}+{y}^{2}}\left (1-x\right )\left (1-y\right )y \end{equation} With $N=10$ and the above grid, we have the relative errors of \begin{equation} \left [\begin {array}{ccccc} 0.0162&0&- 0.00502&- 0.00410&- 0.00363\\\noalign{\medskip} 0.0613&0&- 0.00777&- 0.00398&- 0.00640\\\noalign{\medskip}- 0.189&- 0.0103&- 0.0136&- 0.0236&- 0.0176\\\noalign{\medskip}- 0.339&- 0.00622&- 0.00869&- 0.0210&- 0.00871\\\noalign{\medskip}- 0.271&- 0.00739&- 0.00498&- 0.0149&- 0.00923\end {array}\right ] \end{equation} % \begin{equation} \left [\begin {array}{ccccc} 0.00691&- 0.0170&- 0.00881& 0.0128&- 0.00371\\\noalign{\medskip} 0.00528&- 0.0246& 0.00359&- 0.00451&- 0.0265\\\noalign{\medskip}- 0.0814& 0.0151&- 0.0434&- 0.0257& 0.0143\\\noalign{\medskip}- 0.141& 0.0427&- 0.0436&- 0.0203& 0.0177\\\noalign{\medskip}- 0.122& 0.0339&- 0.0305&- 0.0136& 0.0126\end {array}\right ] \label{eqn:test3-dx} \end{equation} % \begin{equation} \left [\begin {array}{ccccc} 0.00662& 0.0194&- 0.0130&- 0.0349&- 0.0257\\\noalign{\medskip} 0.190&- 0.0975&- 0.108&- 0.0931&- 0.0527\\\noalign{\medskip} 0.785& 0.0236&- 0.0421&- 1.31&- 0.0367\\\noalign{\medskip}- 0.214&- 0.00650&- 0.0553& - 0.120&- 0.211\\\noalign{\medskip}- 1.09&- 0.0171&- 0.0172&- 0.0546&- 0.0402\end {array}\right ] \label{eqn:test3-dy} \end{equation} % for $f$, $\partial f/\partial x$ and $\partial f/\partial y$, respectively. The (4,1) and (5,1) entries in (\ref{eqn:test3-dx}) correspond to small exact values; similarly, the poor entries of (\ref{eqn:test3-dy}) also correspond to small exact answers. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% As yet another nice test, consider \begin{equation} f(x,y)=\sqrt {x}\sqrt [3]{1-x}{y}^{1/10}\left (1-y\right )^{2}\sin(2\,\pi \,x){e^{y}} \end{equation} with $N=10$ and the rest as coded. For the function interpolation, we have the relative errors \begin{equation} \left [\begin {array}{ccccc} 0.0385& 0.0251& 0.0168& 0.0212& 0.0203\\\noalign{\medskip}- 0.00452&- 0.00680&- 0.00738&- 0.00935&- 0.00358\\\noalign{\medskip}- 0.0360& - 0.00851&- 0.0147&- 0.0233&- 0.0178\\\noalign{\medskip}- 0.0115& 0.00174&0&- 0.00476&0\\\noalign{\medskip}- 0.0240&- 0.0127&- 0.00784&- 0.00993&- 0.0114\end {array} \right ] \end{equation} Along the diagonal from (0,0) to (1,1), the relative error is similar, with a maximum of 5\%. Without the random error, we obtain \begin{equation} \left [\begin {array}{ccccc} 0.0667& 0.0289& 0.0251& 0.0317& 0.0324\\\noalign{\medskip} 0.0362&- 0.00341&- 0.00738&0&0\\\noalign{\medskip} 0.0360&- 0.00340&0&0&0 \\\noalign{\medskip} 0.0508& 0.0104& 0.00753& 0.0143& 0.0146\\\noalign{\medskip} 0.0337&- 0.00543&- 0.00784&0&0 \end {array}\right ] \end{equation} The results along the diagonal are again comparable, with a maximum relative error of 5\%. By increasing $N$ to 13, we obtain the relative error of \begin{equation} \left [\begin {array}{ccccc} 0.00770& 0.0193& 0.00836& 0.0212& 0.0203\\\noalign{\medskip}- 0.0203&- 0.0119&- 0.0148&- 0.0141&- 0.00716\\\noalign{\medskip}0& 0.0119& 0.00735& 0.00465& 0.0107\\\noalign{\medskip}- 0.0161&- 0.00522&- 0.0151&- 0.00952&- 0.00364\\\noalign{\medskip} - 0.0168&- 0.00907&- 0.00784&- 0.00497&- 0.00380 \end {array}\right ] \end{equation} Along the diagonal, the maximum relative error is still 5\%. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% If we define $\rho $ by \begin{equation} \rho = r^{\frac{1}{2}}\sin (\theta) = \frac{y}{(x^{2}+y^{2})^{1/4}} \end{equation} with $r$ the radial distance from the origin, and $\theta $ measured from the x-axis as usual, then the function \begin{equation} f(x,y) = \rho (1-x)(1-y) - \sqrt{y} (1-x)(1-y) \end{equation} is in $L_{\alpha}$ on the unit square. With $N=10$ and the above grid, we have the relative errors of \begin{equation} \left [\begin {array}{ccccc} 0.0449& 0.0110& 0.00163&- 0.00160 &0\\\noalign{\medskip}- 0.00602&- 0.00295&- 0.00644&- 0.00514&- 0.00583\\\noalign{\medskip}- 0.196&- 0.0115&- 0.0145&- 0.0231& - 0.0203\\\noalign{\medskip} 0.723& 0.0216& 0.00365&- 0.0134&- 0.0119\\\noalign{\medskip}- 0.357&- 0.0106&- 0.00529&- 0.0152& - 0.0110\end {array}\right ] \end{equation} % \begin{equation} \left [\begin {array}{ccccc} 0&0&- 0.138&- 0.0471&- 0.0336 \\\noalign{\medskip}- 0.0185&- 0.0148&- 0.00225&0&- 0.0356 \\\noalign{\medskip}- 0.0546&0&- 0.0380&- 0.0265& 0.0276 \\\noalign{\medskip}- 0.0129& 0.0317&- 0.0394&- 0.0269& 0.0198 \\\noalign{\medskip}- 0.118& 0.0282&- 0.0277&- 0.0139& 0.0164 \end {array}\right ] \end{equation} % \begin{equation} \left [\begin {array}{ccccc} - 0.0231& 0.107&- 0.00605&- 0.0703 &- 0.0516\\\noalign{\medskip} 0.784& 0.0404& 0.108& 0.228& 0.443\\\noalign{\medskip}- 1.64&- 0.0688&- 0.0650&- 0.0425&- 0.0436\\\noalign{\medskip} 0.576& 0.0197&- 0.0133&- 0.0341&- 0.0394\\\noalign{\medskip} 4.28& 0.140& 0.0575& 0.00482&0 \end {array}\right ] \end{equation} % for $f$, $\partial f/\partial x$ and $\partial f/\partial y$, respectively. The 0.443 entry in the y-partial corresponds to a small entry. For the same $f$ and $N$, but without introducing the random error, the relative errors of \begin{equation} \left [\begin {array}{ccccc} 0.0449& 0.0146& 0.0114& 0.0112& 0.0114\\\noalign{\medskip}- 0.0181&0&0&0&0\\\noalign{\medskip} - 0.0911&- 0.00576&- 0.00242&0&- 0.00135\\\noalign{\medskip} 0.974& 0.0402& 0.0146& 0.00672& 0.00683\\\noalign{\medskip}- 0.163&- 0.00453&0&- 0.00305&- 0.00220\end {array}\right ] \end{equation} % \begin{equation} \left [\begin {array}{ccccc} 0.00489&0&- 0.0199& 0.0637& 0.0122\\\noalign{\medskip}- 0.00308& 0.00269&- 0.00225&0&0 \\\noalign{\medskip}- 0.00781&- 0.00404& 0.00422&0&0 \\\noalign{\medskip} 0.0703& 0.00633&- 0.00262&0&0 \\\noalign{\medskip}- 0.0273& 0.00471&- 0.00346&0& 0.00410 \end {array}\right ] \end{equation} % \begin{equation} \left [\begin {array}{ccccc} - 0.00771& 0.0273& 0.0121& 0.00502 & 0.00939\\\noalign{\medskip} 0.809& 0.0827& 0.0841& 0.136& 0.352\\\noalign{\medskip}- 1.81&- 0.101&- 0.0542&- 0.0504&- 0.0591\\\noalign{\medskip} 0.734& 0.0344& 0.0133& 0.0137& 0.00657\\\noalign{\medskip} 4.79& 0.199& 0.0719& 0.0434& 0.0410\end {array}\right ] \end{equation} % are obtained for $f$, $\partial f/\partial x$ and $\partial f/\partial y$, respectively. Notice the large errors for small $x$, in the first columns of the matrices. Along the diagonal, for $x=y=0.1:0.1:0.9$, the largest relative error is 0.5\%. % left boundary error: For $x=0.02, y=0.1:0.1:0.9$ (near the left boundary), we get $$ [ 0.065, 0.024, 0.511,-1.32, 0.00302, 3.32,-3.32,- 0.815,- 8.07] $$ for the values of the relative error. % top boundary error For $x=0.1:0.1:0.9, y=0.98$ (the top boundary), the r.e. is $$ [ 1.29, 11.7,- 1.13,- 0.473,- 0.267,- 0.179,-0.137,- 0.107,- 0.0893] $$ while for $y=0.1:0.1:0.9, x=0.98$ (the right boundary) it is much improved: $$ [0,0, 0.00283,0,0, 0.00579,0,- 0.00137,- 0.00598] $$ % % bottom boundary error For $x=0.1:0.1:0.9, y=0.02$ (the bottom boundary), we also have the much better error $$ [ 0.00896, 0.00779, 0.00723, 0.00665, 0.00658, 0.00659, 0.00633, 0.00634, 0.00622] $$ For the above $f, N,$ without random error and with $h = \frac{\pi}{\sqrt{N}}$ we have the following errors near the boundaries: On the top, \begin{equation} [- 0.0108,- 0.151,- 0.0946,- 0.0339, 0.000233, 0.0123, 0.00746,- 0.00496, 0.00899] \end{equation} on the bottom, \begin{equation} [ 0.00197,- 0.000588, 0.000203, 0.000743, 0.000122,- 0.000729,- 0.000223, 0.00203,- 0.00152] \end{equation} on the left, \begin{equation} [-0.0453, 0.170,- 0.0583,- 0.39,- 0.0761, 0.828, 0.556,- 2.692, 3.44] \end{equation} and on the right \begin{equation} [ 0.0102,- 0.00506,- 0.0203,- 0.00692,- 0.00441 ,- 0.0237,- 0.0172,- 0.0321,- 0.0210] \end{equation} The graphs comparing the exact answer and the interpolant are shown in the figures.