FLTK 1.0 Programming Manual

Revision 0

Michael Sweet
Copyright 1998-1999 by Bill Spizak and Others.

FLTK 1.0 Programming Manual

Table of Contents

S 7= 0= TR 1
(@ (0= 82 L1 0] 0 PO S 1
(O8] 01V7= 81110 1= 2
P o] 0=z (0] = 2
(O0] o)V 10|01z 010 I =10 (= 0107 1.4 SR 2
R Lo o (U oo T I el I I OO 3
LTS (0 VA N S 3
s L0 == TP 4
o= 01 111 S 5
VA B0 I I S Y/ 1= R 5
Building and Installing FLTK UNAer UNIX......coiiiiieieiieeesie e seeee st sveesee st sne e e s sresneenesnas 5
Building FLTK Under Micrsoft WINAOWS.......cc.ciuiiuieeeriiiieeesie st eee st te e esaestesne s esnessesneenesnas 6
Building FLTK UNAEr OS/2......c.viiieitiiiesie st etee e sttt s e e sae st sneeaestestesaaesestesreensentesaeessensessesnesnseseas 6
INEEINEL RESOUICES..... ..o cuvvteeieeeieeiiteeee e e e e sibteereeseesesbbbeeeeeseaaasabaeeeaesesassbsseeessesassbaseeessesansbsbeeeeessasssreeeeessann 6
S 00 0 =0 S 7
el I I = 7T o 9
NN =010 0o OS 9
[[50[RS 9
Compiling Programs with Standard COMPILEIS.......ccviuieieiieiieiiee ettt enas 10
Compiling Programs with Microsoft ViSUal CHti.......ccveiueeieiiiieiicse ettt 10
Writing Your First FLTK PrOGraM......ccciiiiieiieieie ettt eeesae e sae st s eeaeesbesresaeessesbesnaesaeseesreennensens 10
3 - Common Widgets and ALEEIDULES........coiiiiiiee et st sre e re s re e 13
110 TSP 13
LI 14
R LU= () T 14
LT 0] PRI 14
Setting the Size and PoSition Of WIAQELS........ccooeeieiiiiiieiesie sttt ens 15
(0] o 15
10 LY 0= PR 15
I o1 FoX= o H o= R LY 0= SR SPRRSS 17
(0= 1] o7z o =T 19
0] (011 | 20
4-Designing 8 SIMPIE TEXE EQITON.....cciiiiieieciecieeeese sttt s te st e s re e e e besreeseesresbesneesesresreennensens 21
Determining the Goals Of the TeXt EdIfOL........cccvviiieiiiiiiee ettt 21
Designing the Main WINAOW.cc.eeeeieiieeeeiesie sttt ettt st ste e besreereeaesbesneenseseestesnnensesaens 21
R A= o) - W 22
MENU_BaIrS AN IMENUS.......cvvieietie it eteeeetee et s e e et e e st e s st e s sbesssbessbessebeessabessabessaeessabessbessabesesrenas 22
[0 LT o TSI RSP 23
TSN RIS o] = To =l =T SR 23
(0= 1] o7z o =T 23
(@ 1= U001 L0 1= 28
(©o] 0] 011 11010 1 AT =0 1 (0 SRS 30

TSN T ar= 00 [0 ox SRR 30

FLTK 1.0 Programming Manual

Table of Contents

5-Drawing ThINGSIN FL T K ...ttt e e st e e te st s e e e e besbe e e e stestesaeensesbesteesaentesreereennenrens 33
When Can You Draw ThingSin FLTK 2. ..o eee et ste st st e st snaesaesresreennenne s 33
FLTK Drawing FUNCHIONS........cciiiiiieiesie s eteete sttt eeeste st seestestessaestesbesteensesbesnessaessestesnseseseesseensensens 33
0720 S SR 39
(oo S I DT o RS 42
Lol =10 | L0 1 Y= S 45
The FLTK EVENE IMOTEL..... oottt ettt sttt s s s bt e s s be e s saa e s sabessabesssbeeesraeesneeas 45
Lo U Sl VA< 01 £ TSP 45
00l Y VA= £ RO 46
KEYDOAIT EVENLS.oiuiceiiictieie ettt ettt et ettt et e st e st e e ae e besbesbeensestesaeeaeessesbesneensestesseennensens 46
WIAQEL EVENLS.......oiueceeeieite ettt sttt st te st s ae e et e s ae e e et e st e eaeetesbesseensebesaeeseesesseaneenseseesreensenseseens 47
(O TN 0] 0]0 7= 10 =0 SR 47
=YL= Al O 00101100 YRR 48
Y110 (0] 010 = 0 RO SPSRRS 48
7 - Adding and EXtENAING WIAQELS.......ocuiiieiiiiiiieie sttt ettt r e st e esbestesreenenbesaeennenrenes 51
U 0o = ST o S 51
Making a SUBCIASS Of FI_WIAGEL........coieiiieieiesie ettt saesresnnenenne 51
I T G0 1= (o1 (o 52
Protected MethodsS Of Fl_WIAQEL........ccieiiieieeiecie ettt sresresnneaenne s 52
HaNAIING EVENES.......oceeiecieceee sttt ettt ettt et e st e sbe e e s besbeeae e tesreeaeesaestesaeenseseestesanentensens 54
Drawing the WIAGEL.ecueiuieie ettt sttt et sttt be st e e ae e e s aeeaeeaesbesneenaeseestesnnensensens 55
RESIZING thE WIAGEL.c.veiveieeeee ettt ettt st e st e e ae e e s beeaeeaestesneenaeseestesnnensenrens 55
Making a CompoSite/Group WIQEL.........ccoueiiiuiiieriiie ettt e re s e saesresreenenbesnens 55
CuUt anNd Paste SUDPPOIT......ccueeieiieiieeeeite sttt ete et et st ae e e et e st e saeesaestesreessenbesreeseensestesseensessesresneensesrs 57
Making asubclass Of FI_WINAOW.cc.ciiiiieieii ettt st sreennenne 57
8 - Programming With FLUID.......c.cciiiiiieieeieiteeie et e ettt e et s be e e saestesaeensesbesteesaetesaeeneennensenns 59
RTAT A= S IO 59
F NS 1o o A T 1 (o = 60
Running FLUID UNAEN UNX....uiiiieieiieiieeieieste st eeeste e seestestesseeaessestesseessessesssessessessssssesssssesssensessens 61
Running FLUID Under MicroSoft WINGAOWS.........cccueiiiieiierieiesieeiie e steeee e sre e esaesse s aesaestessnensesnens 61
(@o 0] 011 11070 I i T =SS 62
THE WiIAQEL BIOWSELccviiieeteeteste et ete st ste et e ste st steetestesteeaaesbesbesseessestesaeeneessesteeasesesbesreensesesreennensenns 62
YL LI <10 RO 63
THe WIAQEL PANEL........cviiiecieciecie ettt sttt st st e e b st e e ae e e e s tesae e s e sbesbeeseentesaeereennenrens 66
AT (o N A1 L= RSP SSN 67
Sl eCting MOVING WIAGELS.cveiveeiesie ettt ettt e st ae e be st e sreeaa e besreeneesestesneeneesrenris 70
0T 0 (<l = 0= 1 TSP 71
Lo O S T 1o @] o<1 S 75
USING OPENGL TN FLTK .itiiieiie ettt sttt ettt e s aa e be s besbeessesbesaeeseessesbesnsensesresseensensessens 75
Making a SUBbClass Of Fl_ Gl _WINAOW.......cc.ceiuiiiiiciesiese et sae st aesrestesnnenaenne s 75
Using OpenGL in Normal FLTK WINAOWS.......cciiieiiiiiiieiee ettt eee e s seesnesresneesaesresreennensens 77
OpenGL drawing fUNCHIONS..........eiieieii ettt ettt st s re et esresre e s e s tesreennestesreeneennenras 78
Using OpenGL Optimizer With FLTKcciciiiiieciese ettt ste st sae e s sresresnnenaenne s 79

FLTK 1.0 Programming Manual

Table of Contents

YN VAT o[= == 0= RSP 83
(ot S I AN o LU= SR 84
oz ol =10)R 85
oz ol 2100 LTS <. A 86
oz ol 2100 LT <. S 20
oz X =10 110 92
oz N O 17 95
oz ol O =01 =10 110 O 98
oz X O 10 1= PR 99
oz X O o o 101
oz o) 00 Lo Al O 21010 A 103
ozl G0 U1 <, S 105
oz X = 106
ClasS FI_DOUDIE WVINUOW.........vieivieitee ittt ettt e stes et s et e s sbesssbee s sabessabessabessbessbesssaeessnbessabessneeas 107
oz o = 0 108
(ot Sy I o= o SRS 109
ozl I == 110
oz X AT AT [0 112
(ot ST I (0 o SRS 116
oz ol B (0] 10 B 210 LTS < 119
(ot ST 0T SRS 121
(ot ST I 0T o SRS 125
Lot ST I L 0 | SRS 128
(ot o Sy I T 1 =T (o SRS 129
oz ol I 1Y 110 130
oz ol YT LU T = 133
oz YT LU T = 100 135
Lo ol LY < = 0 137
ClaSS Fl M ENU_WVINAOW.ceiiuiiiitii ittt et tes et e s s st ssate s st e s sabesesbeessabessaeessabessabessbesesresesreeas 143
oz ol YL L = Y 144
ClasS FI_MUILIIINE TNPUL......coveiiecieceeie ettt sttt st e sae e re b e saeeaestesreeneenaesreeseensensens 146
Class FI_MUILIliNG OULPUL..........cceeiieiricieeieie st este st st e e te e e e sreereeeebesreeseessestesnsenseseesreeneensensens 147
(ot ST I 11 | PSSR 148
Class Fl_OVErTay WINAOW.........eeueeieiieeieeieeie st eeesee st st e aeste e eaeestestesreenaessesseessessestesneenseseesseessensessens 150
(o e N =0 < 151
oz ol 01 L T0 1<, A 152
Class FI_REPEaE BULLON........cceieeieieitecieeie st et esae st st e e testeeae e testesreeseetesreessessestesnsenseseesteeneensesnens 154
oz ol B =0 T =10 110 o SO 155
ozl 0 1<, 156
oz ol 0 U0 H = (o 157
ozl S ot (o) 158
oz ol S ot (0] 0= 161
(oo S IS = o= A 0] | SRS 163
(ol ol S = = o A 2T 00 1V <. 164
ClasS Fl_SiNGIE WINAOW......cceiueeiieieiie ettt sttt st te s te e e ae e s be e e snesbesnaenseseesreeneensenreas 166
ozl S o = 167
ozl 7= 0T 169

FLTK 1.0 Programming Manual

Table of Contents

oz X T 171
oz X T 001, 173
oz ol I LU= () 175
ClaSS Fl_VaAlUB INPUL........cceeiieiieeiecte ettt ettt e et e s te e s e be s teete e e e tesbeeseesestesnsenseseesreennensenrens 179
ClaSS Fl_ValUE OULDUL......c.eeiueiieetieieiteeteeees e ste et este s e s te e e e testeeae e testeereesaestesbeessessestesnsenseseesseeneensensens 181
(ol ol B V(ST 110 (<. P 183
(ot ST Ao o = PSSR 185
oz ol A1 070 LY S 190
oI (A To (10 A A= L= W= 110 = TR 195
U170 (01 195
o LY <1 1100 TR 201
(O o I I S = 21010 1= = (0 1= ST 215
A= Lo WA U 0] 0= £ 215
Y 1TSS 215
Callback "WhHEN" CONAITIONS.cvieireeiireeieteeeereeeeeeesteesbes et e estesesbesesbesssabessabessbessbesssbesssbesssneesssens 216
Fl::event_k LYz 1 1< 216
Fliievent State) VAIUESceoii ettt sttt sttt stesae e e e st e saeeaaestesteeneenbesreeneennensens 217
ALGNMENE VBIUES ...ttt ettt et e s be st e e ae et e sbesaeese e tesbesaeensestesneenaeseesrenns 217
01T SRR 217
(0] 1o 218
(U0 TR 218
[DAY 41 I OX0] 10 [0 1= 219
DaAmMAQE IMBSKS.ecviceeeiectecteee ettt ettt st e b e e e st e e beeae e be s heeae et e EeeReeaaeateeteeaeenteereeaeennenre e 219
D O I I Oo a0 Y= LA o1 R 221
Using the GLUT Compatibility HEAdEr File........ccccoiiiiieieieie et 221
QT Yl 0] o 1= 1= 221
Mixing GLUT and FLTK COOE......cccueitiirieeeiiiitieieitesiesteeiteste s e sseessestesseesestesaessestestesnaessessesssensensenns 222
oz ol 10 YY1 (o 224
R o TSN OX0 a0 = L1 011 1 L SR 225
IMporting FOrMS LaYOUL FlES........cccueiiieceeie ettt st s a e sttt s reeneennenne e 225
Using the Compatibility HEAEr Fil@........ccoueiiiiieieie ettt st ne e 225
Problems YOU Will ENCOUNLEL...........cccuiiiieeeee sttt sttt s e e st be e e s besreenaenbesreeneennense e 226
P (o R Ta 0tz I AN T (= 227
F - Operating SYSLEM ISTUES......coiuiiiiiieie it steeteeite st e ettt ste e e et e st e e te st e saeetestesteeseesestesaeensentesreereensensenns 231
X-SPECIHIC INEEITACEvetieeecee et st b e e e e e e besaeetestesreeneetenreas 231
WIN32-SPECITIC INLEITACE. ... evecveeeecte et e e aennas 236
O o L= =X 0= 01 T 239
GNU LIBRARY GENERAL PUBLIC LICENSE.......ocooie ettt sttt s sree s 239
2= 1010 LR 239
TERMS AND CONDITIONS FOR COPYING. DISTRIBUTION AND MODIFICATION........... 241
L@ AN N N I 245

FLTK 1.0

Table

END OF TERMS AND CONDITIONS

Programming Manual

of Contents

Vi

FLTK 1.0 Programming Manual

Preface

This manual describes the Fast Light Tool Kit ("FLTK") version 1.0, a C++ Graphical User Interface ("GUI")
toolkit for UNIX and Microsoft Windows. Each of the chaptersin this manual is designed as atutoria for
using FLTK, while the appendices provide a convenient reference for all FLTK widgets, functions, and
operating system interfaces.

Organization

This manual is organized into the following chapters and appendices:

e Chapter 1 - Introduction to FLTK

e Chapter 2 - FLTK Basics

* Chapter 3 - Common Widgets and Attributes
 Chapter 4 - Designing a Simple Text Editor
e Chapter 5 - Drawing Thingsin FLTK
 Chapter 6 - Handling Events

 Chapter 7 - Extending and Adding Widgets
 Chapter 8 - Programming With FLUID

* Chapter 9 - Using OpenGL

» Appendix A - Widget Reference

» Appendix B - Function Reference

» Appendix C - Enumeration Reference

e Appendix D - GLUT Compatibility

» Appendix E - Forms Compatibility

» Appendix F - Operating System Issues

Preface 1

FLTK 1.0 Programming Manual

» Appendix G - Software License

Conventions
The following typeface conventions are used in this manual:

 Function and constant names are shown inbol d courier type
» Code samples and commands are shown inregul ar courier type

Abbreviations

The following abbreviations are used in this manual:

X11

The X Window System version 11.
Xlib

The X Window System interface library.
WIN32

The Microsoft Windows 32-bit Application Programmer's Interface.

Copyrights and Trademarks

FLTK is Copyright 1998-1999 by Bill Spitzak and others. Use and distribution of FLTK is governed by the
GNU Library General Public License, located in Appendix D.

UNIX isaregistered trademark of the X Open Group, Inc. Microsoft and Windows are registered trademarks
of Microsoft Corporation. OpenGL is aregistered trademark of Silicon Graphics, Inc.

2 Organization

1 - Introduction to FLTK

The Fast Light Tool Kit ("FLTK", pronounced "fulltick") isa LGPL'd C++ graphical user interface toolkit
for X (UNIX®), OpenGL®, and Microsoft® Windows® NT 4.0, 95, or 98. It is currently maintained by a
small group of developers across the world with a central repository in the US.

History of FLTK

It has always been Bill's belief that the GUI API of al modern systems is much too high level. Toolkits (even
FL) are not what should be provided and documented as part of an operating system. The system only has to
provide arbitrary shaped but featurel ess windows, a powerful set of graphics drawing calls, and asimple
unalterable method of delivering eventsto the owners of the windows. NeXT (if you ignored NextStep)
provided this, but they chose to hide it and tried to push their own baroque toolkit instead...

Many of theideasin FLTK were developed on aNeXT (but not using NextStep) in 1987 in a C toolkit Bill
called "views'. Here he came up with passing events downward in the tree and having the handle routine
return avalue indicating the used the event, and the table-driven menus. In general he was trying to prove that
complex Ul ideas could be entirely implemented in a user space toolkit, with no knowledge or support by the
system.

After going to film school for afew years, Bill worked at Sun Microsystems on the (doomed) NeWS project.
Here he found an even better and cleaner windowing system, and he reimplemented "views" atop that. NeWS
did have an unnecessarily complex method of delivering events which hurt it. But the designers did admit
that perhaps the user could write just as good of a button asthey could, and officially exposed the lower level
interface.

1 - Introduction to FLTK 3

FLTK 1.0 Programming Manual

With the death of NeWS Bill realized that he would have to live with X. The biggest problem with X isthe
"window manager", which means that the toolkit can no longer control the window borders or drag the
window around.

At Digital Domain Bill discovered another toolkit, "Forms". Forms was similar to hiswork, but provided
many more widgets, since it was used in many real applications, rather then as theoretical work. He decided
to use Forms, except he integrated my table-driven menus into it. Several very large programs were created
using this version of Forms.

The need to switch to OpenGL and GL X, portability, and adesire to use C++ subclassing required arewrite
of Forms. This produced the first version of FLTK. The conversion to C++ required so many changesit made
it impossible to recompile any Forms objects. Since it was incompatable anyway, Bill decided to incorporate
as much as possible my older ideas on simplifying the lower level interface and the event passing
mechanisim.

Bill received permission to release it for free on the Internet, with the GNU general public license. Response
from Internet usersindicated that the Linux market dwarfed the SGI and high-speed GL market, so he
rewroteit to use X for all drawing, greatly speeding it up on these machines. That isthe version you have
Now.

Digital Domain has since withdrawn support for FLTK. While Bill isno longer able to actively develop it, he
still contributesto FLTK in hisfree time and is a part of the FLTK development team.

Features

FLTK was designed to be statically linked. Thiswas done by splitting it into many small objects and
desigining it so that functions that are not used do not have pointers to them in the parts that are used, and
thus do not get linked in. This allows you to make an easy-to-install program, or to modify FLTK to the exact
requirements of your application, without worrying about bloat. FLTK worksfine as a shared library, though,
and has started being included on Linux distributions.

Here are some of the core features unique to FLTK:

« sizeof (FI_Widget) == 40 to 48.

* The"core" (the "hello" program compiled & linked with astatic FLTK library using gcc on a 486
and then stripped) is 39.5K.

¢ A program including every widget is less than 108K. Does not use macros, templates, multiple
inheritance, or exceptions.

« Written directly atop Xlib (or WIN32) for maximum speed, and carefully optimized for code size and
performance.

* Precise low-level compatability between the X11 and WIN32 version (only about 10% of the codeis
different).

« Interactive user interface builder program. Output is human-readable and editable C++ source code.

 Support for the X11 double buffering extension (emulation if not available and under Windows.)

 Support for X11 overlay hardware (emulation if none and under WIN32.)

e Very small & fast portable 2-D drawing library to hide Xlib and WIN32.

* OpenGL/Mesadrawing area widget.

 Support for OpenGL overlay hardware on both X11 and WIN32. Emulation if none.

« Text input fields with Emacs key bindings, X cut & paste, and foreign letter compose!

e Compatibility header file for the GLUT library.

4 History of FLTK

FLTK 1.0 Programming Manual

» Compatibility header file for the XForms library.
* Much too much to list here...
Licensing
FLTK comes with complete free source code. FLTK is available under the terms of the GNU Library General

Public License. Contrary to popular belief, it can be used in commercia software! (Even Bill Gates could use
it.)

What Does "FLTK" Mean?

FLTK was originally designed to be compatabl e with the Forms Library written for SGI machines. In that
library al the functions and structures started with "fl_". This naming was extended to all new methods and
widgets in the C++ library, and this prefix was taken as the name of thelibrary. It isamost impossibleto
search for "FL" on the Internet, due to the fact that it is a so the abbreviation for Florida. After much debating
and searching for a new name for the toolkit, which was already in use by several people, Bill came up with
"FLTK", and even abogus excuse that it stands for "The Fast Light Tool Kit".

Building and Installing FLTK Under UNIX

In most cases you can just type "make". Thiswill run configure with the default of no options and then
compile everything.

FLTK uses GNU autoconf to configure itself for your UNIX platform. The main things that the configure
script will look for are the X11, OpenGL (or Mesa), and JPEG header and library files. Make sure that they
arein the standard include/library locations.

Y ou can run configure yourself to get the exact setup you need. Type "./configure <options>", where options
are:

--enable-debug
Enable debugging code & symbols
--enable-shared
Enable generation of shared libraries
--bindir=/path
Set the location for executables [default = /usr/local/bin]
--libdir=/path
Set the location for libraries [default = /usr/local/lib]

--includedir=/path

Features 5

FLTK 1.0 Programming Manual

Set the location for include files. [default = /usr/local/include]
--prefix=/dir
Set the directory prefix for files [default = /usr/local]

When the configure script is done you can just run the "make" command. Thiswill build the library, FLUID
tool, and all of the test programs.

Toingtall thelibrary, become root and type "make install". Thiswill copy the "fluid" executable to "bindir",
the header filesto "includedir”, and the library filesto "libdir".

Building FLTK Under Micrsoft Windows

There are two ways to build FLTK under Microsoft Windows. The first isto use the Visual C++ 5.0 project
files under the "visualc" directory. Just open (or double-click on) the "fltk.dsw" file to get the whole shebang.

The second method is to use a GNU-based development tool with the filesin the "makefiles’ directory. To
build using one of these tools simply copy the appropriate makeinclude and config files to the main directory
and do amake:

cp makefil es/ makei ncl ude. <env> nakei ncl ude
cp makefil es/config.<env> config.h
make

Building FLTK Under OS/2

The current OS/2 build requires X Free86 for OS/2 to work. A native Presentation Manager version has not
been implemented yet (volunteers are welcome!).

To build the X Free86 version of FLTK for OS/2, copy the appropriate makeinclude and config files to the
main directory and do a make:

cp makefil es/ Makefile.os2x Makefile

cp makefil es/ makei ncl ude. os2x nakei ncl ude
cp makefil es/config.os2x config.h

make

Internet Resources
FLTK isavailable on the 'net in a bunch of locations:

WWW

http://fltk.easysw.com

FTP

ftp://ftp.easysw.com/pub/fltk

6 Building and Installing FLTK Under UNIX

http://fltk.easysw.com
ftp://ftp.easysw.com/pub/fltk

FLTK 1.0 Programming Manual

ftp://ftp.funet.fi/mirrors/ftp.easysw.com/pub/fltk
ftp.northamerica net/pub/ESP/fltk

EMail
fltk @easysw.com [see instructions bel ow]
fltk-bu sw.com [for reporting bugs]

To send amessage to the FLTK mailing list ("fltk@easysw.com™) you must first join the list. Non-member
submissions are blocked to avoid problems with SPAM...

Tojointhe FLTK mailing list, send a message to "majordomo@easysw.com" with "subscribe fltk" in the
message body. A digest of thislist is available by subscribing to the "fltk-digest" mailing list.
Reporting Bugs

To report abug in FLTK, send an email to "fltk-bugs@easysw.com™. Please include the FLTK version,
operating system & version, and compiler that you are using when describing the bug or problem.

For general support and questions, please use the FLTK mailing list at "fltk@easysw.com".

Internet Resources

ftp://ftp.funet.fi/mirrors/ftp.easysw.com/pub/fltk
ftp://ftp.northamerica.net/pub/ESP/fltk
mailto:fltk@easysw.com
mailto:fltk-bugs@easysw.com

FLTK 1.0 Programming Manual

Internet Resources

2 - FLTK Basics

This chapter will teach you the basics of compiling programs that use FLTK.

Naming
All public symbolsin FLTK start with the characters'F and 'L":

* Functions are either Fl : : foo() orfl _foo().

« Class and type names are capitalized: FI _Foo.

« Constants and enumerations are uppercase: FL_FQO.
* All header files start with <FL/ . . . >.

Header Files

The proper way to include FLTK header filesis:

#i ncl ude <FL/Fl _xyz. H>

Microsoft Windows developer s please note: case *is* significant under other operating systems, and the C
standard uses the forward slash (/) to separate directories. The following #i ncl ude directives are * not*
recommended for portability reasons:

#include <fI\fl _xyz.h>
#include <fl/fl _xyz.h>
#i nclude <FL\Fl _xyz. H>

2 - FLTK Basics

FLTK 1.0 Programming Manual

Compiling Programs with Standard Compilers

Under UNIX (and under Microsoft Windows when using the GNU development tools) you will probably
need to tell the compiler where to find the header files. Thisis usually done using the - 1 option:

CC -I/usr/local/include ...
gcc -1/usr/local/include ...

Similarly, when linking your application you will need to tell the compiler to use the FLTK library:

CC ... -Llusr/local/lib -1fltk -1Xext -1X11 -Im
gcc ... -Llusr/local/lib -1fltk -1Xext -1X11 -Im

Compiling Programs with Microsoft Visual C++

In Visual C++ you will need to tell the compiler where to find the FLTK header files. This can be done by
selecting " Settings' from the "Project” menu and then changing the "Preprocessor” settings under the
"C/C++" tab. Similarly, you will need to add the FLTK library to the "Link" settings.

Y ou can build your Microsoft Windows applications as Console or WIN32 applications. If you want to use
the standard C mai n() function asthe entry point, FLTK includes aw nwai n() function that will call your
mai n() function for you.

Note: The Visual C++ optimizer is known to cause problems with many programs. We only recommend using
the "Favor Small Code" optimization setting.

Writing Your First FLTK Program

All programs must include thefile<FL/ FI . H I n addi tion the program nust include a header file
for each FLTK class it uses. Listing 1 shows a sinple "Hello, Wrld!" programthat uses
FLTK to display the w ndow.

Listing 1 - "hello.cxx"

#i ncl ude <FL/Fl . H>
#i ncl ude <FL/Fl _W ndow. H>
#i ncl ude <FL/Fl _Box. H>

int main(int argc, char **argv) {
FI _W ndow *wi ndow = new Fl _W ndow(300, 180);
FI _Box *box = new Fl _Box(FL_UP_BOX, 20, 40, 260, 100, "Hel l o, Wrld!");
box- >l abel si ze(36);
box- >l abel f ont (FL_BOLD+FL_I TALI O) ;
box- >| abel t ype(FL_SHADOW LABEL) ;
wi ndow >end() ;
wi ndow >show(argc, argv);
return Fl::run();

}

After including the required header files, the programthen creates a w ndow

FI _W ndow *w ndow = newFl _W ndow(300, 180) ;

10 Compiling Programs with Standard Compilers

FLTK 1.0 Programming Manual

and a box with the "Hello, Wrld!'" string init:

FI _Box *box = new FEL_Box(FL_UP_BOX, 20, 40, 260, 100, "Hel | o, Wrld!");

Next, we set the size, font, and style of the |abel:
box- > abel si ze(36) ;
box- > abel f ont(FL_BCOLD+FL_| TALI C);
box->| abel t ype(FL_SHADOW LABEL) ;
Finally, we show the wi ndow and enter the FLTK event | oop:
wi ndow >end() ;
wi ndow >show(argc, argv);
return El::run();

The resulting programw || display the wi ndow bel ow. You can quit the program by cl osing
t he wi ndow or pressing the ESCape key.

=) hello |a]

Hello, World!

Creating the Widgets

The wi dgets are created using the C++ new operator; the arguments to the constructors are
usual ly one of the follow ng:

FI _W dget (boxtype, x, y, width, height)
FI _Wdget (x, y, width, height)
FI _Wdget (wi dt h, hei ght)

The boxtype value is the style of the box that is drawn around the wi dget. Usually this
i S FL_NO BOX, which neans that no box is drawn. In our "Hello, Wrld!'" exanple we use

FL_UP_BOX, which neans that a raised button border will be drawn around the w dget. You
can |l earn nore about boxtypes inChapter 3.

Thex and y parameters determine where the widget or window is placed on the screen. In FLTK the top left
corner of the window or screen isthe origin (i.e. x = 0, y = 0) and the units are in pixels.

Thewi dt h and hei ght parameters determine the size of the widget or window in pixels. The maximum
widget size istypically governed by the underlying window system or hardware.

Labels

Al'l widgets support labels. In the case of w ndow w dgets, the label is used for the
label in the title bar. Qur exanple programcalls thelabelfont, labelsize, and

Writing Your First FLTK Program 11

FLTK 1.0 Programming Manual

| abel t ype net hods.

Thel abel f ont method sets the typeface and style that is used for the label, which for this example we are
using FL_BoLD and FL_I TALI C. You can also specify typefaces directly.

Thel abel si ze method sets the height of the font in pixels.

Thel abel t ype method sets the type of label. FLTK supports normal, embossed, shadowed, symbol, and
image labels.

A complete list of all label options can be found in Chapter 3.

Showing the Window

The show() net hod shows the wi dget or wi ndow. For wi ndows you can al so provide the
command-|ine argunents to allow users to custom ze the appearance, size, and position of
your w ndows.

The Main Event Loop

FLTK provides the FEl:run() method to enter a standard event processing loop. This is
equi valent to the follow ng code:

while (FI::wait());

Fl::run() does not return until all of the wi ndows under FLTK control are closed (either
by the user or your progran).

12 Writing Your First FLTK Program

3 - Common Widgets and Attributes

This chapter describes many of the widgets that are provided with FLTK and covers how to query and set the
standard attributes.

Buttons
FLTK provides many types of buttons:

* FI _But t on - A standard push button.

Fl _Check_Butt on - A button with a check box.

* FI _Li ght _But t on - A push button with alight.

* FI _Repeat _Butt on - A push button that repeats when held.

* FI _Return_Butt on - A push button that is activated by the Enter key.
* FI _Round_But t on - A button with a check circle.

For al of these buttons you just need to include the corresponding <FL/ FI _xyz_But t on. H> header file. The
constructor takes the bounding box of the button and optionally alabel string:

FI _Button *button = new Fl _Button(x, y, width, height, "label");
FI _Light _Button *l button = new Fl _Light_Button(x, y, wi dth, height);
FI _Round_Button *rbutton = new Fl _Round_Button(x, y, width, height, "label");

Each button has an associated type() which allowsit to behave as a push button, toggle button, or radio
button:

butt on- >t ype(0);

3 - Common Widgets and Attributes 13

FLTK 1.0 Programming Manual

| butt on->type(FL_TOGGLE_BUTTQON) ;
rbutt on- >t ype(FL_RADI O BUTTQON) ;

For toggle and radio buttons, the val ue() method returns the current button state (O = off, 1 = on). The

set () andcl ear () methods can be used on toggle buttons to turn atoggle button on or off, respectively.
Radio buttons can be turned on with the set onl y() method; thiswill also turn off other radio buttonsin the
current group.

Text

FLTK provides several text widgets for displaying and receiving text:

* FI _I nput - A standard one-line text input field.

* FI _Qut put - A standard one-line text output field.

e FI _Multiline_lnput -A standard multi-line text input field.

e FI _Multiline_Qutput - A standard multi-line text output field.

TheFl _out put and FI _Mul ti | i ne_cut put widgets allow the user to copy text from the output field but not
changeit.

Theval ue() method isused to get or set the string that is displayed:

FI _I'nput *input = new FlI _I nput(x, y, width, height, "label");
i nput->value("Now is the time for all good men...");
Valuators

Unlike text widgets, valuators keep track of numbers instead of strings. FLTK provides the following
valuators:

* FI _Count er - A widget with arrow buttons that shows the current value.
* FI _Di al - A round knob.

* FI _Rol | er - An SGI-like dolly widget.

* FI _Scrol | bar - A standard scrollbar widget.

e FI _Slider - A scrollbar with aknob.

* FI _Val ue_Slider - A dider that shows the current value.

The val ue() method gets and sets the current value of the widget. The ni ni mun{) and maxi nummethods set
the range of values that are reported by the widget.

Groups

TheFI _Gr oup widget classis used as ageneral purpose "container" widget. Besides grouping radio buttons,
the groups are used to encapsul ate windows, tabs, and scrolled windows. The following group classes are
available with FLTK:

* FI _Doubl e_W ndow - A double-buffered window on the screen.
* FI _d _W ndow- An OpenGL window on the screen.

14 Buttons

FLTK 1.0 Programming Manual

FI _G oup - The base container class; can be used to group any widgets together.
FI _Scroll - A scrolled window area

FI _Tabs - Displays child widgets as tabs.

FI _W ndow- A window on the screen.

Setting the Size and Position of Widgets

The size and position of widgets is usually set when you create them. Y ou can change this at any time using

the posi

tion,resize(),andsi ze methods:

button->position(x, vy);
group->resize(x, y, width, height);

wi ndow >si ze(wi dt h, height);

Changing the size or position of awidget will cause aredraw of that widget and its children.

Colo

rs

FLTK manages avirtual color palette of "standard" colors. The standard colors are:

Thewid

FL_BLACK
FL_RED
FL_GREEN
FL_YELLOW
FL_BLUE
FL_MAGENTA
FL_CYAN
FL_WH TE
FL_GRAY

get color can be set using the col or () method:

but t on- >col or (FL_RED) ;

Similarly, the label color can be set using the | abel col or () method:

but t on- >l abel col or (FL_WHI TE) ;

Box Types

Thetype Fl _Boxt ype stored and returned inEl _W dget : : box() iSan enumeration defined ins. H>:

Groups

15

FLTK 1.0 Programming Manual

FL_NO BOX means nothing isdrawn at all, so whatever is aready on the screen remains. The
FL_..._FRAME typesonly draw their edges, |eaving the center unchanged. In the above diagram the blue
color isthe areathat is not drawn by the box.

Making your own Boxtypes

Y ou can define your own boxtypes by making a small function that draws the box and adding a pointer to it
to atable of boxtypes.

The Drawing Function
The drawing function is passed the bounding box and background color for the widget:
void xyz_drawm(int x, int y, int w, int h, FI _Color c) {
A simple drawing function might fill a rectangle with the given color and then draw a black outline:

void xyz_drawm(int x, int y, int w, int h, FI _Color c) {
fl_color(c);
fl _rectf(x, y, w, h);
fl _col or (FL_BLACK) ;
fl _rect(x, y, w, h);
}

Adding Your Box Type

TheFI : : set _boxt ype() method adds or replaces the specified box type:

#defi ne XYZ_BOX FL_FREE_BOXTYPE

16 Box Types

FLTK 1.0 Programming Manual

Fl :: set _boxtype(XYZ_BOX, xyz_draw, 1, 1, 2, 2);

Thelast 4 argumentsto Fl : : set _boxt ype() arethe offsets for the bounding box that should be subtracted
when drawing the label inside the box.

Labels and Label Types

Thel abel (), align,label font(),label size(),andl abel t ype() methods control the labeling of widgets.

label()

Thel abel () method sets the string that is displayed for the label. For the FL_SYMBOL_LABEL and image |abel
types the string contains the actual symbol or image data.

align()
Theal i gn() method positions the labdl. The following constants are defined:

e FL_ALI GN_CENTER - center the label in the widget.

* FL_ALI GN_TOP - align the label at the top of the widget.

* FL_ALI GN_BOTTOM- align the label at the bottom of the widget.
* FL_ALI GN_LEFT - dign the label to the | eft of the widget.

* FL_ALI GN_RI GHT - dign the label to the right of the widget.

e FL_ALI GN_I NSI DE - align the label inside the widget.

* FL_ALI GN_CLI P - clip the label to the widget's bounding box.

* FL_ALI GN_WRAP - wrap the label text as needed.

labeltype()
Thel abel t ype() method sets the type of the label. The following standard label types are included:

* FL_NORMAL_LABEL - draws the text.

e FL_NO_LABEL - does nothing

e FL_SYMBOL_LABEL - draws"@xyz" labels, see "Symbol L abels"

* FL_SHADOW LABEL - draws a drop shadow under the text

e FL_ENGRAVED LABEL - draws edges as though the text is engraved
e FL_EMBOSSED LABEL - draws edges as thought the text israised

To make bitmaps or pixmaps you use a method onthe Fl _Bi t map orFl _Pi xmap objects.

Making Your Own Label Types

Label types are actually indexes into a table of functions to draw them. The primary purpose of thisisto let
you reusethel abel () pointer asapointer to arbitrary data such as a bitmap or pixmap. Y ou can a so use this

to draw the labels in ways inaccessible through the f I _f ont mechanisim (e.g. FL_ENGRAVED_LABEL) or with
program-generated letters or symbology.

Box Types 17

FLTK 1.0 Programming Manual

Label Type Functions

To setup your own label type you will need to write two functions to draw and measure the label. The draw
function is called with apointer to aFl _Label structure containing the label information, the bounding box
for the label, and the label alignment:

void xyz_draw(Fl _Label *label, int x, int y, int w, int h, FI_Align align) {
}

The label should be drawn inside this bounding box, even if FL_ALI GN_I NsI DE is not enabled. The functionis
not called if the label valueisNULL.

The measure function is called with a pointer to aEl _Label structure and references to the width and height:
voi d xyz_neasure(Fl _Label *label, int wint h {

It should measure the size of the label and set wand h to the size it will occupy.

Adding Your Label Type

TheFI : : set _I abel t ype method creates alabel type using your draw and measure functions:
#define XYZ_LABEL FL_FREE LABELTYPE

Fl ::set_| abel type(XYZ_LABEL, xyz_draw, xyz_neasure);

The label type number n can be any integer value starting at the constant FL_FREE_LABELTYPE. Once you
have added the label type you can usethel abel t ype() method to select your label type.

TheFI : : set _I abel t ype method can also be used to overload an existing label type such as
FL_NORMAL _LABEL.

Symbol Labels

The FL_SYMBOL_LABEL label type usesthel abel () string to look up a small drawing procedure in a hash
table. For historical reasons the string always starts with '@, if it starts with something else (or the symbol is
not found) the label is drawn normally:

18 Labels and Label Types

FLTK 1.0 Programming Manual

The @ sign may be followed by the following optional "formatting" characters, in this order:

« '# forces sguare scaling, rather than distortion to the widget's shape.

» +[1-9] or -[1-9] tweaks the scaling alittle bigger or smaller.

* [1-9] - rotates by a multiple of 45 degrees. '6' does nothing, the others point in the direction of that
key on anumeric keypad.

Callbacks

Callbacks are functions that are called when the value of awidget changes. A callback function is sent a
FI _W dget pointer of the widget that changed and optionally a pointer to data of some sort:

voi d xyz_cal | back(FI _Wdget *w, void *data) {
}

Thecal I back() method sets the callback function for awidget. Y ou can optionally pass a pointer to some
data needed for the callback:

int xyz_dat a;

butt on->cal | back(xyz_cal | back, data);

Normally callbacks are performed only when the value of the widget changes. Y ou can change this using the
when() method:

but t on- >when(FL_WHEN_NEVER) ;

but t on- >when(FL_WHEN_CHANGED) ;

but t on- >when(FL_WHEN_RELEASE) ;

but t on- >when(FL_WHEN RELEASE_ALWAYS) ;

but t on- >when(FL_WHEN_ENTER_KEY) ;

but t on- >when(FL_WHEN_ENTER _KEY_ALVWAYS) ;

but t on- >when(FL_WHEN_CHANGED | FL_WHEN _NOT_CHANGED) ;

Labels and Label Types 19

Shortcuts

FLTK 1.0 Programming Manual

Shortcuts are key sequences that activate widgets (usually buttons or menu items). The short cut () method
registers a shortcut for a widget:

but t on-
but t on-
but t on-
but t on-
but t on-

>shortcut (FL_Enter);

>shortcut (FL_SHIFT + 'b');
>shortcut (FL_CTRL + 'b");
>shortcut (FL_ALT + 'b");

>shortcut (FL_CTRL + FL_ALT + 'b');

The shortcut value is the key event value (the ASCII value or one of the special keyslike FL_Enter)
combined with any modifiers (like shift, alt, and control).

20

Shortcuts

4 - Designing a Simple Text Editor

This chapter takes you through the design of asimple FLTK-based text editor.

Determining the Goals of the Text Editor

Since thiswill be thefirst big project you'll be doing with FLTK, lets define what we want our text editor to
do:

1. Menu_Bar/menusfor al functions.

2. Edit asingle text file.

3. Load from afile.

4. Saveto afile.

5. Cut/copy/del ete/paste functions.

6. Search and replace functions.

7. Keep track of when the file has been changed.

Designing the Main Window

Now that we've outlined the goals for our editor, we can begin with the design of our GUI. Obviously the
first thing that we need is awindow:

FI _W ndow *w ndow;

wi ndow = new Fl _W ndow(640, 480, "Text Editor");

4 - Designing a Simple Text Editor

21

FLTK 1.0 Programming Manual

Variables

Our text editor will need some global variables to keep track of things:

FI _W ndow *Wi ndow;

Fl _Menu_Bar *menubar ;

FI _Multiline_lnput *input;

FlI _W ndow *repl ace_dl g;

Fl _I nput *repl ace_fi nd;

Fl _I nput *repl ace_wi th;

FI _Button *repl ace_al | ;

FI _Return_Button *repl ace_next;

FI _Button *repl ace_cancel ;
i nt changed = 0;
char filename[1024] = "";
char search[256] = ""

Thew ndow variable is our top-level window described previously. We'll cover the other variables as we
build the application.

Menu_Bars and Menus

Thefirst goa requires usto use a menubar and menus that define each function the editor needs to perform.
The El_Menu_I t emstructure is used to define the menus and itemsin a menubar:

FI _Menu_ltem nmenuitens[] = {
{ "&File", 0, 0, 0, FL_SUBMENU },

{ "&New', FL_ALT + 'n', new.chb },
{ "&Open. . FL_ALT + 'o', open_cb, 0, FL_MENU DI VIDER },
{ "&Save", FL_ALT + 's', save_cb },
{ "Save &As...", FL_ALT + FL_SH FT + 's', saveas_ch, 0, FL_MENU DI VIDER },
{" &Qut FL_ALT +'q, quit_cb },
{ 0},
{ "&Edit", 0, 0, 0, FL_SUBMENU },
{ "&Undo", FL_ALT + 'z', undo_cb, 0, FL_MENU DI VIDER },
{ "Cu&t" FL_ALT + 'x', cut_cb },
{" &Oopy , FL_ALT + 'c¢', copy_cb },
{ "&Paste" FL_ALT + 'v', paste_cb },
{ "&Del ete 0, delete_cb },
{ 0},
{ "&Search", 0, 0, 0, FL_SUBMENU },
{ "&Find...", FL_ALT + "f', find_cb },
{ "F& nd Again", FL ALT + 'g', find2_cb },
{ "&Replace...", FL_ALT + 'r', replace_cb },
{ "Reé&place Again", FL_ALT + 't', replace2_cb },
{ 01},
{0}

b
Once we have the menus defined we can create the FI _Menu_Bar widget and assign the menusto it with:

FI _Menu_Bar *nmenubar = new Fl _Menu_Bar (0, 0, 640, 30);

22 Variables

FLTK 1.0 Programming Manual

nenubar - >nenu(nenui t ens) ;

WeEe'll define the callback functions later.

Editing the Text

To keep things simple our text editor will usethe EL_Mil tiline_l nput widget to edit the text:

FI_Miltiline_Input *input = new FI _Multiline_lnput(0, 30, 640, 450);
So that we can keep track of changes to the file, we also want to add a "changed" callback:

i nput - >cal | back(changed_cb);
i nput - >when(FL_WHEN_CHANGED) ;

Finally, we want to use a mono-spaced font like FL_COURI ER:

i nput - >t ext f ont (FL_COURI ER) ;

The Replace Dialog

We can use the FLTK convenience functions for many of the editor's dialogs, however the replace dialog
needs its own custom window. To keep things simple we will have a"find" string, a"replace” string, and
"replace al", "replace next", and "cancel" buttons. The strings are just FI _I nput widgets, the "replace all"

and "cancel" buttons are FI _But t on widgets, and the "replace next " buttonisaFl _Ret ur n_But t on widget:

=! Replace

Find: | this

Replace: | that]
Replace All | Replace Next -~ | Cancel |

FI _W ndow *repl ace_dl g
Fl _Input *replace_find

new Fl _W ndow 300, 105, "Replace");

new Fl _I nput (70, 10, 200, 25, "Find:");

FI I nput *replace_with new Fl _I nput (70, 40, 200, 25, "Replace:");

FI _Button *repl ace_all new Fl _Button(10, 70, 90, 25, "Replace Al");

FI _Button *repl ace_next = new FI _Button(105, 70, 120, 25, "Replace Next");
FI _Button *repl ace_cancel = new Fl _Button(230, 70, 60, 25, "Cancel");

Callbacks

Now that we've defined the GUI components of our editor, we need to define our callback functions.

changed_ch()

Menu_Bars and Menus

23

FLTK 1.0 Programming Manual

This function will be called whenever the user changes any text in thei nput widget:

voi d changed_cb(void) {
set _changed(1);
}

Theset _changed() function is one that we will write to set the changed status on the current file. We're
doing it this way because some of the other callbacks will set the changed status to 0, and aso because we
want to show the changed status in the window's title bar.

copy_ch()
This callback function will call i nput - >copy() to copy the currently selected text to the clipboard:

voi d copy_cb(void) {
i nput - >copy();
}

cut_ch()

This callback function will call i nput - >copy() to copy the currently selected text to the clipboard and then
i nput - >cut () to deleteit:

void cut_cb(void) {

i nput - >copy();
i nput - >cut () ;

}

delete_ch()

This callback function will call i nput - >cut () to delete the selected text:

voi d del ete_cb(void) {
i nput ->cut () ;

}

find_cb()

This callback function asks for a search string using the f1 _i nput () convenience function and then calls the
find2_cb() function to find the string:

void find_cb(void) {
const char *val

val = fl _input("Search String:", search);
if (val !'= NULL) {
/'l User entered a string - go find it!
strcpy(search, val)
find2_cb();
}
}

24 Callbacks

FLTK 1.0 Programming Manual

find2_ch()

This function will find the next occurrence of the search string. If the search string is blank then we want to
pop up the search diaog:

void find2_cb(void) {
const char *val, *found
i nt pos;

if (search[0] == "\0") {
/'l Search string is blank; get a new one..
find_cb();
return;

}

va
f ound

i nput ->val ue() + input->mark();
strstr(val, search)

if (found !'= NULL) {
/1 Found a match; update the position and mark. .
pos = input->mark() + found - val
i nput - >posi ti on(pos, pos + strlen(search));

else fl _alert("No occurrences of \'%\' found!", search);

}

If the search string cannot be found we usethe f1 _al ert () convenience function to display a message to that
effect.

new_ch()

This callback function will clear the input widget and current filename. It also callsthe
check_save() function to give the user the opportunity to save the current file first as needed:

voi d new_cb(void) {
i f (changed)
if (!check_save()) return

filename[0] = "\0'
i nput ->val ue("");
set _changed(0);

}

open_ch()

This callback function will ask the user for afilename and then load the specified file into the input widget
and current filename. It also callsthe check_save() function to give the user the opportunity to save the
current filefirst as needed:

voi d open_cb(void) {
char *newfil e;

i f (changed)
if (!check_save()) return

Callbacks 25

FLTK 1.0 Programming Manual

newfile = fl _file_chooser("Open File?", "*", filenane);
if (newfile !'= NULL) load _file(newfile);
}

Wecall thel oad_fi | e() function to actually load thefile.

paste_ch()

This callback function will send a FL_PASTE message to thei nput widget using the Fl : : past e() method:

voi d paste_cb(void) {
Fl :: paste(*input);
}

quit_cb()

The quit callback will first seeif the current file has been modified, and if so give the user a chanceto saveit.
It then hides the main window:

void quit_cb(void) {
i f (changed)
if (!check_save())
return;

wi ndow >hi de() ;

}

replace_ch()

The replace callback just shows the replace dialog:

voi d replace_cb(void) {
repl ace_dl g- >show() ;
}

replace2_ch()

This callback will replace the next occurence of the replacement string. If nothing has been entered for the
replacement string, then the replace dialog is displayed instead:

voi d replace2_cb() {
const char *find, *val, *found
i nt pos;

find = replace_find->val ue();

if (find[O] == "\0") {
/'l Search string is blank; get a new one..
repl ace_dl g- >show() ;

return;
}
val = input->val ue() + input->position();
found = strstr(val, find)

26 Callbacks

}

replall_

FLTK 1.0 Programming Manual

if (found !'= NULL) {
/1 Found a match; update the position and replace text...
pos = input->position() + found - val
i nput - >repl ace(pos, pos + strlen(find), replace_wi th->value());
i nput - >position(pos + strlen(replace_with->value()));

else fl _alert("No occurrences of \'%\' found!'", find);

cb()

This callback will replace al occurences of the search string in thefile:

VO

}

idreplall_cb() {

const char *find, *val, *found
int pos;

int tines;

find = replace_find->val ue();

if (find[0O] == "\0") {
/1 Search string is blank; get a new one..
repl ace_dl g- >show() ;
return;

}

i nput - >position(0);
times = O;

/1l Loop through the whole string

do {
val = input->val ue() + input->position();
found = strstr(val, find)

if (found !'= NULL) {
/1 Found a match; update the position and replace text...
times ++
pos = input->position() + found - val
i nput - >repl ace(pos, pos + strlen(find), replace_wi th->value());
i nput - >position(pos + strlen(replace_with->value()));

}
} while (found !'= NULL);

if (times > 0) fl_nessage("Repl aced % occurrences.", tines);
else fl _alert("No occurrences of \'%\' found!", find);

replcan_cb()

This callback just hides the replace dialog:

Vo

}

id replcan_cbh() {
repl ace_dl g->hi de();

save_ch()

Callbacks

27

FLTK 1.0 Programming Manual

This callback saves the current file. If the current filename is blank it calls the "save as" callback:

voi d save_cb(void) {
if (filename[0] == "\0") {
/1 No filenane - get one
saveas_ch();
return;

}

el se save_file(filenane);

}

Thesave_fil e() function savesthe current file to the specified filename.

saveas_cbh()

This callback asks the user for afilename and saves the current file;

voi d saveas_cb(void) {
char *newfil e;

newfile = fl _file_chooser("Save File As?", "*", filenane);

if (newfile !'= NULL) save_file(newfile);
}

Thesave_fil e() function savesthe current file to the specified filename.

undo_chb()

The undo callback just callsthe undo() method:

voi d undo_cb(void) {
i nput - >undo() ;

}

Other Functions

Now that we've defined the callback functions, we need our support functions to make it all work:

check_save()

This function checksto seeif the current file needs to be saved. If so, it asks the user if they want to saveit:

int check_save(void) {
if (!changed) return 1

if (fl_ask("The current file has not been saved.\n"
"Would you like to save it now?")) {
/1 Save the file..
save_cb();

return !changed

}

else return (1);

28 Callbacks

FLTK 1.0 Programming Manual

load_file()

This function loads the specified fileinto thei nput widget:

void |l oad _file(char *newfile) {
FILE *fp;
char buffer[8192];
int nbytes;
int pos;

i nput ->val ue("");

= fopen(newfile, "r");
(fp !'= NULL) {

/1 Was able to open file; let's read fromit.

strcpy(filename, newfile);

pos = O;

fp
i f

while ((nbytes = fread(buffer, 1, sizeof(buffer), fp)) > 0) {

i nput - >repl ace(pos, pos, buffer, nbytes);
pos += nbytes;

}

fclose(fp);
i nput - >position(0);
set _changed(0);
} else {
// Couldn't open file - say so..

fl _alert("Unable to open \"'%\"' for reading!"

}
}

When loading the file we use the i nput - >r epl ace() method to "replace” thetext at the end of the buffer.

The pos variable keeps track of the end of the buffer.

save_file()

This function saves the current buffer to the specified file:

voi d save_file(char *newfile) {
FILE *fp

fp = fopen(newfile, "w');

if (fp !'= NULL) {
/1l Was able to create file; let's wite to it
strcpy(filename, newfile);

if (fwite(input->value(), 1, input->size(),
fl _alert("Unable to wite file!");
fcl ose(fp);
return;

}

fcl ose(fp);
set _changed(0);

Other Functions

)

fp) < 1) {

29

FLTK 1.0 Programming Manual

} else {
/'l Couldn't open file - say so...
fl _alert("Unable to create \'9%\' for witing!");

}
}

set_changed()

This function sets the changed variable and updates the window label accordingly:

voi d set_changed(int c) {
if (c != changed) {
char title[1024];
char *sl ash;
changed = c;
if (filenane[0] == "\0") strcpy(title, "Untitled");
el se {
slash = strrchr(filenanme, '/");
if (slash == NULL) slash = strrchr(filename, "\\');

if (slash I'= NULL) strcpy(title, slash + 1);
el se strcpy(title, filename);

}
if (changed) strcat(title, " (modified)");

wi ndow >l abel (title);

Compiling the Editor
The complete source for our text editor can befound inthet est/ edi t or. cxx source file. Both the Makefile

and Visual C++ workspace include the necessary rulesto build the editor. Y ou can also compileit using a
standard compiler with:

CC -0 editor editor.cxx -Ifltk -1 Xext -1X11 -Im

Asnoted in Chapter 1, you may need to include compiler and linker options to tell them where to find the
FLTK library. Also, the cC command may also be called gcc or c++ on your system.

Congratulations, you've just built your own text editor!

The Final Product

The final editor window should look like the image below:

30 Other Functions

FLTK 1.0 Programming Manual

=.; editor.cxx 1 a “:]
File Edit Search

éff "$Id: editor.cxx,v 1.1 1998/12/23 20:04:31 mike Exp §"

gff A simple text editor program for the Fast Light Tool Kit (FLTK).
éff This program is described in Chapter 4 of the FLTK Programmer’s Gui
gff Copvright 1998 by Bill Spitzak and others.

|// This library is free software; vou can redistribute it and/or
|// modify it under the terms of the GNU Library General Public

|// License as published by the Free Software Foundation; either

|// version 2 of the License, or (at your option) any later wversion.

|// This library is distributed in the hope that it will be useful,
|// but WITHOUT ANY WARRANTY; without even the implied warranty of
|// MERCHANTABILITY or FITNESS FOR & PARTICULAR PURPOSE. See the GNU
|// Library General Public License for more details.

%f{ You should have received a copy of the GNU Library General Public
|// License along with this library; if not, write to the Free Software
|// Foundation, Inc., 59 Temple Place, Suite 330, Boston, Ma 02111-1307
1// USA.

éff Please report all bugs and problems to "fltk-bugs@easysw.com".

éff Include necessary headers...

The Final Product

31

32

FLTK 1.0 Programming Manual

The Final Product

5 - Drawing Things in FLTK

This chapter covers the drawing functions that are provided with FLTK.

When Can You Draw Things in FLTK?

There are only certain places you can execute drawing code in FLTK. Calling these functions at other places
will result in undefined behavior!

* The most common isinside the virtual method El _W dget : : dr aw() . To write code here, you must
subclass one of the existing FI _W dget classes and implement your own version of dr aw() .

* You can aso write boxtypes and |abeltypes. These are small procedures that can be called by existing
FI _W dget draw() methods. These "types" are identified by an 8-bit index that is stored in the
widget'sbox(), | abel t ype(), and possibly other properties.

e You cancal El _W ndow. : make_current () to doincremental update of awidget. Use
Fl _W dget : : wi ndow() to find the window. Under X this only works for the base FI _W ndow class,
not for double buffered, overlay, or OpenGL windows!

FLTK Drawing Functions

To use the drawing functions you must first include the <FL/ f | _dr aw. H> header file. FLTK provides the
following types of drawing functions:

* Clipping
* Colors
* Fast Shapes

» Complex Shapes
o Text

e Im
ursor
* Overl

i

:

Clipping

You can limit all your drawing to arectangular region by caling f1 _cl i p, and put the drawings back by
using f I _pop_cl i p. Thisrectangle is measured in pixels (it is unaffected by the current transformation
matrix).

In addition, the system may provide clipping when updating windows, this clip region may be more complex
than a simple rectangle.

void fl_clip(int x, inty, int w, int h)
Intersect the current clip region with arectangle and push this new region onto the stack.

void fl_pop_clip()

5 - Drawing Things in FLTK 33

FLTK 1.0 Programming Manual

Restore the previous clip region. You must call f1 _pop_cli p() oncefor everytimeyoucall f1 _clip().If
you return to FLTK with the clip stack not empty unpredictable results occur.

int fl_not_clipped(int x, inty, int w, int h)

Returnstrue if any of the rectangle intersects the current clip region. If this returns false you don't have to
draw the object. Under X thisreturns 2 if the rectangleis partially clipped, and 1 if it isentirely inside the
clip region.

int fl_clip_box(int x, inty, int w, int h, int &X, int &Y, int &W, int &H)
Intersect the rectangle x, y, w, h with the current clip region and returns the bounding box of the result in

X, Y, W H. Returns non-zero if the resulting rectangle is different than the original. This can be used to limit
the necessary drawing to arectangle. wand H are set to zero if the rectangle is completely outside the region.

Colors

void fl_color(FI_Color)

Set the color for al subsequent drawing operations. FI _Col or isan enumeration type, and al valuesarein
the range 0-255. Thisis not the X or WIN32 pixel, it isan index into an internal table! The table provides
several general colors, a 24-entry gray ramp, and a 5x8x5 color cube. All of these are named with
poorly-documented symbolsin <FL/ Enuner at i ons. H>.

For colormapped displays, a color cell will be allocated out of f1 _col or map the first time you use acolor. If
the colormap fills up then aleast-squares algorithm is used to find the closest color.

FI_Color fl_color()

Returnsthelast fI _col or () that was set. This can be used for state save/restore.

void fl_color(uchar r, uchar g, uchar b)

Set the color for all subsequent drawing operations. The closest possible match to the RGB color is used. The

RGB color is used directly on TrueColor displays. For colormap visuals the nearest index in the gray ramp or
color cubeis used.

Fast Shapes

These are used to draw almost all the FLTK widgets. They draw on exact pixel boundaries and are asfast as
possible, and their behavior will be duplicated exactly on any platform FLTK is ported to. It is undefined
whether these are affected by the transformation matrix, so you should only call these while it is the identity.
void fl_rectf(int x, inty, int w, int h)

Color arectangle that exactly fills the given bounding box.

void fl_rectf(int x, inty, int w, int h, uchar r, uchar g, uchar b)

34 FLTK Drawing Functions

FLTK 1.0 Programming Manual

Color arectangle with "exactly" the passed r, g, b color. On screens with less than 24 bits of color thisis
done by drawing a solid-colored block using f1 _dr aw i mage() so that dithering is produced.

void fl_rect(int x, inty, int w, int h)
Draw a 1-pixel border inside this bounding box.

void fl_line(int x, inty, int x1, int y1)
void fl_line(int x, inty, int X1, int y1, int X2, int y2)

Draw one or two 1-pixel thick lines between the given points.

void fl_loop(int X, inty, int x1, int y1, int x2, int y2)
void fl_loop(int x, inty, int x1, int y1, int X2, int y2, int X3, int y3)

Outline a 3 or 4-sided polygon with 1-pixel thick lines.

void fl_polygon(int x, inty, int x1, int y1, int X2, int y2)
void fl_polygon(int x, int y, int x1, int y1, int X2, int y2, int X3, int y3)

Fill a3 or 4-sided polygon. The polygon must be convex.

void fl_xyline(int x, inty, int x1, int y1)
void fl_xyline(int x, inty, int X1, int y1, int x2)
void fl_xyline(int x, inty, int X1, int y1, int X2, int y3)

Draw 1-pixel wide horizontal and vertical lines. A horizontal lineis drawn first, then avertical, then a
horizontal.

void fl_yxline(int x, inty, int y1)
void fl_yxline(int x, inty, int y1, int x2)
void fl_yxline(int x, inty, int y1, int x2, int y3)

Draw 1-pixel wide vertical and horizontal lines. A vertical line is drawn first, then a horizontal, then a
vertical.

void fl_arc(int x, inty, int w, int h, double al, double a2)
void fl_pie(int x, inty, int w, int h, double al, double a2)
void fl_chord(int x, inty, int w, int h, double al, double a2)

High-speed ellipse sections. These functions match the rather limited circle drawing code provided by X and
MSWindows. The advantage over using f1 _ar c isthat they are faster because they often use the hardware,
and they draw much nicer small circles, since the small sizes are often hard-coded bitmaps.

If acomplete circleisdrawn it will fit inside the passed bounding box. The two angles are measured in
degrees counterclockwise from 3'oclock and are the starting and ending angle of the arc, a2 must be greater
or equal to al.

f1_arc() drawsal-pixel thick line (notice this has a different number of arguments than the
f1_arc() described below.

FLTK Drawing Functions 35

FLTK 1.0 Programming Manual

f1 _pie() drawsafilled-in pie slice. This slice may extend outside thelinedrawn by f1 _ar ¢, to avoid this
usew - 1andh - 1.

f1 _chord() isnot yet implemented.

Complex Shapes

These functions let you draw arbitrary shapes with 2-D linear transformations. The functionality matches that
found in Adobe® PostScript™M. The exact pixelsfilled in isless defined than for the above cals, so that
FLTK can take advantage of drawing hardware. The transformed vertices are rounded to integers before
drawing the line segments. This severely limits the accuracy of these functions for complex graphics. Use
OpenGL when greater accuracy and/or performance is required.

void fl_push_matrix()
void fl_pop_matrix()

Save and restore the current transformation. The maximum depth of the stack is 4.

void fl_scale(float x, float y)

void fl_scale(float x)

void fl_translate(float x, float y)

void fl_rotate(float d)

void fl_mult_matrix(float a, float b, float c, float d, float x, float y)

Concatenate another transformation onto the current one. The rotation angle isin degrees (not radians) and is
counter-clockwise.

void fl_begin_line()
void fl_end_line()

Start and end drawing 1-pixel thick lines.

void fl_begin_loop()
void fl_end_loop()

Start and end drawing a closed sequence of 1-pixel thick lines.

void fl_begin_polygon()
void fl_end_polygon()

Start and end drawing a convex filled polygon.

void fl_begin_complex_polygon()
void fl_gap()
void fl_end_complex_polygon()

Start and end drawing a complex filled polygon. This polygon may be concave, may have holesin it, or may
be several disconnected pieces. Call 1 _gap() to seperate loops of the path (it is unnecessary but harmless to
call f1 _gap() beforethefirst vertex, after the last one, or several timesin arow). For portability, you should
only draw polygons that appear the same whether "even/odd" or "non-zero" winding rules are used to fill

36 FLTK Drawing Functions

FLTK 1.0 Programming Manual

them. This mostly means that holes should be drawn in the opposite direction of the outside.

f1 _gap() should only be called between f | _begi n_conpl ex_pol ygon() andfl _end_conpl ex_pol ygon() .
To outline the polygon, usefl _begi n_I oop() and replace each | _gap() with

fl _end_l oop();fl _begin_Il oop().

void fl_vertex(float x, float y)

Add asingle vertex to the current path.

void fl_curve(float x, float y, float x1, float y1, float x2, float y2, float x3, float y3)

Add a series of points on aBezier curve to the path. The curve ends (and two of the points) are at x, y and
x3, y3.

void fl_arc(float x, float y, float r, float start, float end)

Add a series of points to the current path on the arc of acircle (you can get elliptical paths by using scale and
rotate before calling this). x, y are the center of thecircle, andr isitsradius. f1 _arc() takesstart and

end angles that are measured in degrees counter-clockwise from 3 o'clock. If end islessthan st art then it
draws the arc in a clockwise direction.

void fl_circle(float x, float y, float r)

fl_circle() isequivalenttofl _arc(..., 0, 360) but may befaster. It must be the only thing in the path: if
you want acircle as part of acomplex polygon you must usef 1 _arc() . Thisdrawsincorrectly if the
transformation is both rotated and non-sguare scal ed.

Text

All text isdrawn in the current font. It is undefined whether this location or the characters are modified by the
current transformation.

void fl_draw(const char *, float x, float y)
void fl_draw(const char *, int n, float x, float y)

Draw anul-terminated string or an array of n characters starting at the given location.

void fl_draw(const char *, int x, int y, int w, int h, FI_Align)

Fancy string drawing function which is used to draw all the labels. The string is formatted and aligned inside
the passed box. Handles '\t' and "\n', expands all other control charactersto ~X, and alignsinside or against

the edges of the box. See FI _W dget : : al i gn() for valuesfor al i gn. Thevalue FL_ALI GN_I NSI DE isignored,
as this function always prints inside the box.

void fl_measure(const char *, int &w, int &h)

Measure how wide and tall the string will be when printed by thef1 _draw(. .. al i gn) function. If the
incoming wis non-zero it will wrap to that width.

FLTK Drawing Functions 37

FLTK 1.0 Programming Manual

int fI_height()

Recommended minimum line spacing for the current font. Y ou can also just use the value of si ze passed to
fl font().

int fl_descent()

Recommended distance above the bottom of af1 _hei ght () tall box to draw the text at so it looks centered
vertically in that box.

float fl_width(const char*)

float fl_width(const char*, int n)

float fl_width(uchar)

Return the width of a nul-terminated string, a sequence of n characters, or asingle character.

const char *fl_shortcut_label(ulong)

Unparse a shortcut value as used by FI _Butt on Or Fl _Menu_l t eminto a human-readable string like "Alt+N".

This only works if the shortcut is a character key or a numbered function key. If the shortcut is zero an empty
string is returned. The return value points at a static buffer that is overwritten with each call.

Fonts

void fl_font(int face, int size)

Set the current font, which is then used by the routines described above. Y ou may call this outside a draw
context if necessary to call f1 _wi dt h(), but on X thiswill open the display.

Thefont isidentified by af ace and asi ze. The size of the font is measured in pi xel s (i.e. itisnot
"resolution [in]dependent"). Lines should be spaced si ze pixels apart (or more).

Thef ace isan index into an internal table. Initially only the first 16 faces are filled in. There are symboalic
names for them: FL_HELVETI CA, FL_TI MES, FL_COURI ER, and modifier values FL_BOLD and FL_I| TALI Cwhich
can be added to these, and FL_SYMBOL and FL_ZAPF_DI NGBATS. Faces greater than 255 cannot be used in

FI _W dget labels, sinceit storesthe index as a byte.

int fl_font()
int fl_size()

Returns the face and size set by the most recent call tof1 _f ont (a, b) . This can be used to save/restore the
font.

Cursor

void fl_cursor(FI_Cursor, FI_Color = FL_WHITE, FI_Color = FL_BLACK)

Change the cursor. Depending on the system this may affect the cursor everywhere, or only whenit is

38 FLTK Drawing Functions

FLTK 1.0 Programming Manual

pointing at the window that is current when you call this. For portability you should change the cursor back to
the default in response to FL_LEAVE events.

ThetypeFl _cursor isan enumeration defined in<Enuner at i ons. H>. The double-headed arrows are bitmaps
provided by FLTK on X, the others are provided by system-defined cursors. Under X you can get any
XC_cursor value by passing FI _Cur sor ((XC_f oo/ 2) +1) .

The following standard cursors are available:

* FL_CURSOR_DEFAULT - the default cursor, usually an arrow
* FL_CURSOR_ARROW- an arrow pointer

* FL_CURSOR_CROSS - crosshair

e FL_CURSOR_WAI T - watch or hourglass

* FL_CURSOR | NSERT - |-beam

* FL_CURSOR_HAND - hand (uparrow on M SWindows)
* FL_CURSOR_HELP - question mark

* FL_CURSOR_MOVE - 4-pointed arrow

* FL_CURSOR_NS - up/down arrow

* FL_CURSOR_ViE - |€eft/right arrow

* FL_CURSOR_NW&E - diagonal arrow

* FL_CURSOR_NESW- diagonal arrow

* FL_CURSOR_NONE - invisible

Overlays

void fl_overlay_rect(int x, inty, int w, int h)
void fl_overlay_clear()

These functions alow you to draw interactive selection rectangles without using the overlay hardware. FLTK
will XOR asingle rectangle outline over awindow. Calling thiswill erase any previous rectangle (by
XOR'ing it), and then draw the new one. Calling f1 _over ! ay_cl ear () will erase the rectangle without
drawing a new one.

Using thisistricky. You should make awidget with both ahandl e() and dr aw() method. dr aw() should call
f1 _overlay_cl ear () beforedoing anything else. Your handl e() method should call

wi ndow() - >make_current () andthenfl overlay rect () after FL_DRAG events, and should call

fl _overlay_clear () after aFL_RELEASE event.

Images
To draw images, you can either do it directly from datain your memory, or you can create Fl _Bi t map,
Fl _| nage, Or Fl _Pi xmap objects. The advantage of drawing directly isthat it is more intuitive, and it is faster

if the image data changes more often than it is redrawn. The advantage of using the abject isthat FLTK will
cache trandlated forms of the image (on X it uses a server pixmap) and thus redrawing is much faster.

Direct Image Drawing
It is undefined whether the location or drawing of the image is affected by the current transformation, so you

FLTK Drawing Functions 39

FLTK 1.0 Programming Manual

should only call these when it is the identity.
void fl_draw_bitmap(const uchar *, int X, int Y, int W, int H, int LD = 0)

Thisfunction is planned but not yet implemented (it may be impossible under X without allocating a
pixmap).

void fl_draw_image(const uchar *,int X, int Y, int W, int H,int D =3, int LD = 0)
void fl_draw_image_mono(const uchar *, int X, int Y, int W, int H,int D=1, int LD = 0)

Draw an 8-hit per color RGB or luminance image. The pointer points at the "r" data of the top-left pixel. Data
must beinr, g, b order. X, Y are where to put the top-left corner. wand H define the size of the image. Disthe
deltato add to the pointer between pixels, it may be any value greater or equal to 3, or it can be negative to
flip the image horizontally. LD is the delta to add to the pointer between lines (if O is passed it usesw * D),
and may be larger than w * Dto crop data, or negative to flip the image vertically.

It is highly recommended that you put the following code before the first show() of any window in your
program to get rid of the dithering if possible:

Fl ::visual (FL_RGB);

Gray scale (1-channel) images may be drawn. Thisisdoneif abs(D) islessthan 3, or by calling

f1 _draw_ i mage_rono() . Only one 8-bit sampleis used for each pixel, and on screens with different numbers
of bitsfor red, green, and blue only gray colors are used. Setting D greater than 1 will let you display one
channel of acolor image.

The X version does not support all possible visuals. If FLTK cannot draw the image in the current visual it
will abort. FLTK supports any visual of 8 bits or less, and all common TrueColor visuals up to 32 bits.

typedef void (*fl_draw_image_cb)(void *, int X, inty, int w, uchar *)
void fl_draw_image(fl_draw_image_cb, void *, int X, int Y, int W, int H, int D = 3)
void fl_draw_image_mono(fl_draw_image_cb, void *, int X, int Y, int W, int H, int D = 1)

Call the passed function to provide each scan line of the image. Thislets you generate theimage asit is being
drawn, or do arbitrary decompression of stored data (provided it can be decompressed to individual scan lines
easly).

The callback is called with thevoi d * user data pointer (this can be used to point at a structure of
information about the image), and the x, y, and w of the scan line desired from the image. 0,0 is the upper-Ieft
corner (not X,). A pointer to a buffer to put the datainto is passed. Y ou must copy w pixels from scanliney,
starting at pixel x, to this buffer.

Due to cropping, less than the whole image may be requested. So x may be greater than zero, thefirst y may
be greater than zero, and wmay be less than w The buffer islong enough to store the entirew * D pixels, this
is for convienence with some decompression schemes where you must decompress the entire line at once:
decompress it into the buffer, and then if x is not zero, copy the data over so the x'th pixel is at the start of the
buffer.

Y ou can assumme the y's will be consecutive, except the first one may be greater than zero.

If Dis4 or more, you must fill in the unused bytes with zero.

40 Images

FLTK 1.0 Programming Manual

int fl_draw_pixmap(char **data, int X, int Y, FI_Color = FL_GRAY)

Draw XPM image data, with the top-left corner at the given position. The imagesis dithered on 8-bit displays
so0 you won't lose color space for programs displaying both images and pixmaps. This function returns zero if
there was any error decoding the XPM data.

Tousean XPM, do:
#i ncl ude "foo. xpnt

fl _draw_pi xmap(foo, X, Y);

In the current version the XPM datais converted to 8-bit full color and passed through f 1 _dr aw_i mage() .
Thisis obviously not the most efficient way to do it, and has the same visual limitations as listed above for
f1 _draw_ i mage() . Transparent colors are replaced by the optional FI _Col or argument (this may changein
the future).

int fl_measure_pixmap(char **data, int &w, int &h)

An XPM image contains the dimensions in its data. This function finds and returns the width and height. The
return value is non-zero if it parsed the dimensions ok, and zero if there is any problem.

class FI_Bitmap

This object encapsul ates the width, height, and bits of an X bitmap (XBM), and allows you to make an
FI _W dget use abitmap asalabel, or to just draw the bitmap directly. Under X it will create an offscreen
pixmap the first time it is drawn, and copy this each subsequent time it is drawn.

FI_Bitmap(const char *bits, int W, int H)
FI_Bitmap(const uchar *bits, int W, int H)

Construct using an X bitmap. The bits pointer is simply copied to the object, so it must point at persistent
storage. The two constructors are provided because various X implementations disagree about the type of
bitmap data. To use an XBM file use:

#i ncl ude "foo. xbnt

FI ._Bi tmap bitmap = new Fl _Bitmap(foo_bits, foo_wi dth, foo_height);
~FI_Bitmap()
The destructor will destroy any X pixmap created. It does not do anything to the bits data.
void draw(int x, inty, int w, int h, int ox =0, int oy = 0)

X, y, w, h indicates a destination rectangle. ox, oy, w, h isasource rectangle. This source rectangle from the
bitmap is drawn in the destination. 1 bits are drawn with the current color, O bits are unchanged. The source
rectangle may extend outside the bitmap (i.e. ox and oy may be negative and wand h may be bigger than the
bitmap) and this areais|eft unchanged.

Images 41

FLTK 1.0 Programming Manual

void draw(int x, int y)

Draws the bitmap with the upper-left corner at x, y. Thisis the same as doing
draw(x, y, thi s->w, t his->h, 0,0).

void label(FI_Widget *)

Changethel abel () andthel abel t ype() of the widget to draw the bitmap. 1 bits will be drawn with the

| abel col or (), zero bitswill be unchanged. Y ou can use the same bitmap for many widgets.

class FlI_Pixmap

This object encapsulates the data from an XPM image, and allows you to make an FI _W dget use a pixmap
asalabdl, or to just draw the pixmap directly. Under X it will create an offscreen pixmap thefirst timeit is

drawn, and copy this each subsequent time it is drawn.

The current implementation converts the pixmap to 8 bit color dataand usesf | _dr aw i mage() to draw it.
Thus you will get dithered colors on an 8 hit screen.

FI_Pixmap(char *const* data)

Construct using XPM data. The data pointer is simply copied to the object, so it must point at persistent
storage. To use an XPM file do:

#i ncl ude <FL/Fl _Pi xmap. H>
#i ncl ude "foo. xpnt

FI _Pi xmap pi xmap = new Fl _Pi xmap(fo00);

~FI_Pixmap()

The destructor will destroy any X pixmap created. It does not do anything to the data.

void draw(int x, inty, int w, int h, int ox =0, int oy =0)

X, ¥, w, h indicates a destination rectangle. ox, oy, w, h isasource rectangle. This source rectangle is copied to
the destination. The source rectangle may extend outside the pixmap (i.e. ox and oy may be negative and
wand h may be bigger than the pixmap) and this areais left unchanged.

void draw(int x, int y)

Draws the image with the upper-left corner at x, y. Thisis the same as doing
draw(x, y, thi s->w, t his->h, 0,0).

void label(FI_Widget *)

Changethel abel () andthel abel t ype() of the widget to draw the pixmap. Y ou can use the same pixmap
for many widgets.

42 Images

FLTK 1.0 Programming Manual

class FI_Image

This object encapsulates a full-color RGB image, and allows you to make an FI _W dget use animageasa
label, or to just draw the image directly. Under X it will create an offscreen pixmap thefirst timeit is drawn,
and copy this each subsequent time it is drawn.

Fl_Image(char uchar *data, int W, int H, int D = 3, int LD = 0)

Construct using a pointer to RGB data. wand H are the size of the image in pixels. Dis the delta between
pixels (it may be more than 3 to skip alphaor other data, or negative to flip the image left/right). LDisthe
delta between lines (it may be morethan D * wto crop images, or negative to flip the image vertically). The
data pointer is simply copied to the object, so it must point at persistent storage.

~FI_Image()

The destructor will destroy any X pixmap created. It does not do anything to the data.

void draw(int x, inty, int w, int h, int ox =0, int oy = 0)

X, y, w, h indicates a destination rectangle. ox, oy, w, h isasource rectangle. This source rectangle is copied to
the destination. The source rectangle may extend outside the image (i.e. ox and oy may be negative and w and
h may be bigger than the image) and this areais left unchanged.

void draw(int x, int y)

Draws the image with the upper-left corner at x, y. Thisisthe same as doing
draw(x, y, this->w, this->h,0,0).

void label(FI_Widget *)

Changethel abel () andthel abel t ype() of the widget to draw the image. Y ou can use the same image for
many widgets.

class FI_Pixmap 43

44

FLTK 1.0 Programming Manual

class FI_Pixmap

6 - Handling Events

This chapter discussesthe FLTK event model and how to handle eventsin your program or widget.

The FLTK Event Model

Events areidentified the small integer argument passed to the FI _W dget : : handl e() virtual method. Other
information about the most recent event is stored in static locations and acquired by calling the

Fl:: event *() methods. This static information remains valid until the next event is read from window
system (i.e. it isok to look at it outside of the handl e() method).

Mouse Events

FL_PUSH

A mouse button has gone down with the mouse pointing at this widget. Y ou can find out what button by
calling El: : event _but t on() . You find out the mouse position by calling Fl : : event _x() and
Fl::event

A widget indicates that it "wants" the mouse click by returning non-zero from its handl e() method. It will
then becometheFl : : pushed() widget and will get FL_DRAG and the matching FL_RELEASE events. If
handl e() returns zero then FLTK will try sending the FL_PUSH to another widget.

6 - Handling Events 45

FLTK 1.0 Programming Manual

FL_DRAG

The mouse has moved with a button held down.

FL_RELEASE

A mouse button has been released. Y ou can find out what button by calling Fl : : event button().

FL_MOVE

The mouse has moved without any mouse buttons held down. This event is sent to the bel ownouse() widget.

Focus Events

FL_ENTER

The mouse has been moved to point at thiswidget. This can be used for highlighting feedback. If awidget
wants to highlight or otherwise track the mouse, it indicates this by returning non-zero from its

handl e() method. It then becomestheEl : : bel ownrouse() widget and will receive FL_MOVE and
FL_LEAVE events.

FL_LEAVE

The mouse has moved out of the widget.

FL_FOCUS
Thisindicates an attempt to give awidget the keyboard focus.

If awidget wants the focus, it should change itself to display the fact that it has the focus, and return non-zero
fromitshandl e() method. It then becomesthe Fl : : f ocus() widget and gets FL_KEYBOARD and
FL_UNFOCUS events.

The focus will change either because the window manager changed which window gets the focus, or because
the user tried to navigate using tab, arrows, or other keys. You can check EL::event key() to figure out why
it moved. For navigation it will be the key pressed and for instructions from the window manager it will be
zero.

FL_UNFOCUS

Sent to the previous Fl : : f ocus() when another widget gets the focus.

Keyboard Events

46 Mouse Events

FLTK 1.0 Programming Manual

FL_KEYBOARD

A key press. The key pressed can befound in EL::event key() . Thetext that the key should insert can be
found with EL: : event _text () anditslengthisingL:: event | ength() . If you usethe key handl e() should
return 1. If you return zero then FLTK assummes you ignored the key. It will then attempt to send it to a
parent widget. If none of them want it, it will change the event into a FL_SHORTCUT event.

FL_SHORTCUT

If the Fl::focus() iszeroor ignores an FL_KEYBQARD event then FLTK tries sending this event to every
widget it can, until one of them returns non-zero. FL_SHORTCUT is first sent to the bel owrouse() widget, then
its parents and siblings, and eventually to every widget in the window, trying to find an object that returns
non-zero. FLTK triesreally hard to not to ignore any keystrokes!

Y ou can also make "global" shortcuts by using Fl : : add_handl er () . A global shortcut will work no matter
what windows are displayed or which one has the focus.

Widget Events

FL_DEACTIVATE

Thiswidget is no longer active, dueto deact i vate() being called on it or one of its parents. act i ve() may
till be true after this, the widget isonly activeif acti ve() istrueon it and all its parents (useactive_r () to
check this).

FL_ACTIVATE

Thiswidget is now active, dueto activate() being called on it or one of its parents.

FL_HIDE

Thiswidget isno longer visible, dueto show() being called on it or one of its parents, or due to a parent
window being restored. Child FI _W ndows respond to this by actually creating the window if not done
already, so if you subclass a window, be sure to pass FL_SHOwto the base class handl e() method!

Clipboard Events

FL_PASTE

Y ou should get this event some time after you call Fl : : past e() . Thecontentsof Fl : : event _text () isthe
text to insert and the number of charactersisinFl :: event | ength().

Keyboard Events 47

FLTK 1.0 Programming Manual

FL_SELECTIONCLEAR

The Fl::selection_owner() will get this event before the selection is moved to another widget. Thisindicates
that some other widget or program has claimed the selection.

Fl::event_*() methods

FLTK keeps the information about the most recent event in static storage. Thisinformation is good until the
next event is processed. Thusit isvalid inside handl e() and cal | back() methods.

These are dl trivia inline functions and thus very fast and small:

 Fl::event_button
 Fl::event_clicks
e Fl::event_inside
e Fl::event_is click
e Fl::event_key

* Fl::event_length
* Fl::event_state
e Fl::event_text

e Fl::event_x
 Fl::event_x_root
e Fl::event y

e Fl::event_y root
e Fl::get_key
 Fl::get_mouse

* Fl::test_shortcut

Event Propagation

FLTK follows very simple and unchangeabl e rules for sending events. The major innovation is that widgets
can indicate (by returning O from the handl e() method) that they are not interested in an event, and FLTK
can then send that event elsewhere. This eliminates the need for "interests' (event masks or tables), and thisis
probably the main reason FLTK is much smaller than other toolkits.

Most events are sent directly to the handl e() method of the FI _W ndow that the window system says they
belong to. The window (actually the FI _Gr oup that FI _W ndowis a subclass of) is responsible for sending the
events on to any child widgets. To make the FI _G oup code somewhat easier, FLTK sends some events
(FL_DRAG, FL_RELEASE, FL_KEYBQARD, FL_SHORTCUT, FL_UNFOCUS, and FL_LEAVE) directly to leaf widgets.
These procedures control those leaf widgets:

» Fl::add _handler
* Fl::belowmouse
 Fl::focus

e Fl::grab

« F::modal

* Fl::pushed

* H::release

48 Clipboard Events

* FI Widget::take focus

Event Propagation

FLTK 1.0 Programming Manual

49

50

FLTK 1.0 Programming Manual

Event Propagation

7 - Adding and Extending Widgets

This chapter describes how to add your own widgets or extend existing widgetsin FLTK.

Subclassing

New widgets are created by subclassing an existing FLTK widget, typically FI _W dget for controls and
Fl _G oup for containers.

A control widget typically interacts with the user to receive and/or display a value of some sort.
A container widget holds alist of child widgets and handles moving, sizing, showing, or hiding them as
needed. FI _G oup isthe main container widget classin FLTK, and all of the other containers (FI _Pack,

FI _Scroll,Fl _Tabs, Fl _Til e, and FI _W ndow) are subclasses of it.

Y ou can also subclass other existing widgets to provide a different look or user-interface. For example, the

button widgets are al subclasses of FI _But t on since they al interact with the user via a mouse button click.

The only difference is the code that draws the face of the button.

Making a Subclass of FI_Widget

Y our subclasses can directly descend from FI _W dget or any subclass of FI _W dget . FI _W dget hasonly
four virtual methods, and overriding some or all of these may be necessary.

7 - Adding and Extending Widgets

51

FLTK 1.0 Programming Manual

The Constructor

The constructor should access the following arguments:
M/Cl ass(int x, int y, int w, int h, const char *label = 0);
Thiswill alow the classto be used in Fluid without problems.

The constructor must call the constructor for the base class and pass the same arguments:

MyCl ass:: MyClass(int x, int y, int w, int h, const char *|abel)
FI _Wdget(x, y, w, h, label) {
/1 do initialization stuff...

}

Fl _W dget 's protected constructor setsx(), y(),w), h(),and | abel () to the passed values and initializes
the other instance variables to:

type(0);

box(FL_NO_BOX) ;

col or (FL_GRAY) ;

sel ecti on_col or (FL_GRAY);

| abel t ype(FL_NORMAL_LABEL) ;

| abel styl e(FL_NORMAL_STYLE) ;
| abel si ze(FL_NORMAL_SI ZE) ;

| abel col or (FL_BLACK) ;

al i gn(FL_ALI GN_CENTER) ;

cal | back(defaul t _cal | back, 0);
f1 ags(ACTI VE| VI SI BLE) ;

Protected Methods of FI_Widget

The following methods are provided for subclasses to use:

« clear visible
« damage

e draw_box

e draw_label

* set_flag

* set visible

« test shortcut
* type

void FI_Widget::damage(uchar mask)
void FI_Widget::damage(uchar mask, int x, int y, int w, int h)
uchar FI_Widget::damage()

Thefirst form indicates that a partial update of the object is needed. The bitsin mask are OR'd into

damage() . Your draw() routine can examine these bitsto limit what it is drawing. The public method
FI _W dget::redraw() Simply doesFl _W dget: : damage(FL_DAMAGE ALL) .

52 The Constructor

FLTK 1.0 Programming Manual

The second form indicates that aregion is damaged. If only these calls are done in awindow (no callsto
damage(n)) then FLTK will clip to the union of al these calls before drawing anything. This can greatly
speed up incremental displays. The mask bits are or'd into damage() unlessthisisaFl _W ndowwidget.

The third form returns the bitwise-OR of all danage(n) calls done since the last dr aw() . The public method
redraw() doesdamage(FL_DAMAGE_ALL) , but the implementation of your widget can call the private
danmage(n) .

void FI_Widget::draw_box() const
void FI_Widget::draw_box(FI_Boxtype b, ulong c) const

The first form draws this widget's box () , using the dimensions of the widget. The second form usesb asthe
box type and ¢ as the color for the box.

void FlI_Widget::draw_label() const
void FlI_Widget::draw_label(int x, int y, int w, int h) const
void FI_Widget::draw_label(int x, inty, int w, int h, FI_Align align) const

Thisisthe usual function for adr aw() method to call to draw the widget's label. It does not draw the label if
it is supposed to be outside the box (on the assumption that the enclosing group will draw those labels).

The second form uses the passed bounding box instead of the widget's bounding box. Thisis useful so
"centered" labels are aligned with some feature, such as a moving slider.

The third form draws the label anywhere. It acts as though FL_ALI GN_I NSI DE has been forced on, the label
will appear inside the passed bounding box. Thisis designed for parent groups to draw labels with.

void FI_Widget::set_flag(SHORTCUT_LABEL)

If your constructor callsthisit modifiesdr aw | abel () so that "characters cause an underscore to be printed
under the next letter.

void FlI_Widget::set_visible()
void FlI_Widget::clear_visible()

Fast inline versions of FI _W dget : : hi de() and FI _W dget : : show() . These do not send the FL_HI DE and
FL_SHOwevents to the widget.

int FI_Widget::test_shortcut() const

static int FI_Widget::test_shortcut(const char *s)

Thefirst version testsFI _W dget : : | abel () against the current event (which should be a

FL_SHORTCUT event). If the label contains a "character and the character after it matches the key press, this
returnstrue. Thisreturnsfalse if the SHORTCUT_LABEL flag is off, if the label isNULL or does not have a
"character init, or if the keypress does not match the character.

The second version lets you do this test against an arbitrary string.

Protected Methods of FI_Widget 53

FLTK 1.0 Programming Manual

uchar FI_Widget::type() const
void FlI_Widget::type(uchar t)

The property FI _W dget : : t ype() can return an arbitrary 8-bit identifier, and can be set with the protected
method t ype(uchar t). Thisvalue had to be provided for Forms compatibility, but you can useit for any
purpose you want. Try to keep the value less than 100 to not interfere with reserved values.

FLTK does not use RTTI (Run Time Typing Infomation), to enhance portability. But this may change in the
near futureif RTTI becomes standard everywhere.

If you don't have RTTI you can use the clumsy FLTK mechanisim, by having t ype() have aunique value.
These unique values must be greater than the symbol FL_RESERVED TYPE (which is 100). Look through the
header files for FL_RESERVED TYPE to find an unused number. If you make a subclass of FI _G oup you must

use FL_GROUP + n, and if you make asubclass of FI W ndowyou nust use FL_WNDOW+ n (in both cases nis in
the range 1 to 7).

Handling Events

Thevirtual methodi nt FI _W dget: : handl e(i nt event) iscalled to handle each event passed to the
widget. It can:

« Change the state of the widget.

e Call Fl _W dget : : redraw() if thewidget needsto be redisplayed.

e Call Fl _W dget : : damage(n) if the widget needs a partial-update (assumming you provide support
for thisinyour FI _W dget : : dr aw() method).

e Call El _W dget : : do_cal | back() if acallback should be generated.

e Call FI _W dget : : handl e() on child widgets.

Events are identified by the integer argument. Other information about the most recent event is stored in
static locations and aquired by calling the ElL : : event _*() functions. Thisinformation remains valid until
another event is handled.

Hereisasample handl e() method for awidget that acts as a pushbutton and also accepts the keystroke 'x' to
cause the callback:

int Myd ass::handle(int event) {
switch(event) {
case FL_PUSH:
hi ghli ght = 1;
redraw();
return 1;
case FL_DRAG {
int t = Fl::event_inside(this);
if (t !'=highlight) {
hi ghlight = t;
redraw();
}
}

return 1,
case FL_RELEASE:
if (highlight) {
hi ghli ght = 0;
redraw);

54 Protected Methods of FI_Widget

FLTK 1.0 Programming Manual

do_cal | back();
/'l never do anything after a callback, as the call back
/1 may delete the w dget!

}

return 1;
case FL_SHORTCUT:
if (Fl::event_key() == "x") {
do_cal | back();
return 1;

}

return O;
defaul t:
return O;
}

}

Y ou must return non-zero if your handl e() method uses the event. If you return zero it indicates to the parent
widget that it can try sending the event to another widget.

Drawing the Widget

Thedraw() virtual method is called when FLTK wants you to redraw your widget. It will be called if and
only if damage() isnon-zero, and damage() will be cleared to zero after it returns. dr aw() should be declared
protected, so that it can't be called from non-drawing code.

damage() containsthe bitwise-OR of al the damage(n) callsto thiswidget since it was last drawn. This can
be used for minimal update, by only redrawing the parts whose bits are set. FLTK will turn all the bitson if it
thinks the entire widget must be redrawn (for instance due to an expose event).

Expose events (and the above damage(b, x, y, w, h)) will cause dr aw() to be called with FLTK's

clipping turned on. Y ou can greatly speed up redrawing in some cases by testing f | _cl i pped and

fl1 _current_clip and skipping invisible parts.

Besides the protected methods described above, FLTK provide a large number of basic drawing functions,
which are described below.

Resizing the Widget

Theresize(int x, int y, int w, int h) methodis caled when the widget is being resized or moved.
The arguments are the new position, width, and height. x(), y(),w(), and h() still remain the old size. You
must call r esi ze() onyour base class with the same arguments to get the widget size to actually change.
This should not call redraw() , at least if only thex() andy() change. Thisis because group objectslike

Fl _Scrol I may have amore efficient way of drawing the new position.

Making a Composite/Group Widget

A "composite" widget contains one or more "child" widgets. To do this you should subclass Fl _G oup. Itis

possible to make a composite object that is not a subclass of FI _Gr oup, but you'll have to duplicate the code
inFl _Group anyways.

Handling Events 55

FLTK 1.0 Programming Manual

Instances of the child widgets may be included in the parent:

class My ass : public Fl _Goup {
FI _Button the_button;
FI _Slider the_slider;

};...

The constructor hasto initialize these instances. They are automatically add() ed to the group, since the
Fl _G oup constructor doesbegi n() . Don't forget to call end() or usetheEl _End pseudo-class.

M/d ass:: MCass(int x, int y, int w, int h)
FI _Goup(x, y, w, h),
the_button(x + 5, y + 5, 100, 20),
the_slider(x, y + 50, w, 20)
{
...(you could add dynamically created child w dgets here)...
end(); // don't forget to do this!

}

The child widgets need callbacks. These will be called with a pointer to the children, but the widget itself
may be found in the par ent () pointer of the child. Usually these callbacks can be static private methods,
with amatching private method:

void Myd ass::slider_cb(FI _Wdget* v, void *) { // static nethod
((Myd ass*) (v->parent())->slider_cb();

void Myd ass::slider_cb() { // normal nethod
use(the_slider->value());
}

If you make the handl e() method, you can quickly pass all the eventsto the children using the
FI _Goup: : handl () method. Note that you don't need to override handl e() if your composite widget does
nothing other than pass events to the children:

int Myd ass::handl e(int event) {
if (FI _Goup::handl e(event)) return 1;
handl e events that children don't want

}

If you override dr aw() you need to draw all the children. If redraw() or damage() iscalled on achild,
damage(FL_DAMAGE _CHI LD) isdone to the group, so this bit of damage() can be used to indicate that a child
needs to be drawn. It isfastest if you avoid drawing anything else in this case:

int Mdass::drawm) {
FI _Wdget *const*a = array();
if (damage() == FL_DAMAGE CHILD) { // only redraw sone children
for (int i =children(); i --; a ++) update_child(**a);
} else { /] total redraw
draw background graphics ...
/1 now draw all the children atop the background:
for (int i = children_; i --; a ++) {
draw_child(**a);
draw_out side_| abel (**a); // you may not want to do this
}
}
}

56 Making a Composite/Group Widget

FLTK 1.0 Programming Manual

FI _G oup provides some protected methods to make drawing easier:

e draw _child
e draw _outside |abel

* update child

void FI_Group::draw_child(FI_Widget&)
Thiswill force the child'sdamage() bitsall to one and call draw() on it, then clear the damage() . Y ou should

call thison al children if atotal redraw of your widget is requested, or if you draw something (like a
background box) that damages the child. Nothing is done if the child is not vi si bl e() or if itis clipped.

void FlI_Group::draw_outside_label(FI_Widget&) const

Draw the labels that are not drawn by dr aw | abel () . If you want more control over the label positions you
might want to call chi | d->draw_| abel (x,y, w, h, a).

void FlI_Group::update_child(FI_Widget&)

Draws the child only if it'sdamage() isnon-zero. You should cal this on all the children if your own damage
isequal to FL_ DAMAGE_CHILD. Nothing isdoneif the child isnot vi si bl e() or if itisclipped.

Cut and Paste Support

FLTK provides routines to cut and paste ASCI| text (in the future this may be UTF-8) between applications:

* Fl::paste

» H::selection
 Fl::selection |ength
» H::selection_owner

It may be possible to cut/paste non-ASCI| databy using Fl : : add_handl er ().

Making a subclass of FI_Window

Y ou may want your widget to be a subclass of FI _W ndow. This can be useful if your widget wants to occupy
an entire window, and can also be used to take advantage of system-provided clipping, or to work with a
library that expects a system window id to indicate where to draw.

Subclassing FI _W ndow is almost exactly like subclassing FI _W dget , in fact you can easily switch a subclass
back and forth. Watch out for the following differences:

1. FI _W ndowisasubclass of FI _Gr oup so make sure your constructor callsend() (unlessyou actually
want children added to your window).

2. When handling events and drawing, the upper-left corner isat 0,0, not x(), y() asin other
FI _W dget S. For instance, to draw a box around the widget, call dr aw box(0, 0, w(), h()), rather
thandraw box(x(), y(), W), h()).

Making a Composite/Group Widget 57

FLTK 1.0 Programming Manual

Y ou may also want to subclass FI _W ndow in order to get access to different visuals or to change other
attributes of the windows. See Appendix F - Operating System |ssues for more information.

58 Making a subclass of FI_Window

8 - Programming with FLUID

This chapter shows how to use the Fast Light User-Interface Designer ("FLUID") to create your GUIs.

What is FLUID?

The Fast Light User Interface Designer, or "FLUID", isagraphical editor that is used to produce FLTK
source code.

FLUID edits and savesits statein ".fl" files. These files are text, and you can (with care) edit them in atext
editor, perhapsto get some special effects.

FLUID can "compile" the .fl fileinto a.cxx and a.h file. The .cxx file defines all the objects from the .fl file
and the .h file declares all the global ones.

A simple program can be made by putting all your code (including anai n() function) into the .fl fileand
thus making the .cxx file a single source file to compile. Most programs are more complex than this, so you
write other .cxx filesthat call the FLUID functions. These .cxx files must #i ncl ude the .h file or they can
#i ncl ude the .cxx file so it il appearsto be a single sourcefile.

8 - Programming with FLUID 59

FLTK 1.0 Programming Manual

/ /
_— +->/.cxx file [-------- +
/ / I / |
/.fl file /<==>[FLU D] < #i ncl ude |
/7/ \ v |
\ / / |
+>/.h file / |
/] |
" I
I
I

#i ncl ude

1 -
/ / \Y / /

/ main.cxx /[--->[c++,link]-->/ program/
/ / / /

Normally the FLUID file defines one or more "functions’, which output C++ functions. Each function
defines a one or more FLTK windows, and all the widgets that go inside those windows.

Widgets created by FLUID are either "named", "complex named" or "unnamed". A named widget has alegal
C++ variableidentifier asits name (i.e. only aphanumeric and underscore). In this case FLUID definesa
global variable or class member that will point at the widget after the function defining itiscalled. A
"complex named" object has punctuation such as'.' or '->' or any other symbolsin its name. In this case
FLUID assigns a pointer to the widget to the name, but does not attempt to declareit. This can be used to get
the widgetsinto structures. An "unnamed" widget has a blank name and no pointer to them is stored.

Widgets may either call anamed callback function that you write in another source file, or you can supply a
small piece of C++ source and FLUID will write a private callback function into the .cxx file.

A Short Tutorial

1. Type "FLUID"

2. Pick "New/code/function™" off the menu.

3. Hit Tab, Delete to delete the function name and hit OK. Thisis how you get FLUID to output a
"main()" function. The text "main()" with atriangle next to it should appear highlighted in the main
window.

4. Pick "New/group/Window" off the menu.

5. Move the new window and resize it to the size you want.

6. Pick "New/buttons/Button" off the menu.

7. Hit the "OK" button to dismiss the panel that appears.

8. In the window you created, try moving the button by dragging it around. Notice that it "snaps' to
fixed locations. If you want to drag it smoothly, hold down Alt. Y ou can also change the size of the
steps with Edit/Preferences.

9. Try resizing the widget by dragging the edges and corners.

10. Type Alt+c to copy the widget.

11. Type Alt+v to paste a copy into the window.

12. Type Alt+v several times.

13. Drag the widgets and resize them so they don't overlap. Notice that you have to click awidget to
pick it first, then drag it.

14. Try selecting several widgets by dragging a box around them. Check what happens when you move
them, or when you drag an edge to resize them.

60 What is FLUID?

FLTK 1.0 Programming Manual

15. You can also use Shift+click to toggle widgets on and off.

16. You can also select widgets by clicking on them in the list in the main window, try that.

17. Double-click one of the widgets. Y ou will get a control panel.

18. Try changing the "label". Try changing other items near the top of the panel. To see any changesto
the box type clearer, type "Alt+0" to make the red overlay disappear.

19. Type "#include <stdlib.h>" into the first line of "extra code:".

20. Type "exit(0);" into the "callback:".

21. Hit OK.

22. Pick "File/Save As' off the menu.

23. Type "test.fl" into the file chooser and hit return.

24. Pick "File/Write Code" off the menu, hit OK on the confirmation panel.

25. Go back to your terminal window. Type "more test.cxx" and "more test.h" and you can see the code
it made. Also try "more test.fl" to see how FLUID savesits data.

26. Type "make test" (you may have to add libaries to your Makefile).

27. Type"./test" to run your program.

28. Try the buttons. The one you put the code into will exit the program.

29. Type "Alt+Q" to exit FLUID.

30. Ok, now try to make areal program.

Running FLUID Under UNIX

To run FLUID under UNIX, type:

fluid filenane. fl

to edit the .fl file filename.fl. If the file does not exist you will get an error pop-up, but if you dismissit you
will be editing ablank file of that name. Y ou can run FLUID without any name, in which case you will be
editing an unnamed blank setup (but you can use save-as to write it to afile).

Y ou can provide any of the standard FLTK switches before the name:

-display host:n.n
-geonetry WKH+X+Y
-title windowitle
-name cl assnane
-iconic

-fg color

-bg col or

-bg2 col or

Changing the colors may be useful to see what your interface will ook at if the user callsit with the same
switches.

In the current version, if you don't go into the background (with ‘then you will be able to abort FLUID by
typing ~C on the terminal. It will exit immediately, losing any changes.

Running FLUID Under Microsoft Windows

To run FLUID under windows, double-click on the fluid.exefile. Y ou can adso run FLUID from the
Command Prompt window (FLUID aways runsin the background).

A Short Tutorial

61

FLTK 1.0 Programming Manual

Compiling .fl files

FLUID can aso be called as a command-line "compiler” to create the .cxx and .h file from a .fl file. To do

thistype:

FLiUI énae. f |

Thiswill read the .fl file and write filename.cxx and filename.h. The directory will be stripped, so they are
written to the current directory aways. If there are any errors reading or writing the files it will print the error
and exit with a non-zero code. In amakefile you can use aline like this: work:

ny_panel s. h nmy_panel s. cxx: my_panel s. fl
fluid -c my_panel s. fl

Some versions of make will accept rules like thisto allow all .fl files found to be compiled:

. SUFFI XES: .fl
floh L flexx:
fluid

.CXX .h

-c $<

The Widget Browser

The main window shows a menu bar and a scrolling browser of all
the defined widgets. The name of the .fl file being edited is shown in
the window title.

The widgets are stored in a hierarchy. You can open and close alevel
by clicking the "triangle" at the left of awidget. Thiswidget isthe
parent, and all the widgets listed below it are its children. There can
be zero children.

Thetop level of the hierarchy is functions. Each of these will produce
asingle C++ public function in the output .cxx file. Calling the
function will create all of its child windows.

The second level of the hierarchy iswindows. Each of these produces
an instance of class FI_Window.

Below that are either widgets (subclasses of FI_Widget) or groups of
widgets (including other groups). Plain groups are for layout,
navigation, and resize purposes. Tab groups provide the well-known
file-card tab interface.

Widgets are shown in the browser as either their name (such as
"main_panel" in the example), or if unnamed as their type and
label (such as "Button "the green™").

=| samples/example.fl

0

File Edit New Help

wcreate_main_panel()
wmain_panel
Box "main controls”
Button "the green”
wGroup
Value_Slider
Value_Slider
Value_Slider
» Group
wGroup
Box "Copyright 1998"
speed_slider
»create_side_panel()
»create_confirm_panel()

Y ou select widgets by clicking on their names, which highlights them (you can also select widgets from any
displayed window). Y ou can select many widgets by dragging the mouse across them, or by using shift+click
to toggle them on and off. To select no widgets, click in the blank area under the last widget. Notice that

62 Compiling -fl files

FLTK 1.0 Programming Manual

hidden children may be selected and there is no visual indication of this.
Y ou open widgets by double clicking them, or (to open severa widgets you have picked) by typing the F1
key. Thiswill bring up a control panel or window from which you can change the widget.

Menu ltems

The menu bar at the top is duplicated as a pop-up menu on any displayed window. The shortcuts for all the
menu items work in any window. The menu items are:

File/Open... (Alt+Shift+O)

Discard the current editing session and read in a different .fl file. Y ou are asked for confirmation if you have
changed the current data.

FLUID can aso read .fd files produced by the Forms and X Forms "fdesign" programs. It is best to read them
with Merge. FLUID does not understand everything in a .fd file, and will print awarning message on the
controlling terminal for all data it does not understand. Y ou will probably need to edit the resulting setup to

fix these errors. Be careful not to save the file without changing the name, as FLUID will write over the .fd
file with its own format, which fdesign cannot read!

File/Save (Alt+s)

Write the current data to the .fl file. If the file is unnamed (because FLUID was started with no name) then
ask for afile name.

File/Save As...(Alt+Shift+S)

Ask for anew name to save the file as, and saveit.

File/Merge... (Alt+i)
Insert the contents of another .fl file, without changing the name of the current fl file. All the functions (even

if they have the same names as the current ones) are added, you will have to use cut/paste to put the widgets
where you want.

File/Write code (Alt+Shift+C)

"Compiles' the datainto a.cxx and .h file. These are exactly the same as the files you get when you run
FLUID with the -c switch.

The output file names are the same as the .fl file, with the leading directory and trailing ".fl" stripped, and
".h" or ".cxx" appended. Currently there is no way to override this.

File/Quit (Alt+q)

The Widget Browser 63

FLTK 1.0 Programming Manual

Exit FLUID. You are asked for confirmation if you have changed the current data.

Edit/Undo (Alt+2z)

Don't you wish... Thisisn't implemented yet. Y ou should do save often so that any mistakes you make don't
irretrivably destroy your data.

Edit/Cut (Alt+x)

Delete the selected widgets and all their children. These are saved to a"clipboard" file
(/usr/tmp/cut_buffer.fl) and can be pasted back into this FLUID or any other one.

Edit/Copy (Alt+c)

Copy the selected widgets and all their children to the "clipboard" file.

Edit/Paste (Alt+c)
Paste in the widgets in the clipboard file.
If the widget isawindow, it is added to whatever function is selected, or contains the current selection.

If the widget isanormal widget, it is added to whatever window or group is selected. If noneis, it is added to
the window or group that is the parent of the current selection.

To avoid confusion, it is best to select exactly one widget before doing a paste.

Cut/paste is the only way to change the parent of awidget.

Edit/Select All (Alt+a)

Select all widgets in the same group as the current selection.

If they are all selected already then this selects all widgetsin that group's parent. Repeatedly typing Alt+a
will select larger and larger groups of widgets until everything is selected.

Edit/Open... (F1 or double click)

If the current widget isawindow and it is not displayed, display it. Otherwise open a control panel for the
most recent (and possibly all) selected widgets.

Edit/Sort
All the selected widgets are sorted into | eft to right, top to bottom order. Y ou need to do thisto make

navigation keysin FLTK work correctly. Y ou may then fine-tune the sorting with "Earlier" and "Later". This
does not affect the positions of windows or functions.

64 Menu Iltems

FLTK 1.0 Programming Manual

Edit/Earlier (F2)
All the selected widgets are moved one earlier in order amoung the children of their parent (if possible). This

will affect navigation order, and if the widgets overlap it will affect how they draw, asthe later widget is
drawn on top of the earlier one. Y ou can also use this to reorder functions and windows within functions.

Edit/Later (F3)

All the selected widgets are moved one later in order amoung the children of their parent (if possible).

Edit/Group (F7)

Create anew FI_Group and make all the currently selected widgets be children of it.

Edit/Ungroup (F8)

If al the children of a group are selected, delete that group and make them all be children of its parent.

Edit/Overlays on/off (Alt+0)

Toggle the display of the red overlays off, without changing the selection. This makes it easier to see box
borders and how the layout looks. The overlays will be forced back on if you change the selection.

Edit/Preferences (Alt+p)

Currently the only preferences are for the "alignment grid" that all widgets snap to when you move them and
resize them, and for the "snap" which is how far awidget hasto be dragged from its original position to
actually change.

New/code/Function

Create anew C function. Y ou will be asked for a name for the function. This name should be alegal C++
function template, without the return type. Y ou can pass arguments, they can be referred to by code you type
into the individual widgets.

If the function contains any unnamed windows, it will be declared as returning an FI_Window*. The
unnamed window will be returned from it (more than one unnamed window is useless). If the function
contains only named windows it will be declared as returning void.

It is possible to make the .cxx output be a self-contained program that can be compiled and executed. Thisis
done by deleting the function name, in which case "main(argc,argv)" is used. The function will call show() on
all thewindows it creates and then call Fl::run(). This can be used to test resize behavior or other parts of the
user interface. I'm not sureif it is possible to create really useful programs using just FLUID.

Y ou can change the function name by double clicking the function.

Menu Items 65

FLTK 1.0 Programming Manual

New/Window

Create anew FI_Window. It is added to the currently selected function, or to the function containing the
currently selected item. The window will appear, sized to 100x100. Y ou will want to resize it to whatever
size you require.

Y ou also get the window's control panel, which is almost exactly the same as any other FI_Widget, and is
described in the next chapter.

New/...

All other items on the New menu are subclasses of FI_Widget. Creating them will add them to the currently
selected group or window, or the group or window containing the currently selected widget. The initia
dimensions and position are chosen by copying the current widget, if possible.

When you create the widget you will get the widget's control panel, described in the next chapter.

Help/About FLUID

Pops up a panel showing the version of FLUID.

Help/Manual

Not yet implemented. UseaHTML or PDF file viewer to read these pages instead.

The Widget Panel

When you double-click awidget or a set of widgets you will get the = red oiter L= 10|
"Widget attribute panel". Name: red_slider | VertFill
box: DOWN_BOX — | _color |{EEISHE
When you change attributes using this panel, the changes are reflected A= a 0l
immediately in the window. It is useful to hit the "no overlay" button (or Helvetica =i[14__|color
type Alt+0) to hide the red overlay so you can see the widgets more text: Courier =il 12 |Neoioh

accurately, especially when setting the box type.

N visile I N active | |'mizable| rhotapotl

If you have several widgets selected, they may have different valuesfor | Stcless |

the fields. In this case the value for one of the widgets is shown. But if G CHERS Finglude "color seingl’
you change this value, all the selected widgets are changed to the new o->maximum(0};
value o—=precision(0);
. callback: set_color{o->value(),
current_g,current_b);
Hitting "OK" makes the changes permanent. Selecting a different widget | user data| ToRE voic”
also makes the changes permanent. FLUID checks for simple syntax when: Changed i | [no change |

errorsin any code (such as mismatched parenthesis) before saving any | [oeeueiay] [_Revert | [Cancel | Ok _=J
text.

"Revert" or "Cancel" put everything back to when you last brought up the panel or hit OK. However in the
current version of FLUID, changesto "visible" attributes (such as the color, label, box) are not undone by
revert or cancel. Changes to code like the callbacks is undone, however.

66 Menu Iltems

FLTK 1.0 Programming Manual

Widget Attributes

Name (text field)

Name of aglobal C variable to declare, and to store a pointer to thiswidget into. This variable will be of type
"<class>*". If the nameis blank then no variable is created.

Y ou can name several widgets with "name[0]", "name[1]", "name[2]", etc. Thiswill cause FLUID to declare

an array of pointers. The array is big enough that the highest number found can be stored. All widgetsthat in
the array must be the same type.

Type (upper-right pulldown menu)

Some classes have subtypes that modify their appearance or behavior. Y ou pick the subtype off of this menu.

Box (pulldown menu)

The boxtype to draw as a background for the widget.

Many widgets will work, and draw faster, with a"frame" instead of a"box". A frame does not draw the
colored interior, leaving whatever was already there visible. Be careful, as FLUID may draw this ok but the
real program leave unwanted stuff inside the widget.

If awindow isfilled with child widgets, you can speed up redrawing by changing the window's box type to

"NO_BOX". FLUID will display a checkerboard for any areas that are not colored in by boxes (notice that
this checkerboard is not drawn by the resulting program, instead random garbage is | eft there).

Color

The color to draw the box with.

Color2

Some widgets will use this color for certain parts. FLUID does not always show the result of this: thisisthe
color buttons draw in when pushed down, and the color of input fields when they have the focus.

Label
String to print next to or inside the button.

Y ou can put newlines into the string to make multiple lines, the easiest way is by typing ctrl+j.

Label style (pull down menu)

Widget Attributes 67

FLTK 1.0 Programming Manual

How to draw the label. Normal, shadowned, engraved, and embossed change the appearance of the text.
"symbol" requires the label to start with an '@’ sign to draw anamed symbol.

From this menu you can also pick "Image...". Thislets you use the contents of an image file (currently an
Xpm pixmap or xbm bitmap) to label the widget.

Label alignement (buttons)

Where to draw the label. The arrows put it on that side of the widget, you can combine the to put it in the
corner. The "box" button puts the label inside the widget, rather than outside.

Label font

Font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. Y our program can change the actual
font used by these "dots’, in case you want some font other than the 16 provided.

Label size

Point size for the font to draw the label in. Ignored by symbols, bitmaps, and pixmaps. To see the result
without dismissing the panel, type the new number and then Tab.

Label color

Color to draw the label. Ignored by pixmaps (bitmaps, however, do use this color as the foreground color).

Text font, size, color

Some widgets display text, such as input fields, pull-down menus, browsers. Y ou can change this here.

Visible

If you turn this off the widget is hidden initially. Don't change this for windows or for the immediate children
of a Tabs group.

Active

If you turn this off the widget is deactivated initially. Currently no FLTK widgets display the fact that they
areinactive (like by graying out), but this may change in the future.

Resizable

If awindow isresizable or has an immediate child that is resizable, then the user will be ableto resizeit. In
addition all the size changes of awindow or group will go "into" the resizable child. If you have alarge data
display surrounded by buttons, you probably want that data areato be resizable.

Only one child can be resizable. Turning this on turnsit off for other children.

68 Widget Attributes

FLTK 1.0 Programming Manual

Y ou can get more complex behavior by making invisible boxes the resizable widget, or by using hierarchies
of groups. Unfortunatley the only way to test it isto compile the program. Resizing the FLUID window is
not the same as what will happen in the user program.

Hotspot

Each window may have exactly one hotspot (turning this on will turn off any others). Thiswill causeit to be
positioned with that widget centered on the mouse. This position is determined when the FLUID functionis
called, so you should call it immediately before showing the window. If you want the window to hide and
then reappear at a new position, you should have your program set the hotspot itself just before show().

subclass

Thisis how you put your own subclasses of FI_Widget in. Whatever identifier you type in here will be the
classthat isinstantiated.

In addition, no #include header fileis put in the .h file. Y ou must provide a#include line as the first of the
"extrawhich declares your subclass.

The class had better be similar to the class you are spoofing. It does not have to be a subclass. It is sometimes
useful to change thisto another FLTK class: currently the only way to get a double-buffered window isto

change thisfield for the window to "FI_Double Window" and to add "#include <FL/FI_Double Window.h>"
to the extra code.

Extra code
These four fields let you typein literal lines of code to dump into the .h or .cxx files.

If the text starts with a'# or the word "extern" then FLUID thinks thisis an "include" line, and it is written to
the .h file. If the same include line occurs several times then only one copy is written.

All other lines are "code" lines. The widget being constructed is pointed to by the local variable'o'. The
window being constructed is pointed to by the local variable 'w'. Y ou can also access any arguments passed
to the function here, and any named widgets that are before this one.

FLUID will check for matching parenthesis, braces, and quotes, but does not do much other error checking.

Be careful here, asit may be hard to figure out what widget is producing an error in the compiler. If you need
more than 4 lines you probably should call afunction in your own .cxx code.

Callback

This can either be the name of afunction, or a small snippet of code. FLUID thinksthat if there is any
punctuation then it is code.

A name names afunction in your own code. It must be declared as "voidname>(<class>* ,void*)".
A code snippet isinserted into a static function in the .cxx output file. The function prototypeis
"voidclass>* so you can refer to the widget as'o' and the user_dataas'v'. FLUID will check for matching

parenthesis, braces, and quotes, but does not do much other error checking. Be careful here, asit may be hard

Widget Attributes 69

FLTK 1.0 Programming Manual

to figure out what widget is producing an error in the compiler.

If the callback is blank then no callback is set.

user_data

Thisisavalue for the user_data() of the widget. If blank the default value of zero is used. This can be any
piece of C code that can be put "(void*)(<here>)".

User data type

The"void*" in the callback function prototypesis replaced with this. Y ou may want to use "long" for old
XForms code. Be warned that anything other than "void*" is not guaranteed to work by the C++ spec!
However on most architectures other pointer types are ok, and long is usually ok.

When

When to do the callback. Can be "never", "changed", "release”. The value of "enter key" is only useful for
text input fields. The "no change" button means the callback is done on the matching event even if the datais
not changed.

There are rare but useful other values for the when() field that are not in the menu. Y ou should use the extra
code fields to put these valuesin.

Selecting Moving Widgets

Double-clicking awindow name in the browser will display it, if not displayed yet. From this display you can
select widgets, sets of widgets, and move or resize them. To close awindow either double-click it or type
Esc.

To select awidget, click it. To select several widgets drag a rectangle around them. Holding down shift will
toggle the selection of the widgets instead.

Y ou cannot pick hidden widgets. Y ou also cannot choose some widgets if they are completely overlapped by
later widgets. Use the browser to select these widgets.

The selected widgets are shown with ared "overlay" line around them. Y ou can move the widgets by
dragging this box. Or you can resize them by dragging the outer edges and corners. Hold down the Alt key
while dragging the mouse to defeat the snap-to-grid effect for fine positioning.

If there isatab box displayed you can change which child is visible by clicking on the file tabs. The child you
pick is selected.

The arrow, tab, and shift+tab keys "navigate" the selection. Left, right, tab, or shift+tab move to the next or

previous widgets in the hierarchy. Hit the right arrow enough and you will select every widget in the window.
Up/down widgets move to the previous/next widgets that overlap horizontally. If the navigation does not

70 Widget Attributes

FLTK 1.0 Programming Manual

seem to work you probably need to "Sort" the widgets. Thisisimportant if you have input fields, as FLTK
uses the same rules when using arrow keys to move between input fields.

To "open" awidget, double click it. To open several widgets select them and then type F1 or pick
"Edit/Open" off the pop-up menu.

Type Alt+o to temporarily toggle the overlay off without changing the selection, so you can see the widget
borders.

Y ou can resize the window by using the window manager border controls. FLTK will attempt to round the
window size to the nearest multiple of the grid size and makes it big enough to contain all the widgets (it does
thisusingillegal X methods, so it is possible it will barf with some window managers!). Notice that the actual
window in your program may not be resizable, and if it is, the effect on child widgets may be different.

The panel for the window (which you get by double-clicking it) is almost identical to the panel for any other
FI_Widget. There are three extraitems:

Border

This button turns the window manager border on or off. On most window managers you will have to close
the window and reopen it to see the effect.

xclass

The string typed into here is passed to the X window manager as the class. This can change the icon or
window decorations. On most (all?) window managers you will have to close the window and reopen it to see
the effect.

Image Labels

Selecting "Image..." off the label style pull-down menu will bring up afile chooser from which you pick the
image file. If an image has already been chosen, you can change the image used by picking "Image..." again.
The name of the image will appear in the "label" field, but you can't edit it.

The contents of the image file are written to the .cxx file, so if you wish to distribute the C code, you only
need to copy the .cxx file, not the images. If many widgets share the same image then only one copy is
written.

However the file name is stored in the .fl file, so to read the .fl file you need the image files as well.

Filenames are relative to the location the .fl file is (not necessarily the current directory). | recommend you
either put the images in the same directory as the .fl file, or use absolute path names.

Notes for all image types

FLUID runs using the default visual of your X server. This may be 8 bits, which will give you dithered
images. Y ou may get better resultsin your actual program by adding the code "Fl::visual (FL_RGB)" to your
code right before the first window is displayed.

Selecting Moving Widgets 71

FLTK 1.0 Programming Manual

All widgets with the same image on them share the same code and source X pixmap. Thus once you have put
an image on awidget, it is nearly free to put the same image on many other widgets.

If you are using a painting program to edit an image: the only way to convince FLUID to read the image file
again isto remove the image from all widgets that are using it (including onesin closed windows), which will
causeit to freeitsinternal copy, and then set the image again. Y ou may find it easier to exit FLUID and run it

again.

Don't rely on how FLTK crops images that are outside the widget, as this may change in future versions! The
cropping of inside labels will probably be unchanged.

To more accurately place images, make anew "box" widget and put the image in that asthe label. Thisisaso
how you can put both an image and text label on the same widget. If your widget is a button, and you want
the image inside it, you must change the button's boxtype to FL_UP_FRAME (or another frame), otherwise
when it is pushed it will erase the image.

XBM (X bitmap files)

FLUID will read X bitmap files. These files have C source code to define a bitmap. Sometimes they are
stored with the".h" or ".bm" extension rather than the standard ".xbm".

FLUID will output code to construct an FI_Bitmap widget and use it to label the widget. The '1' bitsin the
bitmap are drawn using the label color of the widget. Y ou can change the color in FLUID. The'0" bits are
transparent.

The program "bitmap" on the X distribution does an ok job of editing bitmaps.

XPM (X pixmap files)

FLUID will read X pixmap files as used by the libxpm library. These files have C source code to define a
pixmap. The filenames usually have a".xpm" extension.

FLUID will output code to construct an FI_Pixmap widget and use it to label the widget. The labdl color of
the widget isignored, even for 2-color images that could be a bitmap.

XPM files can mark asingle color as being transparent. Currently FLTK and FLUID simulate this
transparency rather badly. It will use the color() of the widget as the background, and all widgets using the
same pixmap are assummed to have the same color. This may be fixed in the future or on non-X systems.

I have not found any good editors for small iconic pictures. For pixmaps | have used XPaint. This (and most
other) painting programs are designed for large full color images and are difficult to use to edit an image of
small size and few colors.

GIF files

FLUID will also read GIF image files. These files are often used on html documents to make icons. Thislets

72 Image Labels

http://www.danbbs.dk/~torsten/xpaint/index.html

FLTK 1.0 Programming Manual

you use hice icons that you steal off the net in your user interface.

FLUID converts these into (modified) XPM format and uses an FI_Pixmap widget to label the widget.
Transparency is handled the same as for xpm files. Notice that the conversion removes the compression, so
the code may be much bigger than the .gif file. Only the first image of an animated gif fileis used.

Behavior and performance with large .gif filesis not guaranteed!

Image Labels 73

74

FLTK 1.0 Programming Manual

Image Labels

9 - Using OpenGL

This chapter discusses using FLTK for your OpenGL applications.

Using OpenGL in FLTK

The easiest way to make an OpenGL display isto subclass FI _d _W ndow. Your subclass must implement a
draw() method which uses OpenGL callsto draw the display. Y our main program should call
redraw() when the display needsto change, and (somewhat later) FLTK will call draw() .

With abit of care you can also use OpenGL to draw into normal FLTK windows. Thisis mostly useful
because you can use Gourand shading for drawing your widgets. To do thisyou usethe gl _start () and
gl _finish() functionsaround your OpenGL code.

You must include FLTK's<FL/ gl . h> header file. It will include the file<@./ gl . h>, define some extra

drawing functions provided by FLTK, and include the <wi ndows. h> header file needed by WIN32
applications.

Making a Subclass of FI_GI_Window

To make a subclass of FI_GI_Window, you must provide:
* A class definition.

e A draw() method.
* A handl e() method (if you need to recieve input from the user).

9 - Using OpenGL 75

FLTK 1.0 Programming Manual

Defining the Subclass

To define the subclass you just subclassFI _G _W ndow class:

class MyWndow : public FI_d _Wndow {
void draw();
int handl e(int);

public:
MW ndow(int X, int Y, int W int H const char *L)
FIl_G@_Wndowm X, Y, W H L) {}
}s

Thedraw() and handl e() methods are described below. Like any widget, you can include additional private
and public datain your class (such as scene graph information, etc.)

The draw() Method

Thedr aw() method iswhere you actually do your OpenGL drawing:

voi d MyW ndow: : draw() {
if (tvalid()) {
set up projection, viewport, etc ...
wi ndow size is in W) and h().
valid() is turned on by FLTK after draw() returns

draw ...

The handle() Method

Thehandl e() method handles mouse and keyboard events for the window:

int MyWndow: : handl e(int event) {
switch(event) {
case FL_PUSH:
nouse down event
position in Fl::event_x() and Fl::event_y()
return 1;
case FL_DRAG
nouse noved while down event
return 1;
case FL_RELEASE:
nouse up event
return 1;
case FL_FQOCUS :
case FL_UNFQOCUS :
Return 1 if you want keyboard events, 0 otherw se

return 1;
case FL_KEYBQARD:
keypress, key is in Fl::event_key(), ascii in Fl::event_text()
Return 1 if you understand/ use the keyboard event, 0 otherwi se...
return 1;
defaul t:
/1 tell FLTK that | don't understand other events
return O;

76 Making a Subclass of FI_GI_Window

FLTK 1.0 Programming Manual

}
}

When handl e() iscaled, the OpenGL context isnot set up! If your display changes, you should call
redraw() and let draw() dothework. Don't call any OpenGL drawing functions from inside handl e() !

Y ou can call some OpenGL stuff like hit detection and texture loading functions by doing:

case FL_PUSH:
make_current(); // nmake OpenGL context current
if ('valid()) {
. set up projection exactly the same as draw ...
valid(1); // stop it fromdoing this next tine

}
. ok to call NON- DRAW NG Open@. code here, such as hit

detection, |oading textures, etc...

Y our main program can now create one of your windows by doing new MyW ndow(. . .) . You can also use
fluid by:

1. Put your class definition in a MyWindow.H file.

2. Influid create a box object, resize place where you want.

3. Inthe control pandl, fill inthe"class" field with MyWindow.H. Thiswill make fluid produce
constructors for your new class.

4. Inthe "extra code" put #i ncl ude " MyW ndow. H', so that the fluid output file will compile.

Y ou must put gl wi ndow >show() inyour main code after calling show() on the window containing the
OpenGL window.

Using OpenGL in Normal FLTK Windows

Y ou can put OpenGL codeinto an Fl _W dget : : dr awm() method or into the code for aboxtype or other places
with some care.

Most important, before you show any windows (including those that don't have OpenGL drawing) you must
initialize FLTK so that it knowsit is going to use OpenGL. Y ou may use any of the symbols described for
FI _d W ndow: : node() to describe how you intend to use OpenGL.:

Fl :: gl _visual (FL_RGB);
Y ou can then put OpenGL drawing code anywhere you can draw normally by surrounding it with:

gl _start();

... put your OpenCGL code here ...

gl _finish();
gl _start() andgl _finish() setupan OpenGL context with an orthographic projection so that 0,0 isthe
lower-left corner of the window and each pixel is one unit. The current clipping is reproduced with OpenGL
gl Sci ssor () commands. These also synchronize the OpenGL graphics stream with the drawing done by
other X, WIN32, or FLTK functions.

The same context is reused each time. If your code changes the projection transformation or anything else

Making a Subclass of FI_GI_Window 77

FLTK 1.0 Programming Manual

you should use gl PushMat ri x() and gl PopMat ri x() functionsto put the state back before calling
gl _finish().

Y ou may want to use FI _W ndow: : cur rent () - >h() to get the drawable height so you can flip the Y
coordinates.

Unfortunately, there are a bunch of limitations you must adhere to for maximum portability:
* You must choose adefault visual withEL: : gl _visual ().

* You cannot passFL_DOUBLEtO FI : : gl _vi sual ().
e You cannot use Fl _Doubl e W ndowoOr FI _Overl ay_ W ndow.

Donotcal gl _start () orgl _finish() whendrawingintoanFl _d _W ndow!

OpenGL drawing functions
FLTK provides some useful OpenGL drawing functions. They can be freely mixed with any OpenGL calls,

and are defined by including <FL/ gl . H> (which you should include instead of the OpenGL header
<@/ gl . h>).

void gl_color(Fl_Color)

Set the current color to aFLTK color index. For color-index modesit will usef1 _xpi xel (c), whichisonly
right if this window uses the default colormap!

void gl_rect(int x, inty, int w, int h)
void gl_rectf(int x, inty, int w, int h)

Outline or fill arectangle with the current color. If ort ho() has been called, then the rectangle will exactly
fill the pixel rectangle passed.

void gl_font(Fl_Font fontid, int size)

Set the "current OpenGL font" to the same font you get by calling f1 _font ().

int gl_height()

int gl_descent()

float gl_width(const char *)

float gl_width(const char *, int n)
float gl_width(uchar)

Return information about the current OpenGL font.

void gl_draw(const char *)
void gl_draw(const char *, int n)

78 Using OpenGL in Normal FLTK Windows

FLTK 1.0 Programming Manual

Draw a nul-terminated string or an array of n charactersin the current OpenGL font at the current
gl Rast er Pos.

void gl_draw(const char *, int x, int y)

void gl_draw(const char *, int n, int X, int y)
void gl_draw(const char *, float x, float y)

void gl_draw(const char *, int n, float x, float y)

Draw a nul-terminated string or an array of n charactersin the current OpenGL font at the given position.

void gl_draw(const char *, int x, inty, int w, int h, Fl_Align)

Draw a string formatted into a box, with newlines and tabs expanded, other control characters changed to X,
and aligned with the edges or center. Exactly the ssme output as f1 _draw() .

Using OpenGL Optimizer with FLTK

OpenGL Optimizer is a scene graph toolkit for OpenGL available from Silicon Graphicsfor IRIX and
Microsoft Windows. Versions are in the works for Solaris and HP-UX. It allows you to view large scenes
without writing alot of OpenGL code.

OptimizerWindow Class Definition

To use OpenGL Optimizer with FLTK you'll need to create a subclass of FI _G _W dget that includes several
state variables:

class Optim zerWndow : public FI _d _Wndow {
csContext *context_; // Initialized to O and set by draw)...
csDrawAction *draw_action_; // Draw action...
csGoup *scene_; // Scene to draw...
csCamara *canera_; // Viewport for scene...

void draw();
public:

OptimzerWndow(int X, int Y, int W int H const char *L)
o FIl_d _Wndow(X, Y, W H L) {

context _ = (csContext *)O;
draw action_ = (csDrawAction *)O0;
scene_ = (csGoup *)O0;
canera_ = (csCanera *)O0;
}
voi d scene(csGoup *g) { scene_ = g; redrawm); }

voi d canera(csCanera *c) {
camera_ = C;
if (context_) {
draw_action_->set Canera(canera_);
canera_->draw(draw_action_);
redraw();
}

OpenGL drawing functions 79

http://www.sgi.com/software/optimizer
http://www.sgi.com/software/optimizer

FLTK 1.0 Programming Manual

The camera() Method

The caner a() method sets the camera (projection and viewpoint) to use when drawing the scene. The scene
isredrawn after this call.

The draw() Method

Thedraw() method performs the needed initialization and does the actual drawing:

void Optim zer Wndow: : draw() {
if ('context_) {
/! This is the first tine we've been asked to draw, create the
/1 Optimzer context for the scene...

context _ = new csContext (fl_display, fl_visual);
context _->ref();
cont ext _->makeCurrent (fl _di splay, fl_w ndow);

perform ot her context setup as desired ...
/1 Then create the draw action to handl e draw ng things...

draw_action_ = new csDrawActi on;
if (canera_) {
draw_action_->set Canera(canera_);
canera_->draw(draw_ action_);
}
}

if ('valid()) {
/1 Update the viewport for this context...

context ->setViewport(0, 0, W), h());
}

/] C ear the w ndow...

cont ext _->cl ear (csCont ext:: COLOR CLEAR | csCont ext:: DEPTH CLEAR,

0. Of , /! Red
0. Of /Il Geen
0. Of , /! Bl ue
1.0f); /1 Al pha

/1 Then draw the scene (if any)...

if (scene)
draw_acti on_->appl y(scene_);

The scene() Method

Thescene() method sets the scene to be drawn. The scene is a collection of 3D objectsin acsG oup. The

80 Using OpenGL Optimizer with FLTK

FLTK 1.0 Programming Manual

scene is redrawn after this call.

Using OpenGL Optimizer with FLTK

81

82

FLTK 1.0 Programming Manual

Using OpenGL Optimizer with FLTK

A - Widget Reference

This appendix describes all of the widget classesin FLTK. For adescription of thef | _ functions and
Fl : : methods, see Appendix B.

A - Widget Reference 83

FLTK 1.0 Programming Manual

class Fl_Adjuster

Class Hierarchy

Fl _Val uat or

I
+----Fl _Adj uster

Include Files

#i ncl ude <FL/Fl _Adjuster. H>

Description

The FI _Adj ust er widget was stolen from Prisms, and has proven to be very useful for values that need a
large dynamic range. When you press a button and drag to the right the value increases. When you drag to the
left it decreases. The largest button adjusts by 100 * step(), thenextby 10 * step() and that smallest

button by st ep() . Clicking on the buttons increments by 10 times the amount dragging by a pixel does. Shift
+ click decrements by 10 times the amount.

Methods

» FH_Adjuster
* ~F_Adjuster
* soft
FI_Adjuster::FI_Adjuster(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Adj ust er widget using the given position, size, and label string. It looks best if one of the
dimensionsis 3 times the other.

virtual FI_Adjuster::~Fl_Adjuster()
Destroys the valuator.

uchar FI_Adjuster::soft() const
void Fl_Adjuster::soft(uchar)

If "soft" isturned on, the user is allowed to drag the value outside the range. If they drag the value to one of
the ends, let go, then grab again and continue to drag, they can get to any value. Default is one.

84 A - Widget Reference

FLTK 1.0 Programming Manual

class FI_Box

Class Hierarchy

FL_W dget
I

+----Fl _Box

Include Files

#i ncl ude <FL/Fl _Box. H>

Description

Thiswidget simply drawsits box, and possibly it's label. Putting it before some other widgets and making it
big enough to surround them will let you draw a frame around them.

Methods

oe

| Box
e ~F Box

FI_Box::Fl_Box(int x, inty, int w, int h, const char * = 0)
FI_Box::Fl_Box(FI_Boxtype b, int x, inty, int w, int h, const char *)

The first constructor setsbox() to FL_NO BOX, which meansit isinvisible. However such widgets are useful
as placeholdersor FI _Group: : resi zabl e() values. To change the box to something visible, use box(n) .

The second form of the constructor sets the box to the specified box type.
FI_Box::~FI_Box(void)

The destructor removes the box.

class FI_Adjuster 85

FLTK 1.0 Programming Manual

class FI_Browser

Class Hierarchy

Fl _Browser
I
+----Fl _Browser
I
+----FI _Hold Browser, Fl_Milti Browser, Fl_Sel ect Browser
Include Files

#i ncl ude <FL/Fl _Browser. H>

Description

TheFl _Browser widget displays ascrolling list of text lines, and manages all the storage for the text. Thisis
not atext editor or spreadsheet! But it is useful for showing avertical list of named objects to the user.

Each linein the browser isidentified by number. The numbers start at one (thisis so that zero can be
reserved for "no line" in the selective browsers). Unless otherwise noted, the methods do not check to see if
the passed line number isin range and legal. It must always be greater than zero and <= si ze() .

Each line contains a null-terminated string of text and avoi d * data pointer. The text string is displayed, the
voi d * pointer can be used by the callbacks to reference the object the text describes.

The base class does nothing when the user clicks on it. The subclasses FI _Sel ect Browser,
Fl_Hol d Browser,andEl_Milti_Browser react to user clicksto select linesin the browser and do callbacks.

The base class called FI _Br owser _ provides the scrolling and sel ection mechanisms of this and all the
subclasses, but the dimensions and appearance of each item are determined by the subclass. Y ou can use

FI _Browser _ to display information other than text, or text that is dynamically produced from your own data
structures. If you find that loading the browser isalot of work or isinefficient, you may want to make a
subclass of FI _Browser _.

Methods
* FI Browser e column_char e hide * position e text
* ~H Browser » column_widths * insert e remove * topline
e add * data * |oad * show e visible
e Clear e format_char e move e Size

FI_Browser::Fl_Browser(int, int, int, int, const char * = 0)

The constructor makes an empty browser.

86 class FI_Box

FLTK 1.0 Programming Manual

FI_Browser::~Fl_Browser(void)
The destructor deletes all list items and destroys the browser.
void FI_Browser::add(const char *, void * = 0)

Add anew lineto the end of the browser. The text is copied using the st r dup() function. It may aso be
NULL to make ablank line. Thevoi d * argument is returned asthe dat a() of the new item.

void FI_Browser::clear()
Remove all the linesin the browser.

uchar FI_Browser::column_char() const
void FI_Browser::column_char(char c)

The first form gets the current column separator character. By default thisis' \t* (tab).

The second form sets the column separator to c. Thiswill only have an effect if you also set
col umtm_wi dt hs() .

const int *FI_Browser::column_widths() const
void FI_Browser::column_widths(const int *w)

The first form gets the current column width array. This array is zero-terminated and specifies the widthsin
pixels of each column. Thetext is split at each col unm_char () and each part is formatted into it's own
column. After the last column any remaining text is formatted into the space between the last column and the
right edge of the browser, even if the text contains instances of col urm_char () . The default valueisa
one-element array of just a zero, which makes there are no columns.

The second form sets the current array to w. Make sure the last entry is zero.

void *FI_Browser::data(int n) const
void FI_Browser::data(int n, void *)

Thefirst form returns the datafor linen. If n isout of range this returns NULL.
The second form sets the data for linen.

uchar FI_Browser::format_char() const
void FI_Browser::format_char(char c)

The first form gets the current format code prefix character, which by defaultis @ A string of formatting
codes at the start of each column are stripped off and used to modify how the rest of thelineis printed:

» @ Print rest of line, don't look for more'@' signs
» @Print rest of line starting with '@'
’ @ uSeaIarge (24 point) font

’ @nUseamedium Iarge (18 point) font
* @ Useasmal (11 point) font

class FI_Browser 87

FLTK 1.0 Programming Manual

* @ Useabold font (adds FL_BOLD to font)

@ Useanitalic font (adds FL_ITALIC to font)

e @ or @ Useafixed-pitch font (setsfont to FL_COURIER)
» @ Center the line horizontally

* @ Right-justify the text

e @0, @1, ... @255 Fill the backgound with fl_color(n)
e @0, @1, ... @255 Usefl_color(n) to draw the text

e @0, @1, ... Usefl font(n) to draw thetext

e @1, @2, ... Usepointsizento draw thetext

* @ or @ Underlinethetext.
* @ draw an engraved line through the middle.

Notice that the @ command can be used to reliably terminate the parsing. To print arandom string in a
random color, usesprintf (" @W@ %", color, string) anditwill work even if the string starts with a
digit or hasthe format character in it.

The second form sets the current prefix to c. Set the prefix to 0 to disable formatting.

void FI_Browser::hide(int n)

Makes line n invisible, preventing selection by the user. The line can still be selected under program control.
void FI_Browser::insert(int n, const char *, void * = 0)

Insert anew line beforelinen. If n > si ze() thenthelineisadded to the end.

int FI_Browser::load(const char *filename)

Clears the browser and reads the file, adding each line from the file to the browser. If the filename is NULL or
a zero-length string then this just clears the browser. This returns zero if there was any error in opening or
reading the file, in which caseer r no is set to the system error. The dat a() of each lineisset to NULL.

void FI_Browser::move(int to, int from)

Linefromisremoved and reinserted at t o; t o is calculated after the line is removed.

int FI_Browser::position() const
void FI_Browser::position(int p)

The first form returns the current vertical scrollbar position, where O corresponds to the top. If thereis not
vertical scrollbar then thiswill always return O.

void FI_Browser::remove(int n)
Remove line n and make the browser one line shorter.
void FI_Browser::show(int n)

Makes linen visible for selection.

88 class FI_Browser

FLTK 1.0 Programming Manual

int Fl_Browser::size() const

Returns how many lines are in the browser. The last line number is equal to this.

const char *FI_Browser::text(int n) const
void FI_Browser::text(int n, const char *)

The first form returns the text for line n. If n isout of range it returns NULL.
The second form sets the text for linen.

int FI_Browser::topline() const
void FI_Browser::topline(int n)

The first form returns the current top line in the browser. If there is no vertical scrollbar then this will aways

return 1.

The second form sets the top line in the browser to n.
The second form sets the vertical scrollbar position to p.
int FI_Browser::visible(int n) const

Returns anon-zero valueif linen isvisible.

class FI_Browser

89

FLTK 1.0 Programming Manual

class FI_Browser_

Class Hierarchy

Fl _W dget
I
+----Fl _Browser _
I
+----Fl _Browser
Include Files

#i ncl ude <FL/Fl _Browser_. H>

Description

Thisisthe base class for browsers. To be useful it must be subclassed and several virtual functions defined.
The Forms-compatable browser and the file chooser's browser are subclassed off of this.

This has been designed so that the subclass has complete control over the storage of the data, although
because next () and prev() functions are used to index, it works best asalinked list or as alarge block of
charactersin which the line breaks must be searched for.

A great deal of work has been done so that the "height” of a data object does not need to be determined until
itisdrawn. Thisisuseful if actually figuring out the size of an object requires accessing image data or doing
st at () on afileor doing some other slow operation.

Methods
* Fl_Browser e full_height o item_first « leftedge « scrollbar_right
* ~F|_Browser o full width * item_height e new list o select
* bbox * handle e item next * position * select_only
* deleting e has scrollbar < item_prev redraw_line * selection
* deselect * hposition e item quick height < redraw_lines < textcolor
* display « incr_height * item_select * replacing * textfont
* displayed * inserting * item selected e resize * textsize
e draw e jtem draw e item width e scrollbar_left < top
* find_item

FI_Browser::Fl_Browser(int, int, int, int, const char * = 0)
The constructor makes an empty browser.

FI_Browser::~FI_Browser(void)

90 class FI_Browser

FLTK 1.0 Programming Manual

The destructor deletes all list items and destroys the browser.

void FI_Browser_::has_scrollbar(int h)

By default you can scroll in both directions, and the scrollbars disappear if the datawill fit in the widget.

has _scrollbar() changes this based on the value of h:
* 0 - No scrollbars
* FI _Browser _: : HORI ZONTAL - Only a horizontal scrollbar.
* FI _Browser _:: VERTI CAL - Only avertical scrollbar.
* FI _Browser _:: BOTH- Thedefault is both scrollbars.
* FI _Browser _: : HORI ZONTAL_ALWAYS - Horizontal scrollbar always on, vertical always off.
* FI _Browser _:: VERTI CAL_ALWAYS - Vertical scrollbar always on, horizontal always off.
* FI _Browser _:: BOTH_ALWAYS - Both always on.

FI_Color FI_Browser_::textcolor() const
void FI_Browser_::textcolor(Fl_Color color)

The first form gets the default text color for the lines in the browser.
The second form sets the default text color to col or

FI_Font FI_Browser_::textfont() const
void FI_Browser_::textfont(Fl_Font font)

The first form gets the default text font for the lines in the browser.
The second form sets the default text font to f ont

uchar FI_Browser_::textsize() const
void FI_Browser_::textsize(uchar size)

The first form gets the default text size for the linesin the browser.

The second form sets the default text sizeto si ze

class FI_Browser_

91

FLTK 1.0 Programming Manual

class Fl_Button

Class Hierarchy

Fl _W dget
I
+----Fl _Button
I
+----Fl _Check Button FlI_Light Button Fl_Repeat Button
FIl Return Button Fl Round Button

Include Files

#i ncl ude <FL/Fl _Button. H>

Description

Buttons generate callbacks when they are clicked by the user. Y ou control exactly when and how by
changing the values for t ype() and when().

Buttons can also generate callbacks in response to FL_SHORTCUT events. The button can either have an
explicit short cut () value or aletter shortcut can be indicated inthel abel () with an "character beforeit.
For the label shortcut it does not matter if Alt is held down, but if you have an input field in the same
window, the user will have to hold down the Alt key so that the input field does not eat the event first as an
FL_KEYBOARD event.

Methods
e FI Button e Cclear o et shortcut e value
e ~F_Button » down_box * setonly * type » when

FI_Button::FI_Button(int x, int y, int w, int h, const char *label = 0)
The constructor creates the button using the position, size, and label.
FI_Button::~FI_Button(void)

The destructor removed the button.

int FI_Button::clear()

Same asval ue(0).

92 class FI_Browser_

FLTK 1.0 Programming Manual

FI_Boxtype Fl_Button::down_box() const
void FI_Button::down_box(FI_Boxtype bt)

The first form returns the current down box type, which is drawn when val ue() isnon-zero.

The second form sets the down box type. The default value of 0 causes FLTK to figure out the correct
matching down version of box() .

int FI_Button::set()
Same asval ue(1) .
void FI_Button::setonly()

Turns on this button and turns off all other radio buttonsin the group (calling val ue(1) or set () doesnot do
this).

ulong FI_Button::shortcut() const
void FI_Button::shortcut(ulong key)

The first form returns the current shortcut key for the button.

The second form sets the shortcut key to key. Setting this overrides the use of "inthel abel () . Thevalueisa
bitwise OR of akey and a set of shift flags, for example FL_ALT | 'a',FL_ALT | (FL_F + 10),0rjust'a'.
A value of 0 disables the shortcut.

The key can be any valuereturned by El : : event _key(), but will usually be an ASCII letter. Use a
lower-case letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by ElL - : event _stat e() . If thebit ison that shift key must
be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicatesa"don't care” setting).

uchar FI_Button::type() const
void FI_Button::type(uchar t)

Thefirst form of t ype() returns the current button type, which can be one of:
* 0: Thevalueis unchanged.
* FL_TOGGLE_BUTTON: The valueisinverted.
* FL_RADI O BUTTON: Thevaueisset to 1, and all other buttons in the current group witht ype() ==
FL_RADI O BUTTON are set to zero.

The second form sets the button typetot .

char FI_Button::value() const
int FI_Button::value(int)

The first form returns the current value (0 or 1). The second form sets the current value.

class FI_Button 93

FLTK 1.0 Programming Manual

FI_When FI_Widget::when() const
void FI_Widget::when(FI_When w)

Controls when callbacks are done. The following values are useful, the default value is FL_WHEN RELEASE:

* 0: The callback is not done, instead changed() is turned on.

* FL_WHEN_RELEASE: The callback is done after the user successfully clicks the button, or when a
shortcut is typed.

* FL_WHEN_CHANGED : The callback is done each time the value() changes (when the user pushes and
releases the button, and as the mouse is dragged around in and out of the button).

94 class FI_Button

FLTK 1.0 Programming Manual

class FlI_Chart

Class Hierarchy

FI _W dget

I
+----Fl _Chart

Include Files

#i nclude <FL/Fl _Chart. H>

Description

Thiswidget displays simple charts and is provided for forms compatibility.

Methods
e Fl_Chart e autosize e clear * maxsize e 5ize
* ~H_Chart * bounds * insert * replace * type
* add

FI_Chart::Fl_Chart(int x, int y, int w, int h, const char *label = 0)

Createsanew FI _Chart widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Chart::~FI_Chart()

Destroysthe FI _chart widget and all of its data.

void add(double value, const char *label = NULL, uchar color = 0)
The add method adds the val ue and optionally | abel and col or to the chart.

uchar autosize(void) const
void autosize(uchar onoff)

The aut osi ze method controls whether or not the chart will automatically adjust the bounds of the chart. The
first form returns a boolean value that is non-zero if auto-sizing is enabled and zero is auto-sizing is disabled.

The second form of aut osi ze sets the auto-sizing property to onof f .

class FI_Button 95

FLTK 1.0 Programming Manual

void bounds(double *a, double *b)
void bounds(double a, double b)

The bounds method gets or sets the lower and upper bounds of the chart values to a and b respectively.
void clear(void)

Thecl ear method removes all values from the chart.

void insert(int pos, double value, const char *label = NULL, uchar color = 0)

Thei nsert method inserts a data value at the given position pos. Position 0 is the first data value.

int maxsize(void) const
void maxsize(int n)

The maxsi ze method gets or sets the maximum number of data values for a chart.

void replace(int pos, double value, const char *label = NULL, uchar color = 0)

Ther epl ace method replaces data value pos with val ue, | abel , and col or . Position O isthefirst datavalue.
int size(void) const

The si ze method returns the number of data values in the chart.

uchar type() const
void type(uchar t)

Thefirst form of t ype() returnsthe current chart type. The chart type can be one of the following:

FL_BAR CHART

Each sample value isdrawn as a vertical bar.
FL_FILLED_CHART

The chart isfilled from the bottom of the graph to the sample values.
FL_HORBAR CHART

Each sample value is drawn as a horizontal bar.
FL_LINE_CHART

The chart is drawn as a polyline with vertices at each sample value.
FL_PIE_CHART

A pie chart is drawn with each sample value being drawn as a proportionate sice in the circle.

96 class FI_Chart

FLTK 1.0 Programming Manual

FL_SPECIALPIE_CHART

Like FL_PIE_CHART, but thefirst dlice is separated from the pie.
FL_SPIKE_CHART

Each sample valueis drawn as avertica line.

The second form of t ype() setsthe chart typetot.

class FI_Chart

97

FLTK 1.0 Programming Manual

class FI_Check_Button

Class Hierarchy

Fl _Button

I
+----Fl _Check_Button

Include Files

#i ncl ude <FL/Fl _Check_Button. H>

Description

Buttons generate callbacks when they are clicked by the user. Y ou control exactly when and how by
changing the valuesfor t ype() and when() .

The FI _Check_But t on subclass display the "on" state by turning on alight, rather than drawing pushed in.

The shape of the "light" isinitially set to FL_DIAMOND_DOWN_BOX. The color of the light when onis
controlled with sel ecti on_col or (), which defaults to FL_RED.

Methods

e FI Check Button
e ~F| _Check Button

FI_Check_Button::FI_Check_Button(int x, int y, int w, int h, const char *label = 0)
Createsanew Fl _Check_But t on widget using the given position, size, and label string.
FI_Check_Button::~FI_Check_Button()

The destructor deletes the check button.

98 class FI_Chart

FLTK 1.0 Programming Manual

class FI_Choice

Class Hierarchy

Fl _Menu

I
+----Fl _Choi ce

Include Files

#i ncl ude <FL/Fl _Choice. H>

Description

Thisis abutton that when pushed pops up a menu (or hierarchy of menus) defined by an array of
El _Menu_l t emobjects. Motif calls this an OptionButton.

The only difference between thisand aEl_Menu_But t on isthat the name of the most recent chosen menu
item is displayed inside the box, while the |abel is displayed outside the box. However, since the use of thisis
most often to control asingle variable rather than do individual callbacks, some of the

FI _Menu_But t on methods are redescribed here in those terms.

When the user picks an item off the menu theval ue() isset to that item and then the callback is done.

All three mouse buttons pop up the menu. The Forms behavior of the first two buttons to
increment/decrement the choice is not implemented. This could be added with a subclass, however.

The menu will also pop up in response to shortcuts indicated by putting a"character in the abel () . See
Fl _But t on for adescription of this.

Typing theshort cut () of any of theitemswill do exactly the same as when you pick the item with the
mouse. The "character in item names are only looked at when the menu is popped up, however.

Methods

* Fl_Choice

* ~FI Choice

* clear_changed
« changed

» down_box

* set_changed
* value
FI_Choice::FI_Choice(int x, inty, int w, int h, const char *label = 0)
Createsanew Fl _Choi ce widget using the given position, size, and label string. The default boxtypeis

FL_UP_BOX.

class FI_Check_Button 99

FLTK 1.0 Programming Manual

The constructor setsmenu() to NULL. See FI _Menu_ for the methods to set or change the menu.

virtual FI_Choice::~FI_Choice()

The destructor removes the FI _Choi ce widget and all of its menu items.

int FI_Choice::value() const

int FI_Choice::value(int)

int FI_Choice::value(const FI_Menu *)

Thevalueistheindex into the FI _Menu array of the last item chosen by the user. It is zero initially. You can
set it as an integer, or set it with a pointer to a menu item. The set routines return non-zero if the new valueis
different than the old one. Changing it causes ar edr aw() .

int Fl_Widget::changed() const

Thisvaueistrueif the user picks adifferent value. It isturned off by val ue() and just before doing a
callback (the callback can turn it back on if desired).

void FI_Widget::set_changed()
This method sets the changed() flag.
void FI_Widget::clear_changed()
This method clears the changed() flag.

FI_Boxtype Fl_Choice::down_box() const
void Fl_Choice::down_box(FI_Boxtype b)

The first form gets the current down box, which is used when the menu is popped up. The default down box
typeis FL_DOM_BOX The second form sets the current down box typeto b.

100 class FI_Choice

FLTK 1.0 Programming Manual

class Fl_Clock

Class Hierarchy

FI _W dget

I
+----Fl _d ock

Include Files

#i ncl ude <FL/Fl _C ock. H>

Description

Thiswidget provides around analog clock display and is provided for Forms compatibility. It installs a
1-second timeout callback using Fl : : add_t i meout () .

Methods

* FI_Clock
* ~FI Clock
* hour

* minute

» second

* value

FI_Clock::Fl_Clock(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _d ock widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Clock::~FI_Clock()

The destructor also deletes all the children. This allows awhole tree to be deleted at once, without having to
keep a pointer to al the children in the user code. A kludge has been done so the FI _d ock and al of it's
children can be automatic (local) variables, but you must declarethe FI _d ockfirst, so that it is destroyed
last.

int FI_Clock::hour() const

Returns the current hour (0 to 23).

int FI_Clock::minute() const

Returns the current minute (0 to 59).

int FI_Clock::second() const

class FI_Choice 101

FLTK 1.0 Programming Manual

Returns the current second (0 to 60, 60 = leap second).

void Fl_Clock::value(ulong v)
void Fl_Clock::value(int h, int m, int s)
ulong FI_Clock::value(void)

The first two forms of val ue set the displayed time to the given UNIX time value or specific hours, minutes,
and seconds.

Thethird form of val ue returns the displayed time in seconds since the UNIX epoch (January 1, 1970).

102 class FI_Clock

FLTK 1.0 Programming Manual

class FI_Color_Chooser

Class Hierarchy

Fl _Group

I
+----Fl _Col or _Chooser

Include Files

#i ncl ude <FL/Fl _Col or _Chooser. H>

Description

The Fl _Col or _Chooser widget provides a standard RGB color chooser. Y ou can place any number of these
into a panel of your own design. Thiswidget contains the hue box, value slider, and rgb input fields from the
above diagram (it does not have the color chips or the Cancel or OK buttons). The callback is done every

time the user changes the rgb value. It isnot done if they move the hue control in away that produces the
same rgb value, such as when saturation or valueis zero.

Methods
e FI Color Chooser
e ~F|_Color Chooser
* add

FI_Color_Chooser::FI_Color_Chooser(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Col or _Chooser widget using the given position, size, and label string. The recommended
dimensions are 200x95. The color isinitialized to black.

virtual FI_Color_Chooser::~Fl_Color_Chooser()
The destructor removes the color chooser and all of its controls.
double FI_Color_Chooser::hue() const

Return the current hue. 0 <= hue < 6. Zero isred, oneisyellow, two is green, etc. This value is convienent for
the internal calculations - some other systems consider hue to run from zero to one, or from 0 to 360.

double FI_Color_Chooser::saturation() const
Returns the saturation. 0 <= saturation <= 1.
double FI_Color_Chooser::value() const

Returns the value/brightness. 0 <= value <= 1.

class FI_Clock 103

FLTK 1.0 Programming Manual

double FI_Color_Chooser::r() const

Returns the current red value. 0 <=r <= 1.

double FI_Color_Chooser::g() const

Returns the current green value. 0 <=g <= 1.

double FI_Color_Chooser::b() const

Returns the current blue value. 0 <=b <= 1.

int FI_Color_Chooser::rgb(double, double, double)

Sets the current rgb color values. Does not do the callback. Does not clamp (but out of range values will
produce psychedelic effects in the hue selector).

int FI_Color_Chooser::hsv(double,double,double)

Set the hsv values. The passed values are clamped (or for hue, modulus 6 is used) to get legal values. Does
not do the callback.

static void FI_Color_Chooser::hsv2rgb(double, double, double, double&, double&, double&)
This static method converts HSV colors to RGB colorspace.
static void FI_Color_Chooser::rgh2hsv(double, double, double, double&, double&, double&)

This static method converts RGB colorsto HSV colorspace.

104 class FI_Color_Chooser

FLTK 1.0 Programming Manual

class FI_Counter

Class Hierarchy

Fl _Val uat or

I
+----Fl _Counter

Include Files

#i ncl ude <FL/Fl _Counter. H>

Description

The FI _Count er widget is provided for forms compatibility. It controls a single floating point value.

Methods

e FI Counter
* ~F| Counter

* |step
* type
FI_Counter::Fl_Counter(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Count er widget using the given position, size, and label string. The default typeis
FL_NORMAL_ COUNTER.

virtual FI_Counter::~FI_Counter()
Destroys the valuator.

double FI_Counter::Istep() const
void FI_Counter::Istep(double)

Get or set the increment for the double-arrow buttons. The default valueis 1.0.
type(uchar)
Sets the type of counter:

* FL_NORMAL_COUNTER - Displays a counter with 4 arrow buttons.
e FL_SI MPLE_COUNTER - Displays a counter with only 2 arrow buttons.

class FI_Color_Chooser 105

FLTK 1.0 Programming Manual

class Fl_Dial

Class Hierarchy

Fl _Val uat or

I
+----Fl _Dial

Include Files

#i nclude <FL/Fl _Di al . B>

Description

TheFl _Di al widget providesacircular dial to control asingle floating point value.

Methods

FI_Dial::FI_Dial(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Di al widget using the given position, size, and label string. The default typeis
FL_NORMAL_DI AL.

virtual FI_Dial::~FI_Dial()
Destroys the valuator.
void FI_Dial::angles(short a, short b)
Sets the angles used for the minimum and maximum values. By default these are 0 and 360, respectively.
type(uchar)
Sets the type of the dial to:
* FL_NORMAL_ DI AL - Draws anormal dial with aknob.

* FL_LI NE_DI AL - Draws adial with aline.
* FL_FILL_DI AL - Draws adial with afilled arc.

106 class FI_Counter

FLTK 1.0 Programming Manual

class FI_Double_Window

Class Hierarchy

Fl _W ndow

I
+----F|l _Doubl e_W ndow

Include Files

#i ncl ude <FL/Fl _Doubl e_W ndow. H>

Description

The FI _Doubl e_W ndow class provides a double-buffered window. If possible thiswill use the X double
buffering extension (Xdbe). If not, it will draw the window datainto an off-screen pixmap, and then copy it
to the on-screen window.

It is highly recommended that you put the following code before the first show() of any window in your
program:

Fl : : vi sual (FL_DOUBLE| FL_I NDEX)

This makes sure you can use Xdbe on servers where double buffering does not exist for every visual.

Methods

» F_Double Window

« ~F_Double Window

e pixm
FI_Double_Window::Fl_Double_Window(int x, inty, int w, int h, const char *label = 0)
Createsanew Fl _Doubl e_W ndow widget using the given position, size, and label (title) string.

virtual FI_Double_Window::~FI_Double_Window()

The destructor also deletes all the children. This allows awhole tree to be deleted at once, without having to
keep a pointer to all the children in the user code.

class FI_Dial 107

FLTK 1.0 Programming Manual

class FI_End

Class Hierarchy

Fl _Goup----Fl _End

Include Files

#i ncl ude <FL/Fl _G oup. H>

Description

Thisisadummy classthat allows you to end a group in a constructor list of aclass:

class Myd ass {
FI _Group group;
FI _Button button_in_group;
FI _End end;
FlI _Button button_outside_group;
MWd ass();
b
MyC ass:: Myd ass()
group(10, 10, 100, 100),
butt on_i n_group(20, 20, 60, 30),
end(),
but t on_out si de_gr oup(10, 120, 60, 30)

{}

Methods

* Fl End

FI_End::Fl_End

The constructor doesFl _Group: : current () ->end().

108 class FI_Double_Window

FLTK 1.0 Programming Manual

class Fl_Float_Input

Class Hierarchy

El _| nput

I
+----Fl _Fl oat _I nput

Include Files

#i nclude <FL/Fl _I nput. H>

Description

TheFl _Fl oat _I nput classisasubclassof FI _I nput that displaysitsinput in red when the value string is not
alegal floating point value.

Methods

» FI_Float_Input
e ~Fl_Float_Input

FI_Float_Input::Fl_Float_Input(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Fl oat _I nput widget using the given position, size, and label string. The default boxtypeis
FL_DOAN_BOX.

virtual FI_Float_Input::~F|I_Float_Input()

Destroys the widget and any value associated with it.

class FI_End 109

FLTK 1.0 Programming Manual

class Fl_Free

Class Hierarchy

FL_W dget
I

+----Fl _Free

Include Files

#i ncl ude <FL/Fl _Free. B>

Description

Emulation of the Forms "free" widget. This emulation alows the free demo to run, and appears to be useful
for porting programs written in Forms which use the free widget or make subclasses of the Forms widgets.

There are five types of free, which determine when the handle function is called:

#defi ne FL_NORMAL_FREE
#define FL_SLEEPI NG FREE
#define FL_I NPUT_FREE
#define FL_CONTI NUOUS_FREE
#define FL_ALL_FREE

abrbwnNn R

An FL_INPUT_FREE accepts FL_FOCUS events. A FL_CONTINUOUS_FREE sets a timeout callback 100
times a second and provides a FL_STEP event, this has obvious detrimental effects on machine performance.
FL_ALL_FREE doesboth. FL_SLEEPING_FREE are deactivated.

Methods

» Fl_Free
» ~Fl_Free

FI_Free(uchar type, int, int, int, int, const char*l, FL_ HANDLEPTR hdl)

The constructor takes both the t ype and the handl e function. The handle function should be declared as
follows:

i nt
handl e_functi on(Fl _W dget *w,

i nt event,
fl oat event _x,
fl oat event _y,
char key)

Thisfunction is called from the the handl e() method in response to most events, and is called by the
draw() method. Theevent argument contains the event type:

110 class Fl_Float_Input

/]l old event

#def i
#def i
#def i
#def i
#def i
#def i

virtual FI_Free

The destructor will call the handle function with the event FL_FREE_MVEM

ne
ne
ne
ne
ne
ne

class FI_Free

FL_MOUSE
FL_DRAW
FL_STEP
FL_FREEVEM
FL_FREEZE
FL_THAW

©:~Fl_Free()

FLTK 1.0 Programming Manual

names for conpatability:

FL_DRAG
0

9

12
FL_UNMAP
FL_MAP

111

FLTK 1.0 Programming Manual

class FI_GI _Window

Class Hierarchy

El _W dget
I
+----Fl _d _W ndow

I
+----FI _Pack, Fl _Scroll, El _Tabs, El _Tile, Fl_W ndow

Include Files

#i ncl ude <FL/Fl _d _W ndow. H>

Description

TheFl _d _W ndow widget sets things up so OpenGL works, and also keeps an OpenGL "context" for that
window, so that changes to the lighting and projection may be reused between redraws. FI _G _W ndow also
flushes the OpenGL streams and swaps buffers after dr aw() returns.

OpenGL hardware typically provides some overlay bit planes, which are very useful for drawing Ul controls
atop your 3D graphics. If the overlay hardware is not provided, FLTK triesto simulate the overlay, This
works pretty well if your graphics are double buffered, but not very well for single-buffered.

Methods
« FI GI Window e draw * hide » make overlay current < redraw_overlay
e ~FI_Gl_Window e draw_overlay e invalidate e mode » swap_buffers
e can_do * handle * make current ¢ ortho « valid
« can_do_overlay

FI_GI_Window::FI_GI_Window(int x, inty, int w, int h, const char *label = 0)

Createsanew FI _d _W ndow widget using the given position, size, and label string. The default boxtypeis
FL_NO BOX. The default mode is FL_RGB| FL_DOUBLE| FL_DEPTH.

virtual FI_GI_Window::~FI_GI_Window()
The destructor removes the widget and destroys the OpenGL context associated with it.

virtual void FI_GI_Window::draw(void)

FI _d _Wndow: : draw() isapure virtual method. Y ou must subclassFl _G _W ndow and provide an
implementation for dr aw() . Y ou may also provide an implementation of draw_overlay() if you want to draw
into the overlay planes. Y ou can avoid reinitializing the viewport and lights and other things by checking

112 class FlI_Free

FLTK 1.0 Programming Manual

val i d() atthe start of draw() and only doing theinitiaization if it isfalse.

Thedraw() method can only use OpenGL calls. Do not attempt to call X, any of the functionsin
<FL/fl_draw.H>, or gl X directly. Do not call gl _start () orgl _finish().

If double-buffering is enabled in the window, the back and front buffers are swapped after this function is
completed.

constint Fl_GI_Window::mode() const
int Fl_GI_Window::mode(int m)

Set or change the OpenGL capabilites of the window. The value can be any of the following OR'd together:

* FL_RGB - RGB color (not indexed)

* FL_RGB8 - RGB color with at least 8 bits of each color
* FL_I NDEX - Indexed mode

* FL_SI NGLE - not double buffered

* FL_DOUBLE - double buffered

* FL_ACCUM- accumulation buffer

* FL_ALPHA - alpha channel in color

* FL_DEPTH - depth buffer

* FL_STENCI L - stencil buffer

e FL_MULTI SAMPLE - multisample antialiasing

FL_RGB and FL_SI NGLE have avalue of zero, so they are "on" unless you give FL_I NDEX or FL_DOUBLE.

If the desired combination cannot be done, FLTK will try turning off FL_MULTI SAMPLE. If this aso fails the
show() will call FI : : error () and not show the window.

Y ou can change the mode while the window is displayed. Thisis most useful for turning double-buffering on
and off. Under X thiswill cause the old X window to be destroyed and a new one to be created. If thisisa
top-level window this will unfortunately also cause the window to blink, raise to the top, and be de-iconized,
and the xi d() will change, possibly breaking other code. It is best to make the GL window a child of another
window if you wish to do thisl!

static int FI_GI_Window::can_do(int)
int Fl_GI_Window::can_do() const

Returns non-zero if the hardware supports the given or current OpenGL mode.

char FI_GI_Window::valid() const
void FI_GI_Window::valid(char i)

FI _d W ndow: :valid() isturned off when FLTK creates a new context for this window or when the
window resizes, and isturned on afterdr aw() iscalled. You can use thisinside your dr aw() method to avoid
unneccessarily initializing the OpenGL context. Just do this:

voi d nywi ndow: : draw() {
if (lvalid()) {
gl Vi ewport (0,0,w(), h());
gl Frustun(...);
glLight(...);

class FI_Gl_Window 113

FLTK 1.0 Programming Manual

...other initialization...

}

. draw your geonetry here ...

void FI _G@ _Wndow :invalidate();

void Fl _d _Wndow: :valid(char i);

Foi_dGhy WMinadew.dr wal)i d() is turned off when FLTK creates a new context for this window and by the win
if (tvalid()) {

gl Vi ewport (0,0, w(), h());
gl Frustun(...);

glLight(...);
...other initilization...

}

. draw your geonetry here ...

}

You canturnval i d() onby calingval i d(1). You should only do this after fixing the transformation inside
adraw() or after make_current (). Thisisdone automatically after dr aw() returns.

void FI_GI_Window::invalidate()
Thei nval i dat e() method turns off val i d() and isequivalent to callingval ue(0) .
void FI_GI_Window::ortho()

Set the projection so 0,0 isin the lower left of the window and each pixel is 1 unit wide/tall. If you are
drawing 2D images, your dr aw() method may want to call thisif val i d() isfase.

void FI_GI_Window::make_current()

Thenmake_current () method selects the OpenGL context for the widget. It is called automatically prior to
the dr aw() method being called and can also be used to implement feedback and/or selection within the
handl e() method.

void FI_GI_Window::make_overlay_current()

Thenake_overl ay_current () method selects the OpenGL context for the widget's overlay. It is called
automatically prior to thedr aw over | ay() method being called and can also be used to implement feedback
and/or selection within the handl e() method.

void FI_GI_Window::swap_buffers()

Theswap_buf f er s() method swaps the back and front buffers. It is called automatically after the
draw() method iscalled.

void FI_GI_Window::hide()
Hides the window and destroys the OpenGL context.

int Fl_GI_Window::can_do_overlay()

114 class FI_GIl_Window

FLTK 1.0 Programming Manual

Returnstrue if the hardware overlay is possible. If thisisfalse, FLTK will try to simulate the overlay, with
significant loss of update speed. Calling thiswill cause FLTK to open the display.

void FI_GI_Window::redraw_overlay()

This method causes dr aw_over | ay to be called at alater time. Initialy the overlay is clear, if you want the
window to display something in the overlay when it first appears, you must call thisimmediately after you
show() your window.

virtual void FI_GI_Window::draw_overlay()

Y ou must implement this virtual function if you want to draw into the overlay. The overlay is cleared before
thisis called. Y ou should draw anything that is not clear using OpenGL. You must usegl _col or (i) to
choose colors (it allocates them from the colormap using system-specific calls), and remember that you arein
an indexed OpenGL mode and drawing anything other than flat-shaded will probably not work.

Both thisfunctionand FI _G _W ndow: : draw() should check FI _G W ndow: : val i d() and set the same
transformation. If you don't your code may not work on other systems. Depending on the OS, and on whether
overlays are rea or simulated, the OpenGL context may be the same or different between the overlay and
main window.

class FI_Gl_Window 115

FLTK 1.0 Programming Manual

class Fl_Group

Class Hierarchy

El _W dget
I
+----Fl _G oup

I
+----FI _Pack, Fl _Scroll, El _Tabs, El _Tile, Fl_W ndow

Include Files

#i ncl ude <FL/Fl _G oup. B>

Description

TheFl _Group classisthe FLTK container widget. It maintains an array of child widgets. These children can
themselves be any widget including FI _G oup. The most important subclass of FI _Gr oup iSEl_W ndow,
however groups can also be used to control radio buttons or to enforce resize behavior.

Methods
* FI_Group e add resizable « chil e end e remove
» ~FI_Group * array children « find * resizable
e add * begin e current e insert

FI_Group::Fl_Group(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _G oup widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Group::~FI_Group()

The destructor also deletes all the children. This allows awhole tree to be deleted at once, without having to
keep a pointer to al the children in the user code. A kludge has been done so the FI _Group and al of it's
children can be automatic (local) variables, but you must declarethe FI _Gr oupfirst, so that it is destroyed
last.

void FI_Group::add(Fl_Widget &w)
void FI_Group::add(Fl_Widget *w)

Adds awidget to the group at the end of the child array.

FI_Group &FI_Group::add_resizable(FI_Widget &box)

116 class FI_GIl_Window

FLTK 1.0 Programming Manual

Adds awidget to the group and makesiit the resizable widget.

const FI_Widget *FI_Group::array() const

Returns a pointer to the array of children. This pointer can change when children are added or removed!
void FI_Group::begin()

begi n() setsthe current group so you can build the widget tree by just constructing the widgets. begi n() is
automatically called by the constructor for FI_Group (and thus for FI_Window as well). begi n() does
current (this).

Don't forget to end() the group or window!
FI_Widget *FI_Group::child(int n) const
Returns child n, whereo .

int FI_Group::children() const

Ret urns how many child wi dgets the group has.

static FI_Group *FI_Group::current()
static void FI_Group::current(FI_Group *w)

current() returns the currently active group in the widget tree. To prevent w dgets from
bei ng added to a group, call current() With a NULL group.

void FI_Group::end()

end() does current(this->parent()). Any new wi dgets added to the widget tree will be added
to the parent of the group.

int FI_Group::find(const FI_Widget *w) const
int Fl_Group::find(const FI_Widget &w) const

Searches the child array for the widget and returns the index. Returnschildren() if the
wi dget is NuLL or not found.

void Fl_Group::insert(FI_Widget &w, int n)
void Fl_Group::insert(FI_Widget &w, FI_Widget *beforethis)

Inserts a widget into the child array. It is put at index n which nust be | ess or equal
to children(). The second version does a find(beforethis) and inserts using that index.

void FI_Group::remove(Fl_Widget &w)

Renmoves a wi dget fromthe group. This does nothing if the widget is not currently a child
of this group.

void Fl_Group::resizable(FI_Widget *box)
void FI_Group::resizable(FI_Widget &box)
FI_Widget *FI_Group::resizable() const

The resizabl e wi dget defines the resizing box for the group. Wien the group is resized it

class FI_Group 117

FLTK 1.0 Programming Manual

calcul ates a new size and position for all of its children. Wdgets that are horizontally
or vertically inside the dinensions of the box are scaled to the new size. Wdgets
out si de the box are noved.

In these examples the gray areaisthe resizable:

The resizable may be set to the group itself (thisisthe default value for an FI _G oup, although NULL isthe
default for an FI _w ndow), in which case all the contents are resized. If the resizableis NULL then all widgets
remain afixed size and distance from the top-left corner.

It is possible to achieve any type of resize behavior by using an invisible FI _Box as the resizable and/or by
using a hierarchy of child FI _Group's.

118 class FI_Group

FLTK 1.0 Programming Manual

class FI_Hold Browser

Class Hierarchy

Fl _Browser

I
+----Fl _Hol d_Browser

Include Files

#i ncl ude <FL/Fl _Hol d_Browser. H>

Description

TheFl _Hol d_Browser classisasubclass of FI _Browser which letsthe user select asingle item, or no items
by clicking on the empty space. Aslong as the mouse button is held down the item pointed to by it is
highlighted, and this highlighting remains on when the mouse button is released. Normally the callback is
done when the user releases the mouse, but you can change this with when() .

SeeEl_Browser for methods to add and remove lines from the browser.

Methods

* FI Hold Browser
* ~FI Hold_Browser
* deselect

» select

* value

FI_Hold_Browser::Fl_Hold_Browser(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Hol d_Browser widget using the given position, size, and label string. The default boxtype
iSFL_DOWN_BOX.

virtual FI_Hold_Browser::~FI_Hold_Browser()
The destructor also deletes all the itemsin the list.

int Fl_Browser::deselect()

Same asval ue(0)

int FI_Browser::select(int,int=1)
int Fl_Browser::selected(int) const

Y ou can use these for compatibility with EI _Mul ti _Browser . If you turn on the selection of more than one
line the results are unpredictable.

class FI_Group 119

FLTK 1.0 Programming Manual

int Fl_Browser::value() const
void FI_Browser::value(int)

Set or get which lineis selected. Thisreturns zero if no lineis selected, so be aware that this can happenin a
callback.

120 class FI_Hold_Browser

FLTK 1.0 Programming Manual

class Fl_Input

Class Hierarchy

El _| nput

I
+----Fl _I nput

Include Files

+----Fl _Float_lnput, FEl _Int |nput,
FIl_Miltiline |nput, El _Secret | nput

#i ncl ude <FL/Fl _I nput. H>

Description

Thisisthe FLTK text input widget. It displays asingle line of text and lets the user edit it. Normally it is
drawn with an inset box and a white background. The text may contain any characters (even 0), and will
correctly display anything, using ~X notation for unprintable control characters and \nnn notation for
unprintable characters with the high bit set. It assummes the font can draw any characters in the 1SO8859-1

character set.

Mouse button | Movesthe cursor to this point. Drag selects characters. Double click selects words.

1 Triple click sdlects all text. Shift+click extends the selection.

Mouse button | Insert the current X selection at the cursor (unlike Motif this does not move the insertion

2 point to the mouse). If the widget does not have the input focus (and thus no cursor) it
puts the cursor where clicked and inserts the selection there.

Mouse button | Currently actslike button 1.

3

Backspace Deletes one character to the left, or deletes the selected region.

Enter May cause the callback, see when().

~A or Home Go to start of line.

"B or Left Move left

e Copy the selection to the clipboard

D or Delete Deletes one character to the right or deletes the selected region. Due to silly historical X
problems, the Delete key will act like Backspace until you type a "real” backspace.

AE or End Go to the end of line.

F or Right Move right

class FI_Hold_Browser 121

FLTK 1.0 Programming Manual

~K Delete to the end of line (next \n character) or deletes a single \n character. These
deletions are al concatenated into the clipboard.
AN or Down Move down (for FI_Multiline_Input only, otherwise it moves to the next input field).
APor Up Move up (for FI_Multiline_Input only, otherwise it moves to the previous input field).
AQor Start a compose-character sequence. The next one or two keys typed define the character
RightCtrl or to insert. This also can be used to "quote" control characters.
Compose
U Delete everything.
AV oor MY Paste the clipboard
AXoor MW Copy theregion to the clipboard and delete it.
NZor N Undo. Thisisasingle-level undo mechanism, but all adjacent deletions and insertions
are concatenated into asingle "undo". Often thiswill undo alot more than you expected.
Shift+move Move the cursor but aso extend the selection.
Methods
 H_lnput * index * static_value * textfont * value
e ~Fl_Input e Size * textcolor * textsize e wh

e cursor_color

Fl_Input::Fl_Input(int x, inty, int w, int h, const char *label = 0)

Createsanew FlI _I nput widget using the given position, size, and label string. The default boxtypeis

FL_DOAN_BOX.

virtual Fl_Input::~FI_Input()

Destroys the widget and any value associated with it.

const char *FI_Input::value() const
int Fl_Input::value(const char*)
int FlI_Input::value(const char*, int)

The first form returns the current value, which is a pointer to the internal buffer and isvalid only until the
next event is handled.

The second two forms change the text and set the mark and the point to the end of it. The string is copied to

the internal buffer. Passing NULL isthe same as

""_ Thisreturns non-zero if the new value is different than the

current one. Y ou can use the second version to directly set the length if you know it already or want to put

122

class FI_Input

compose.html

FLTK 1.0 Programming Manual

nul'sin the text.

int Fl_Input::static_value(const char¥)
int Fl_Input::static_value(const char*, int)

Change the text and set the mark and the point to the end of it. The string is not copied. If the user edits the
string it is copied to the internal buffer then. This can save agreat deal of time and memory if your program
israpidly changing the values of text fields, but thiswill only work if the passed string remains unchanged
until either the FI _I nput isdestroyed or val ue() iscalled again.

int FlI_Input::size() const

Returns the number of charactersinval ue() . Thismay be greater than st r | en(val ue()) if there are nul
charactersinit.

char Fl_Input::index(int) const
Same asval ue() [n], but may be faster in plausible implementations. No bounds checking is done.

FI_When FI_Widget::when() const
void FI_Widget::when(FI_When)

Controls when callbacks are done. The following values are useful, the default value is FL_WHEN RELEASE:

* 0: The callback is not done, but changed() isturned on.

* FL_WHEN_CHANGED: The callback is done each time the text is changed by the user.

* FL_WHEN_RELEASE: The callback will be done when this widget loses the focus, including when the
window is unmapped. Thisis auseful value for text fieldsin a panel where doing the callback on
every change is wasteful. However the callback will also happen if the mouse is moved out of the
window, which means it should not do anything visible (like pop up an error message). Y ou might do
better setting thisto zero, and scanning all theitemsfor changed() when the OK button on apanel is
pressed.

* FL_WHEN_ENTER KEY: If the user types the Enter key, the entire text is selected, and the callback is
doneif the text has changed. Normally the Enter key will navigate to the next field (or insert a
newlinefor aFl _Militline_I nput), this changes the behavior.

e FL_WHEN_ENTER _KEY| FL_WHEN_NOT_CHANGED: The Enter key will do the callback even if the text has
not changed. Useful for command fields.

FI_Color FI_Input::textcolor() const
void Fl_Input::textcolor(Fl_Color)

Gets or setsthe color of thetext in the input field.

FI_Font Fl_Input::textfont() const
void Fl_Input::textfont(FI_Font)

Gets or setsthe font of the text in the input field.

uchar Fl_Input::textsize() const
void Fl_Input::textsize(uchar)

class FI_Input 123

FLTK 1.0 Programming Manual

Gets or setsthe size of the text in the input field.

FI_Color FI_Input::cursor_color() const
void Fl_Input::cursor_color(FI_Color)

Get or set the color of the cursor. Thisis black by default.

124

class FI_Input

FLTK 1.0 Programming Manual

class Fl_Input_

Class Hierarchy

FI _W dget

I
+----Fl _I nput _

I
+----El _lnput

Include Files

#i ncl ude <FL/Fl _I nput_. B>

Description

Thisisavirtual base classbelow FlI_I nput . It hasall the same interfaces, but lacks the handl e() and
draw() method. Y ou may want to subclassit if you are one of those people who likes to change how the
editing keys work.

This can act like any of the subclasses of FI_Input, by setting t ype() to one of the following values:

#define FL_NORMAL_| NPUT 0

#define FL_FLOAT_| NPUT 1

#define FL_I NT_I NPUT 2

#define FL_MULTI LI NE_I NPUT 4

#def i ne FL_SECRET | NPUT 5

Methods

e Fl_Input e cut e insert » maybe do_callback « undo
e ~FI_Input drawtext e lineboundary e« position * up_down_position
* copy e handletext » mark * replace wordboundary
* COpy_cuts

Fl_Input_::Fl_Input_(int X, inty, int w, int h, const char *label = 0)

Createsanew FlI _| nput _ widget using the given position, size, and label string. The default boxtypeis
FL_DOAN_BOX.

virtual Fl_Input_::~Fl_Input_()

The destructor removes the widget and any value associated with it.

class FI_Input 125

FLTK 1.0 Programming Manual

int Fl_Input_::wordboundary(int i) const
Returnstrue if positioni isat the start or end of aword.
int Fl_Input_::lineboundary(int i) const
Returnstrue if positioni isat the start or end of aline.
void Fl_Input_::drawtext(int,int,int,int)

Draw the text in the passed bounding box. If damage() FL_DAMAGE_ALL istrue, this assummes the area has
already been erased to col or () . Otherwise it does minimal update and erases the area itself.

void Fl_Input_::handletext(int e,int,int,int,int)

Default handler for all event types. Y our handl e() method should call thisfor all eventsthat it does not
handle completely. Y ou must pass it the same bounding box as passed to dr aw() . Handles FL_PUSH, FL_DRAG,
FL_RELEASE to select text, handles FL_FOCUS and FL_UNFOCUS to show and hide the cursor.

int Fl_Input_::up_down_position(int i, int keepmark=0)

Do the correct thing for arrow keys. Sets the position (and mark if keepmark is zero) to somewhere in the
same line asi, such that pressing the arrows repeatedly will cause the point to move up and down.

void Fl_Input_::maybe _do_callback()

Doesthe callback if changed() istrueor if when() FL_WHEN NOT_CHANGED is non-zero. Y ou should call this
at any point you think you should generate a callback.

int Fl_Input_::position() const
int Fl_Input_::position(int new_paosition, int new_mark)
int Fl_Input_::position(int new_position_and_new_mark)

The input widget maintains two pointers into the string. The "position™ is where the cursor is. The "mark" is
the other end of the selected text. If they are equal then thereis no selection. Changing this does not affect the
clipboard (use copy() to do that).

Changing these values causes ar edr aw() . The new values are bounds checked. The return value is non-zero
if the new position is different than the old one. posi ti on(n) isthe sameasposi tion(n, n). mark(n) isthe
Same asposi ti on(position(),n).

int Fl_Input_::mark() const
int Fl_Input_::mark(int new_mark)

Gets or setsthe current selection mark. mar k(n) isthe same asposi ti on(position(),n).
int Fl_Input_::replace(int a, int b, const char *insert, int length=0)
This call does all editing of the text. It deletes the region between a and b (either one may be less or equal to

the other), and then insertsthe string i nsert at that point and leavesthe mar k() and posi tion() after the
insertion. Does the callback if when() FL_WHEN CHANGED and there is a change.

126 class Fl_Input_

FLTK 1.0 Programming Manual

Set st art and end equal to not delete anything. Seti nsert to NULL to not insert anything.

| engt h must be zero or strl en(i nsert), thissavesatiny bit of timeif you happen to aready know the
length of the insertion, or can be used to insert a portion of astring or a string containing nul's.

a and b are clamped to the 0..si ze() range, so it is safe to pass any values.

cut () andinsert () arejustinline functionsthat call r epl ace().

int Fl_Input_::cut()

int Fl_Input_::cut(int n)

int Fl_Input_::cut(int a, int b);

Fl _Input_::cut() deletesthe current selection. cut (n) deletesn characters after the posi tion() .

cut (-n) deletesn characters beforethe posi tion(). cut (a, b) deletesthe characters between offsetsa and

b. A, b, and n are al clamped to the size of the string. The mark and point are left where the deleted text was.

If you want the data to go into the clipboard, do FI _I nput _: : copy() beforecalling FI _I nput _: : cut (), or
doFl _Input_::copy_cuts() afterwards.

int Fl_Input_::insert(const char *t,int |=0)

Insert the string t at the current position, and leave the mark and position after it. If | isnot zerothenitis
assummed tobestrlen(t).

int Fl_Input_::copy()

Put the current selection between nar k() and posi ti on() into the clipboard. Does not replace the old
clipboard contents if posi ti on() and mark() areequal.

int Fl_Input_::undo()
Does undo of several previous callstor epl ace() . Returns non-zero if any change was made.
int Fl_Input_::copy_cuts()

Copy all the previous contiguous cuts from the undo information to the clipboard. Thisis used to make *K
work.

class FI_Input_ 127

FLTK 1.0 Programming Manual

class Fl_Int_Input

Class Hierarchy

El _| nput

I
+----Fl _Int_I nput

Include Files

#i nclude <FL/Fl _I nput. H>

Description

TheFl _Int _I nput classisasubclassof FI _I nput that displaysitsinput in red when the value string is not a
legal integer value.

Methods

e Fl_Int_Input
e ~Fl_Int_Input

Fl_Int_Input::Fl_Int_Input(int X, int y, int w, int h, const char *label = 0)

Createsanew FlI _I nt _I nput widget using the given position, size, and label string. The default boxtypeis
FL_DOAN_BOX.

virtual Fl_Int_Input::~Fl_Int_Input()

Destroys the widget and any value associated with it.

128 class Fl_Input_

FLTK 1.0 Programming Manual

class Fl_Light Button

Class Hierarchy

Fl _Button

I
+----Fl _Light_Button

Include Files

#i ncl ude <FL/Fl _Li ght_Button. B>

Description

Buttons generate callbacks when they are clicked by the user. Y ou control exactly when and how by
changing the valuesfor t ype() andwhen() .

TheFl _Li ght _But t on subclass display the "on" state by turning on alight, rather than drawing pushed in.

The shape of the "light" isinitially set to FL_DOWN_BOX. The color of the light when on is controlled with
sel ection_color(), which defaults to FL_YELLOW

Methods

« Fl_Light_Button
e ~F_Light_Button

Fl_Light_Button::Fl_Light_Button(int x, inty, int w, int h, const char *label = 0)
Createsanew FlI _Li ght _But t on widget using the given position, size, and label string.
Fl_Light_Button::~Fl_Light_Button()

The destructor deletes the check button.

class Fl_Int_Input 129

FLTK 1.0 Programming Manual

class FI_Menu_

Class Hierarchy

Fl _W dget
I
+----Fl _Menu_----Fl _Menu_ltem

I
+----FI_Choice, El_Menu Bar, Fl_Menu_ Button

Include Files

#i ncl ude <FL/Fl _Menu_. B>

Description

All widgets that have amenu in FLTK are subclassed off of this class. Currently FLTK provides you with
Fl_Menu_ Button,El _Menu Bar, andEl_Choi ce.

The class contains a pointer to an array of structures of type Fl_Menu_| t em These describe the contents of
the menu. Usually the array is alarge initialization constant, but there are methods to build it dynamically.

Methods
 F_Menu » down_box * remove * test_shortcut * textfont
« ~FI Menu * global * replace e text * textsize
e add e menu « shortcut * textcolor « value
e Clear e mode e Size

FI_Menu_::Fl_Menu_(int x, inty, int w, int h, const char *label = 0)

Createsanew FI _Menu_ widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Menu_::~FI_Menu_()
Destroys the menu and itsitems.

const FI_Menu_Item* FI_Menu_::menu() const
void FI_Menu_::menu(const FI_Menu_Item?*)

Get or set the menu array directly. Setting it to NULL indicates that you want the widget to allocate its own
array.

130 class FI_Light_Button

FLTK 1.0 Programming Manual

int Fl_Menu_::value() const
int Fl_Menu_::value(int)
int Fl_Menu_::value(const FI_Menu_Item¥)

Thevalueistheindex into menu() of thelast item chosen by the user. It is zeroinitially. You can set it asan
integer, or set it with a pointer to a menu item. The set routines return non-zero if the new valueis different
than the old one.

const FI_Menu_Item* FI_Menu_::test_shortcut()

Only call thisin response to FL_SHORTCUT event s. |f the event matches an entry in the menu that entry is
selected and the callback will be done (or changed() will be set). This allows shortcuts directed at one
window to call menusin another.

void FI_Menu_::global()

Make the shortcuts for this menu work no matter what window has the focus when you typeit. Thisis done
by using Fl : : add_handl er () . ThisFI _Menu_ widget does not have to be visible (ie the window it isin can
be hidden, or it does not have to be put in awindow at all).

Currently there can be only one gl obal () menu. Setting a new one will replace the ol d one. There is no
way to renove the global () setting (including destroying the nenu).

const char* FI_Menu_::text() const
const char* FI_Menu_::text(int i) const

Returns the title of the last item chosen, or of itemii .
int Fl_Menu_::size() const

Thisreturnsmenu() - >si ze() , which is how many entries are in the array, not counting the NULL ending, but
including all submenustitles and the NULL's that end them. If the menu is NULL this returns zero.

int Fl_Menu_::add(const char *,const char *,FI_Callback *,void *v=0,int f=0)
int Fl_Menu_::add(const char *)

Thefirst form adds a new menu item, with atit | e string, short cut string, cal | back, argument to the
callback, and flags. If menu() was originally set with NULL then space is allocated for the new item. If instead
you gave it an array then the array must have enough empty space for the new item. Thettitle string is copied,
but the shortcut is not.

The second form splits the string at any | characters and then does add(s, 0, 0, 0, 0) with each section. Thisis
often useful if you are just using the value, and is compatable with some Forms programs.

Text isastring of the form "foo/bar/baz", this example will result in a submenu called "foo" and onein that
called "bar" and and entry called "baz". The text is copied to new memory and can be freed. The other
arguments are copied into the menu item unchanged.

If an item exists already with that name then it is replaced with this new one. Otherwise this new oneis added

to the end of the correct menu or submenu. The return value is the offset into the array that the new entry was
placed at.

class FI_Menu_ 131

FLTK 1.0 Programming Manual

No bounds checking is done, the table must be big enough for all the entries you plan to add. Don't forget
that there is a NULL terminator on the end, and the first time aiitem is added to a submenu three items are
added (the title and the NULL terminator, as well as the actual menu item)

Thereturn value is the index into the array that the entry was put.

void FI_Menu_::clear()

Delete all the menu items. Don't do this if you used menu(x) to set it to your own array. Y ou should do this
before destroying the FI _Menu_ widget if it usesit's own array.

void FI_Menu_::replace(int n, const char *)
Changes the text of item n. The passed string is copied.
void FI_Menu_::remove(int n)

Deletes item n from the menu.

void FI_Menu_::shortcut(int i, int n);

Changes the shortcut of itemi ton.

void FI_Menu_::mode(int i,int x);

Changes the flags of itemi .

FI_Color FI_Menu_::textcolor() const
void FI_Menu_::textcolor(Fl_Color)

Get or set the current color of menu item labels.

FI_Font FI_Menu_::textfont() const
void FI_Menu_::textfont(Fl_Font)

Get or set the current font of menu item labels.

uchar FI_Menu_::textsize() const
void FI_Menu_::textsize(uchar)

Get or set the font size of menu item labels.

FI_Boxtype FI_Menu_::down_box() const
void FI_Menu_::down_box(Fl_Boxtype)

This box type is used to surround the currently-selected items in the menus. If thisisFL_NO BOX then it acts
like FL_THI N_UP_BOX and sel ect i on_col or () actslike FL_WH TE, for back compatability.

132 class FI_Menu_

FLTK 1.0 Programming Manual

class FI_Menu_Bar

Class Hierarchy

Fl _Menu

I
+----Fl _Menu_Bar

Include Files

#i ncl ude <FL/Fl _Menu_Bar. H>

Description

Thiswidget provides a standard menubar interface. Usually you will put this widget along the top edge of
your window. The height of the widget should be 30 for the menu titles to draw correctly with the default
font.

The items on the bar and the menus they bring up are defined by asingle FI _Menu_1I t emarray. Because a
FI _Menu_l t emarray defines a hierarchy, the top level menu defines the items in the menubar, while the
submenus define the pull-down menus. Sub-sub menus and lower pop up to the right of the submenus.

Point Emply [naciive Submenus bullon

If thereis anitem in the top menu that is not atitle of a submenu, then it acts like a"button™ in the menubar.
Clicking on it will pick it.

When the user picks an item off the menu, the item's callback is done with the menubar as the
FI _W dget * argument. If the item does not have a callback the menubar's callback is done instead.

Submenus will aso pop up in response to shortcuts indicated by putting a "character in the name field of the
menu item. If you put a "character in atop-level "button" then the shortcut picksit. The "character in
submenus is ignored until the menu is popped up.

Typing theshort cut () of any of the menu items will cause callbacks exactly the same as when you pick the
item with the mouse.

Methods

* FI Menu Bar
* ~F|_Menu_Bar

class FI_Menu_ 133

FLTK 1.0 Programming Manual

FI_Menu_Bar::FI_Menu_Bar(int x, inty, int w, int h, const char *label = 0)

Createsanew FI _Menu_Bar widget using the given position, size, and label string. The default boxtypeis
FL_UP_BOX.

The constructor setsmenu() to NULL. See FI _Menu_ for the methods to set or change the menu.

| abel si ze(), | abel font (), and I abel col or () are used to control how the menubar items are drawn. They
areinitialized from the FI _Menu static variables, but you can change them if desired.

| abel () isignored unlessyou changeal i gn() to put it outside the menubar.
virtual FI_Menu_Bar::~FI_Menu_Bar()

The destructor removes the FI _Menu_Bar widget and all of its menu items.

134 class FI_Menu_Bar

FLTK 1.0 Programming Manual

class FI_Menu_Button

Class Hierarchy

Fl _Menu

I
+----Fl _Menu_Button

Include Files

#i ncl ude <FL/Fl _Menu_Button. H>

Description

Thisis abutton that when pushed pops up a menu (or hierarchy of menus) defined by an array of
Fl _Menu_l t emobjects.

Red |
Green
Biue
Strange
Charm
fruth
Beauty

Normally any mouse button will pop up amenu and it islined up below the button as shown in the picture.
However an FI _Menu_But t on may also control a pop-up menu. Thisis done by setting thet ype(), see
below.

The menu will also pop up in response to shortcuts indicated by putting a "character in the abel () .
Typing the shor t cut () of any of the menu items will cause callbacks exactly the same as when you pick the
item with the mouse. The "character in menu item names are only looked at when the menu is popped up,

however.

When the user picks an item off the menu, the item's callback is done with the menu_button as the
FI _W dget * argument. If the item does not have a callback the menu_button's callback is done instead.

Methods

* Fl Menu_Button
* ~F Menu Button
* popup

* type

class FI_Menu_Bar 135

FLTK 1.0 Programming Manual

FI_Menu_Button::FI_Menu_Button(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Menu_But t on widget using the given position, size, and label string. The default boxtypeis
FL_UP_BOX.

The constructor setsmenu() to NULL. See FI _Menu_ for the methods to set or change the menu.
virtual FI_Menu_Button::~FI_Menu_Button()

The destructor removes the FI _Menu_But t on widget and all of its menu items.

const FI_Menu* FI_Menu_Button::popup()

Act exactly as though the user clicked the button or typed the shortcut key. The menu appears, it waits for the
user to pick an item, and if they pick oneit setsval ue() and doesthe callback or setschanged() as
described above. The menu item isreturned or NULLi f the user disnisses the menu.

void FlI_Widget::type(uchar)

If type() is zero a normal menu button is produced. If it is nonzero then this is a pop-up nenu. The
bits in type() indicate what nouse buttons pop up the menu. For convi enece the constants

FI _Menu_Button:: POPUP1, POPUP2, POPUP3, POPUP12, POPUP13, POPUP23, and POPUP123 are defined. FI_Menu_Button::POPUP3 i S
usual Iy what you want.

A popup menu button isinvisible and does not interfere with any events other than the mouse button
specified (and any shortcuts). The widget can be stretched to cover all your other widgets by putting it last in
the hierarchy so it is"on top". You can aso make severa widgets covering different areas for
context-sensitive popup menus.

The popup menus appear with the cursor pointing at the previously selected item. Thisis afeature. If you
don't likeit, doval ue(0) after the menu items are picked to forget the current item.

136 class FI_Menu_Button

struct FI_Menu_Item

FLTK 1.0 Programming Manual

Class Hierarchy

FL_W dget
I

+----FI _Menu_ltem---El

Include Files

Menu

#i nclude <FL/Fl _Menu_ltem H>

Description

The FI _Menu_I t emstructure defines a single menu item that is used by the FI _Menu_ class. This structure is

defined in <FL/ FI _Menu_ltem H>

struct Fl _Menu_ltem {
const char* text; // label ()
ul ong shortcut _;
FI _Cal | back* call back_;
voi d* user _data_;
i nt fl ags;
uchar | abel type_;
uchar | abel font _;
uchar | abel si ze_;
uchar | abel col or _;
i

enum { // values for flags:

FL_MENU_| NACTI VE
FL_MENU_TOGGLE
FL_MENU_VALUE
FL_MENU_RADI O
FL_MENU_I NVI SI BLE
FL_SUBMENU_POI NTER
FL_SUBMVENU
FL_MENU_DI VI DER
FL_MENU_HORI ZONTAL

b

oA~ NP

0x10,
0x20,
0x40,
0x80,
0x100

Typicaly menu items are statically defined; for example:

class FI_Menu_Button

Menu_ltem popup[] = {

{", FL_ALT+ a', the_cb, (void*)1},
{", FL_ALT+' b', the_cb, (void*)?2},
{"gama", FL_ALT+' c', the_cb, (void*)3, FL_MENU DI VI DER}
{", 0, strange_chb},
{", 0, charm cb},
{", 0, truth_chb},
{"b, 0, beauty_cb},
{" sub, 0, 0, 0, FL_SUBMENU}
{ " One" } ’
{" t V\D" } L

137

FLTK 1.0 Programming Manual

{"three"},

{0},
{"inactive", FL_ALT+i"

alpha Altra |
beta Alt+h

FL_MENU_I NACTI VE| FL_MENU_DI VI DER}

i, 0, O
gamma Altre {"invisible", FL ALT+i', 0, 0, FL_MENU | NVI S| BLE},
strange : {" check", FL_ALT+i', 0, 0, FL_MENU TOGGLE| FL_MENU_VALUE},
charm {"box", FL_ALT+i', 0, 0, FL_NMENU TOGGLE},
iruth (ol
beauty :
subment: >

ety Afrri]
= check Aft+i |

v At —

A submenu title isidentified by the bit FL_SUBMENU in the | ags field, and ends with al abel () that iSNULL.
Y ou can nest menus to any depth. A pointer to the first item in the submenu can be treated as an
FI _Menu array itself. It is also possible to make seperate submenu arrays with FL_SUBMVENU_PO NTER flags.

Y ou should use the method functions to access structure members and not access them directly to avoid
compatibility problems with future releases of FLTK.

Methods
* [abel e user_data e radio * show * popup
* |abeltype e argument * value * hide * pulldown
« |abelcolor do_callback e et * active * test_shortcut
« |abelfont * shortcut * setonly * activate * 5ize
* |abelsize * submenu » clear * deactivate * next
« callback » checkbox * visible

const char* FI_Menu_Item::label() const
void FI_Menu_Item::label(const char?*)
void FI_Menu_Item::label(Fl_Labeltype, const char?*)

Thisisthetitle of theitem. A NULL here indicates the end of the menu (or of a submenu). A "in the item will
print an underscore under the next letter, and if the menu is popped up that letter will be a"shortcut” to pick
that item. To get area "put two in arow.

Fl_Labeltype FI_Menu_lItem::labeltype() const
void FI_Menu_Item::labeltype(Fl_Labeltype)

A | abel t ype identifies aroutine that draws the label of the widget. This can be used for special effects such

as emboss, or to usethel abel () pointer as another form of data such as a bitmap. The value
FL_NORMAL_LABEL prints the label as text.

138 struct FI_Menu_Item

FLTK 1.0 Programming Manual

FI_Color FI_Menu_ltem::labelcolor() const
void FI_Menu_Item::labelcolor(FI_Color)

This color is passed to the labeltype routine, and is typically the color of the label text. This defaults to
FL_BLACK. If this color is not black fltk will not use overlay bitplanes to draw the menu - thisis so that images
put in the menu draw correctly.

FI_Font FI_Menu_Item::labelfont() const
void FI_Menu_Item::labelfont(FI_Font)

Fonts are identified by small 8-bit indexesinto atable. Seethe enumeration list for predefined fonts. The
default value is aHelveticafont. Thefunction FI: : set _font () can define new fonts.

uchar FI_Menu_ltem::labelsize() const
void FI_Menu_Item::labelsize(uchar)

Gets or setsthe label font pixel size/height.

typedef void (FI_Callback)(Fl_Widget*, void*)
Fl_Callback* FI_Menu_Item::callback() const

void FI_Menu_Item::callback(Fl_Callback*, void* = 0)
void FI_Menu_Item::callback(void (*)(FI_Widget*))

Each item has space for a callback function and an argument for that function. Due to back compatability, the
FI _Menu_l t emitself is not passed to the callback, instead you have to get it by calling
((FI _Menu_*)w) - >nval ue() wherewisthe widget argument.

void* FI_Menu_Iltem::user_data() const
void FI_Menu_Item::user_data(void*)

Get or set theuser _dat a argument that is sent to the callback function.

void FI_Menu_Item::callback(void (*)(FI_Widget*, long), long = 0)
long FI_Menu_ltem::argument() const
void FI_Menu_Item::argument(long)

For convenience you can also define the callback astaking al ong argument. Thisisimplemented by casting
thisto aFl _Cal | back and casting thel ong to avoi d* and may not be portable to some machines.

void FI_Menu_lItem::do_callback(FI_Widget*)
void FI_Menu_Item::do_callback(FI_Widget*, void*)
void FI_Menu_lItem::do_callback(FI_Widget*, long)

Cadll theFI _Menu_I t emitem's callback, and provide the FI _w dget argument (and optionally override the
user_data() argument). Y ou must first check that cal | back() isnon-zero before calling this.

ulong FI_Menu_ltem::shortcut() const
void FI_Menu_Item::shortcut(ulong)

Sets exactly what key combination will trigger the menu item. The valueisalogical 'or' of akey and a set of
shift flags, for instance FL_ALT+' a' or FL_ALT+FL_F+10 or just 'a. A value of zero disables the shortcut.

struct FI_Menu_ltem 139

FLTK 1.0 Programming Manual

The key can be any valuereturned by El : : event _key(), but will usually be an ASCII letter. Use a
lower-case letter unless you require the shift key to be held down.

The shift flags can be any set of values accepted by ElL - : event _stat e() . If thebit ison that shift key must
be pushed. Meta, Alt, Ctrl, and Shift must be off if they are not in the shift flags (zero for the other bits
indicatesa"don't care” setting).

int Fl_Menu_Iltem::submenu() const

Returnstrue if either FL_SUBMENU or FL_SUBMENU_PO NTERis on in the flags. FL_SUBMENU indicates an
embedded submenu that goes from the next item through the next one with aNULLI abel ().
FL_SUBMENU_PO NTER indicates that user _dat a() isapointer to another menu array.

int Fl_Menu_Item::checkbox() const

Returns true if acheckbox will be drawn next to thisitem. Thisistrueif FL_MENU TOGGLE or
FL_MENU_RADI Oisset in theflags.

int Fl_Menu_ltem::radio() const

Returnstrue if thisitem isaradio item. When aradio button is selected all "adjacent” radio buttons are turned
off. A set of radio itemsis delimited by anitem that hasr adi o() false, or by an item with

FL_MENU_DI VI DER turned on.

int Fl_Menu_Iltem::value() const

Returns the current value of the check or radio item.

void FI_Menu_Item::set()

Turns the check or radio item "on" for the menu item. Note that this does not turn off any adjacent radio
itemslikeset onl y() does.

void FI_Menu_Item::setonly()

Turnsthe radio item "on" for the menu item and turns off adjacent radio item.
void FI_Menu_Item::clear()

Turns the check or radio item "off" for the menu item.

int Fl_Menu_Item::visible() const

Getsthe visibility of an item.

void FI_Menu_Item::show()

Makes an item visible in the menu.

void FI_Menu_Item::hide()

140 struct FI_Menu_Item

FLTK 1.0 Programming Manual

Hides an item in the menu.

int Fl_Menu_Item::active() const

Get whether or not the item can be picked.

void FI_Menu_Item::activate()

Allows amenu item to be picked.

void FI_Menu_Item::deactivate()

Prevents amenu item from being picked. Note that thiswill also cause the menu item to appear grayed-out.

const FI_Menu_Item *FI_Menu_Item::popup(int X, int Y, const char* title = 0, const
FI_Menu_ltem* picked = 0, const FI_Menu_* button = 0) const

This method is called by widgets that want to display menus. The menu stays up until the user picks anitem
or dismissesit. The selected item (or NULL if none) is returned. This does not do the callbacks or change the
state of check or radio items.

X, Y isthe position of the mouse cursor, relative to the window that got the most recent event (usually you can
passFl ::event_x() andFl :: event _y() unchanged here).

titl e isacharacter string title for the menu. If non-zero a small box appears above the menu with thetitlein
it.

The menu is positioned so the cursor is centered over theitem pi cked. Thiswill work eveniif pi cked isina
submenu. If pi cked is zero or not in the menu item table the menu is positioned with the cursor in the top-left
corner.

but t on isapointer to anFl _Menu_ from which the color and boxtypes for the menu are pulled. If NULL then
defaults are used.

const FI_Menu_Item *FI_Menu_Item::pulldown(int X, int Y, int W, int H, const FI_Menu_Item*
picked =0, const FI_Menu_* button = 0, const FI_Menu_Item* title = 0, int menubar=0) const

pul I down() issimilar to popup() , but arectangleis provided to position the menu. The menu is made at
least wwide, and the pi cked item is centered over the rectangle (like FI _Choi ce uses). If pi cked is zero or
not found, the menu is aligned just below the rectangle (like a pulldown menu).

Thetitle and nenubar arguments are used internally by the FI _Menu_ widget.

const FI_Menu_Item* FI_Menu_Item::test_shortcut() const

Thisis designed to be called by awidgets handl e() method in response to a FL_SHORTCUT event. If the
current event matches one of the items shortcut, that item is returned. If the keystroke does not match any

shortcuts then NULL is returned. This only matchesthe short cut () fields, not the letters in the title preceeded
by '

struct FI_Menu_ltem 141

FLTK 1.0 Programming Manual

int Fl_Menu_ltem::size()

Return the offset of the NULL terminator that ends this menu, correctly skipping over submenus. To copy a
menu you should copy si ze() + 1 structures.

const FI_Menu_Item* FI_Menu_Item::next(int n=1) const
FI_Menu_ltem* FI_Menu_Item::next(int n=1);

Advance apointer by n items through a menu array, skipping the contents of submenus and invisible items.
There are two calls so that you can advance through const and non-const data.

142 struct FI_Menu_Item

FLTK 1.0 Programming Manual

class FI_Menu_Window

Class Hierarchy

Fl _Si ngl e_W ndow

I
+----Fl _Menu_W ndow

Include Files

#i ncl ude <FL/Fl _Menu_W ndow. H>

Description

The FI _Menu_W ndowwidget is awindow type used for menus. By default the window is drawn in the
hardware overlay planesif they are available so that the menu don't force the rest of the window to redraw.

Methods

e FI Menu Window
e ~F Menu Window

e clear_overlay
o set_overlay

FI_Menu_Window::FI_Menu_Window(int X, inty, int w, int h, const char *label = 0)
Createsanew Fl _Menu_W ndow widget using the given paosition, size, and label string.

virtual FI_Menu_Window::~FI_Menu_Window()

Destroys the window and all of its children.

FI_Menu_Window::clear_overlay();

Tells FLTK to use normal drawing planes instead of overlay planes. Thisis usualy necessary if your menu
contains multi-color pixmaps.

FI_Menu_Window::set_overlay()

Tells FLTK to use hardware overlay planesif they are available.

struct FI_Menu_Item 143

FLTK 1.0 Programming Manual

class FI_Multi_Browser

Class Hierarchy

Fl _Browser

+----Fl _Multi_Browser

Include Files

#i nclude <FL/Fl _Multi_Browser. H>

Description

TheFl _Mil ti _Browser classisasubclassof FI _Br owser which letsthe user select any set of the lines. The
user interface is Macintosh style: clicking an item turns off all the others and selects that one, dragging selects
al the items the mouse moves over, and shift + click toggles the items. Thisis different then how forms did

it. Normally the callback is done when the user releases the mouse, but you can change this with when() .

See El_Browser for methods to add and remove lines from the browser.

Methods

* Fl Multi_Browser
o ~FI _Multi_Browser
* deselect

» select

* value

FI_Multi_Browser::FI_Multi_Browser(int x, inty, int w, int h, const char *label = 0)

Createsanew FI _Mul ti _Browser widget using the given position, size, and label string. The default boxtype
iSFL_DOWN_BOX.

virtual FI_Multi_Browser::~FI_Multi_Browser()
The destructor also deletes all the itemsin the list.

int Fl_Browser::deselect()

Deselects dl lines.

int FI_Browser::select(int,int=1)
int Fl_Browser::selected(int) const

Selects one or more lines or gets the current selection state of aline.

144 class FI_Menu_Window

FLTK 1.0 Programming Manual

int Fl_Browser::value() const
void FI_Browser::value(int)

Selectsasingle line or gets the last toggled line. Thisreturns zero if no line has been toggled, so be aware
that this can happen in a callback.

class FI_Multi_Browser 145

FLTK 1.0 Programming Manual

class FI_Multiline_Input

Class Hierarchy

El _| nput

I
+----Fl _Multiline_lnput

Include Files

#i nclude <FL/Fl _I nput. H>

Description

Thisinput field displays '\n' characters as new lines rather than ~J, and accepts the Return, Tab, and up and
down arrow keys. Thisisfor editing multiline text.

Thisisfar from the nirvana of text editors, and is probably only good for small bits of text, 10 lines at most. |

think FLTK can be used to write a powerful text editor, but it is not going to be a built-in feature. Powerful
text editorsin atoolkit are a big source of bloat.

Methods

e Fl_Multiline Input
« ~F_Multiline_Input

FI_Multiline_Input::FI_Multiline_Input(int X, int y, int w, int h, const char *label = 0)

Createsanew FI _Mul tiline_I nput widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX.

virtual FI_Multiline_Input::~FI_Multiline_Input()

Destroys the widget and any value associated with it.

146 class FI_Multi_Browser

FLTK 1.0 Programming Manual

class FI_Multiline_Output

Class Hierarchy

Fl _Qut put

I
+----Fl _Multiline_Qutput

Include Files

#include <FL/Fl _Multiline_Qutput.H>

Description

Thiswidget isasubclass of FI _aut put that displays multiple lines of text. It also displays tab characters as
whitespace to the next column.

Methods

e FI Multiline Output
* ~F|_Multiline Output

FI_Multiline_Output::FI_Multiline_Output(int x, int y, int w, int h, const char *label = 0)

Createsanew FI _Mul ti | i ne_cut put widget using the given paosition, size, and label string. The default
boxtype is FL_DOWN_BOX.

virtual FI_Multiline_Output::~FI_Multiline_Output()

Destroys the widget and any value associated with it.

class FI_Multiline_Input 147

FLTK 1.0 Programming Manual

class Fl_Output

Class Hierarchy

El _| nput

I
+- - - -Fl _CQut put

I
+----FEl _Multiline_ Qutput

Include Files

#i ncl ude <FL/Fl _CQut put. H>

Description

Thiswidget displays a piece of text. When you set the val ue(), FI _CQut put doesastrcpy() toit'sown
storage, which is useful for program-generated values. The user may select portions of the text using the
mouse and paste the contents into other fields or programs.

The quick brown fox*Jjumped
FI_Qutput

The quick brown fox
jumped over
the lazy dog.

FI_Multiline_Qutput

Thereisasingle subclass, FI_Multiline_Output, which alows you to display multiple lines of text.

The text may contain any characters except \0, and will correctly display anything, using *X notation for
unprintable control characters and \nnn notation for unprintable characters with the high bit set. It assummes
the font can draw any charactersin the 1SO-Latinl character set.

Methods

» H_Output

* ~F_Output
* cursor_color

* index

> Size

* textcolor
* textfont

148 class FI_Multiline_Output

FLTK 1.0 Programming Manual

Fl_Output::Fl_Output(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Qut put widget using the given position, size, and label string. The default boxtypeis
FL_DOAN_BOX.

virtual FI_Output::~FI_Output()

Destroys the widget and any value associated with it.
const char *FI_Output::value() const

int FI_Output::value(const char*)

int FI_Output::value(const char*, int)

The first form returns the current value, which is a pointer to the internal buffer and isvalid only until the
valueis changed.

The second two forms change the text and set the mark and the point to the end of it. The string is copied to
the internal buffer. Passing NULL isthe same as"". Thisreturns non-zero if the new valueis different than the
current one. Y ou can use the second version to directly set the length if you know it already or want to put
nul'sin the text.

int FI_Output::size() const

Returns the number of charactersinval ue() . Thismay be greater than st r | en(val ue()) if there are nul
charactersinit.

char FI_Output::index(int) const
Same asval ue() [n], but may be faster in plausible implementations. No bounds checking is done.

FI_Color FI_Output::textcolor() const
void Fl_Output::textcolor(FlI_Color)

Gets or setsthe color of thetext in the input field.

FI_Font FI_Output::textfont() const
void Fl_Output::textfont(Fl_Font)

Gets or setsthe font of the text in the input field.

uchar FI_Output::textsize() const
void Fl_Output::textsize(uchar)

Gets or setsthe size of the text in the input field.

class FI_Output 149

FLTK 1.0 Programming Manual

class FI_Overlay Window

Class Hierarchy

Fl _Doubl e_W ndow

I
+----Fl _Overl ay_W ndow

Include Files

#i ncl ude <FL/Fl _Overlay_W ndow. H>

Description

This window provides double buffering and also the ability to draw the "overlay" which is another picture
placed on top of the main image. The overlay is designed to be a rapidly-changing but simple graphic such as
amouse selection box. FI _Over | ay_W ndow uses the overlay planes provided by your graphics hardware if
they are available.

If no hardware support is found the overlay is simulated by drawing directly into the on-screen copy of the

double-buffered window, and "erased" by copying the backbuffer over it again. This means the overlay will
blink if you change the image in the window.

Methods

e FI_Overlay Window
* ~F_Overlay_Window
* draw_overlay

* redraw_overlay

FI_Overlay_Window::FI_Overlay_Window(int x, int y, int w, int h, const char *label = 0)
Createsanew Fl _Over| ay_W ndow widget using the given position, size, and label (title) string.

virtual FI_Overlay_Window::~FI_Overlay_Window()

Destroys the window and all child widgets.

virtual void FI_Overlay_Window::draw_overlay() = 0

You must subclassFI _over | ay_W ndow and provide this method. It isjust likeadr aw() method, except it
draws the overlay. The overlay will have already been "cleared" when thisis called. Y ou can use any of the
routines described in <FL/fl_draw.H>.

void FI_Overlay_Window::redraw_overlay()

Cdll thisto indicate that the overlay data has changed and needs to be redrawn. The overlay will be clear until
thefirst timethisis called, so if you want an initial display you must call this after calling show() .

150 class FI_Output

FLTK 1.0 Programming Manual

class FlI_Pack

Class Hierarchy

Fl _Group

I
+----Fl _Pack

Include Files

#i ncl ude <FL/Fl _Pack. H>

Description

This widget was designed to add the functionality of compressing and aligning widgets.

If type() iSFL_HORI ZONTAL al the children areresized to the height of the FI _Pack, and are moved next to
each other horizontally. If t ype() isnot FL_HORI ZONTAL then the children are resized to the width and are

stacked below each other. Then the FI _Pack resizesitself to surround the child widgets.

Thiswidget is needed for the EI _Tab. In addition you may want to put the FI _Pack insidean Fl _Scrol | .

Methods
e Fl_Pack e add_resizeable « child e end e remove
» ~Fl_Pack e array « children * find * resizeable
e add * begin * current e insert

FI_Pack::Fl_Pack(int x, inty, int w, int h, const char *label = 0)

Creates anew FI _Pack widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Pack::~FI_Pack()
The destructor also deletes all the children. This allows awhole tree to be deleted at once, without having to
keep apointer to al the children in the user code. A kludge has been done so the FI _Pack and all of it's

children can be automatic (local) variables, but you must declare the FI _Packfirst, so that it is destroyed last.

int FI_Pack::spacing() const
void FlI_Pack::spacing(int)

Gets or sets the number of extra pixels of blank space that are added between the children.

class FI_Overlay_Window 151

FLTK 1.0 Programming Manual

class Fl_Positioner

Class Hierarchy

FL_W dget
I

+----Fl _Positioner

Include Files

#i ncl ude <FL/Fl _Positioner. H>

Description

Thisclassis provided for Forms compatibility. It provides 2D input. It would be useful if this could be put
atop another widget so that the crosshairs are on top, but thisis not implemented. The color of the crosshairs
iSsel ection_color().

Methods

» Fl_Positioner
» ~F|_Positioner
* value

» xbounds

* xstep

» xvalue

* vbound

e yvalue

d

FI_Positioner::FI_Positioner(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Posi ti oner widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Positioner::~FI_Positioner()
Deletes the widget.

152 class FI_Pack

FLTK 1.0 Programming Manual

void Fl_Positioner::value(float *x, float *y) const
Returns the current positioninx and y.

void xbounds(float *xmin, float *xmax)
void xbounds(float xmin, float xmax)

Gets or sets the X axis bounds.
void xstep(float x)
Sets the stepping value for the X axis.

float FI_Positioner::xvalue(void) const
void Fl_Positioner::xvalue(float x)

Gets or sets the X axis coordinate.

void ybounds(float *ymin, float *ymay)
void ybounds(float ymin, float ymay)

Getsor setsthe Y axis bounds.
void ystep(float y)
Sets the stepping value for the Y axis.

float FI_Positioner::yvalue(void) const
void Fl_Positioner::yvalue(float y)

Getsor setsthe Y axis coordinate.

class FI_Positioner

153

FLTK 1.0 Programming Manual

class FI_Repeat_Button

Class Hierarchy

Fl_Button

I
+----Fl _Repeat _Button

Include Files
#i ncl ude <FL/Fl _Repeat_Button. H>

Description
TheFl _Repeat _Butt on isasubclass of FI _But t on that generates a callback when it is pressed and then

repeatedly generates callbacks aslong asit is held down. The speed of the repeat is fixed and depends on the
implementation.

Methods

« FI_Repeat_Button
e ~FI_Repeat_Button

FI_Repeat_Button::FI_Repeat_Button(int x, inty, int w, int h, const char *label = 0)

Creates anew FI _Repeat _But t on widget using the given position, size, and label string. The default boxtype
iSFL_UP_BOX.

virtual FI_Repeat_Button::~Fl_Repeat_Button()

Deletes the button.

154 class FI_Positioner

FLTK 1.0 Programming Manual

class FI_Return_Button

Class Hierarchy

Fl_Button
I
+----Fl _Return_Button
Include Files

#i nclude <FL/Fl _Return_Button. H>

Description

TheFl _Ret urn_Butt on isasubclass of FI _But t on that generates a callback when it is pressed or when the
user presses the Enter key. A carriage-return symbol is drawn next to the button label.

Methods

e FI Return Button
* ~F|_Return Button

FI_Return_Button::Fl_Return_Button(int x, int y, int w, int h, const char *label = 0)

Createsanew FI _Ret ur n_But t on widget using the given position, size, and label string. The default boxtype
iSFL_UP_BOX.

virtual FI_Return_Button::~FI_Return_Button()

Deletes the button.

class FI_Repeat_Button 155

FLTK 1.0 Programming Manual

class Fl_Roller

Class Hierarchy

Fl _Val uat or

+----Fl _Roller

Include Files

#i nclude <FL/Fl _Rol l er. H>

Description

TheFl _Rol | er widgetisa"dolly" control commonly used to move 3D objects.

Methods

* Fl_Roller
* ~Fl_Roller

FI_Roller::FI_Roller(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Rol | er widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Roller::~Fl_Roller()

Destroys the valuator.

156 class FI_Return_Button

FLTK 1.0 Programming Manual

class FI_Round_Button

Class Hierarchy

Fl _Button

I
+----Fl _Round_Button

Include Files

#i ncl ude <FL/Fl _Round_Button. B>

Description

Buttons generate callbacks when they are clicked by the user. Y ou control exactly when and how by
changing the valuesfor t ype() andwhen() .

The FI _Round_But t on subclass display the "on" state by turning on alight, rather than drawing pushed in.

The shape of the "light" isinitially set to FL_ROUND_DOWN_BOX. The color of the light when onis
controlled with sel ecti on_col or (), which defaults to FL_RED.

Methods

* FI Round Button
* ~F| Round Button

FI_Round_Button::FI_Round_Button(int x, inty, int w, int h, const char *label = 0)
Createsanew Fl _Round_But t on widget using the given position, size, and label string.
FI_Round_Button::~FI_Round_Button()

The destructor deletes the check button.

class FI_Roller

157

FLTK 1.0 Programming Manual

class Fl_Scroll

Class Hierarchy

Fl _Group

I
+----Fl _Scroll

Include Files

#i nclude <FL/Fl _Scroll.H>

Description

This container widget |ets you maneuver around a set of widgets much larger than your window. If the child
widgets are larger than the size of this object then scrollbars will appear so that you can scroll over to them:

NG

I

Al] i

If all of the child widgets are packed together into a solid rectangle then you want to set box() to

FL_NO_BOX or one of the _FRAME types. Thiswill result in the best output. However, if the child widgets are a
sparse arrangment you must set box() to areal _BOX type. This can result in some blinking during redrawing,
but that can be solved by using aFl _Doubl e_W ndow.

Thiswidget can also be used to pan around a single child widget "canvas'. This child widget should be of
your own class, with adr aw() method that draws the contents. The scrolling is done by changing the x() and
y() of thewidget, so this child must usethex() andy() to position it's drawing. To speed up drawing it

shouldtestfl _clip().

Another very useful childisasingle EL_Pack, which isitself agroup that packs it's children together and
changes size to surround them. Filling the FI _Pack with EI_Tab groups (and then putting normal widgets
inside those) gives you avery powerful scrolling list of individually-openable panels.

Fluid lets you create these, but you can only lay out objects that fit inside the FI _Scr ol I without scrolling.
Be sure to leave space for the scrollbars, as Fluid won't show these either.

You cannot use FI _W ndow as a child of this since the clipping is not conveyed to it when drawn, and it will
draw over the scrollbars and neighboring objects.

158 class FI_Round_Button

fl_clip

FLTK 1.0 Programming Manual

Methods

* FH_Scroll
* ~F_Scroll
« dlign

* position

* type

* Xposition
* yposition

FI_Scroll::FI_Scroll(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Scrol | widget using the given position, size, and label string. The default boxtypeis
FL_NO BOX.

virtual Fl_Scroll::~FI_Scroll()

The destructor also deletes all the children. This allows awhole tree to be deleted at once, without having to
keep a pointer to al the children in the user code. A kludge has been done so the FI _Scrol | and al of it's
children can be automatic (local) variables, but you must declarethe FI _Scrol | first, so that it is destroyed
last.

void Fl_Widget::type(int)

By default you can scroll in both directions, and the scrollbars disappear if the datawill fit in the area of the
scroll. t ype() can changethis:

* 0 - No scrollbars

* FI _Scrol | :: HORI ZONTAL - Only a horizontal scrollbar.

* FI _Scrol | :: VERTI CAL - Only avertical scrollbar.

* Fl _Scrol | ::BOTH- The default is both scrollbars.

* FI _Scrol | :: HORI ZONTAL_ALWAYS - Horizontal scrollbar always on, vertical always off.
e FI _Scrol |:: VERTI CAL_ALWAYS - Vertical scrollbar always on, horizontal aways off.

* FI _Scrol | :: BOTH _ALWAYS - Both always on.

void Fl_Scroll::scrollbar.align(int)
void Fl_Scroll::hscrollbar.align(int)

Thisis used to change what side the scrollbars are drawn on. If the FL_ALI GN_LEFT bit is on, the vertical
scrollbar ison the left. If the FL_ALI GN_TOP hit is on, the horizontal scrollbar is on the top.

int FI_Scroll::xposition() const
Gets the current horizontal scrolling position.
int FI_Scroll::yposition() const

Getsthe current vertical scrolling position.

class FI_Scroll 159

FLTK 1.0 Programming Manual

void Fl_Scroll::position(int w, int h)

Sets the upper-lefthand corner of the scrolling region.

160 class FI_Scroll

FLTK 1.0 Programming Manual

class Fl_Scrollbar

Class Hierarchy

Fl _Slider
I

+----Fl _Scroll bar

Include Files

#i ncl ude <FL/Fl _Scroll bar.H>

Description

TheFl _Scrol | bar widget displays a slider with arrow buttons at the ends of the scrollbar. Clicking on the
arrows move up/left and down/right by 1i nesi ze() . Scrollbars also accept FL_SHORTCUT events: the arrows
move by I i nesi ze() , and vertical scrollbars take Page Up/Down (they move by the page size minus

l'i nesi ze()) and Home/End (they jump to the top or bottom).

Scrollbars have st ep(1) preset (they always return integers). If desired you can set the st ep() to non-integer
values. Y ou will then have to use casts to get at the floating-point versions of val ue() fromFl _Sl i der.

Methods
* FI_Scrollbar
o ~F| Scrollbar
e |linesize
* value

FI_Scrollbar::FI_Scrollbar(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Scr ol | bar widget using the given position, size, and label string. Y ou need to do
t ype(FL_HORI ZONTAL) if you want a horizontal scrollbar.

virtual FI_Scrollbar::~FI_Scrollbar()
Destroys the valuator.

int FI_Scrollbar::linesize() const
void Fl_Scrollbar::linesize(int i)

This number controls how big the steps are that the arrow keys do. In addition page up/down move by the
size last sent to val ue() minusonel i nesi ze() . The default is 16.

int FI_Scrollbar::value()
int FI_Scrollbar::value(int position, int size, int top, int total)

The first form returns the integer value of the scrollbar. Y ou can get the floating point value with

class FI_Scroll 161

FLTK 1.0 Programming Manual

FI _Slider::val ue(). Thesecond form setsval ue(), range(), andsl i der_size() tomakea
variable-sized scrollbar. Y ou should call this every time your window changes size, your data changes size,
or your scroll position changes (even if in response to a callback from this scrollbar). All necessary callsto
redraw() aredone.

162 class FI_Scrollbar

FLTK 1.0 Programming Manual

class Fl_Secret_Input

Class Hierarchy

El _| nput
I

+----Fl _Secret_Input

Include Files

#i nclude <FL/Fl _I nput. H>

Description

TheFl _Secret _I nput classisasubclassof FI _I nput that displaysitsinput as astring of asterisks. This
subclassis usualy used to recieve passwords and other "secret” information.

Methods

o FI_Secret_Input
o ~Fl_Secret_Input

FI_Secret_Input::Fl_Secret_Input(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Secr et _I nput widget using the given position, size, and label string. The default boxtype
iSFL_DOWN_BOX.

virtual FI_Secret_Input::~FI_Secret_Input()

Destroys the widget and any value associated with it.

class FI_Scrollbar 163

FLTK 1.0 Programming Manual

class Fl_Select Browser

Class Hierarchy

Fl _Browser

+----Fl _Sel ect _Browser

Include Files

#i ncl ude <FL/Fl _Sel ect _Browser. H>

Description

TheFl _Sel ect _Browser classisasubclassof FI _Browser which letsthe user select asingle item, or no
items by clicking on the empty space. Aslong as the mouse button is held down the item pointed to by it is
highlighted. Normally the callback is done when the user presses the mouse, but you can change this with
when() .

See El_Browser for methods to add and remove lines from the browser.

Methods

* FI_Select Browser
* ~FI Select Browser
* deselect

» select

* value

Fl_Select_Browser::FI_Select_Browser(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Sel ect _Browser widget using the given position, size, and label string. The default
boxtype is FL_DOWN_BOX.

virtual FI_Select_Browser::~Fl_Select_Browser()
The destructor also deletes all the itemsin the list.

int Fl_Browser::deselect()

Same asval ue(0) .

int FI_Browser::select(int,int=1)
int Fl_Browser::selected(int) const

Y ou can use these for compatibility with EI _Mul ti _Browser . If you turn on the selection of more than one
line the results are unpredictable.

164 class FI_Secret_Input

FLTK 1.0 Programming Manual

int Fl_Browser::value() const

Returns the number of the highlighted item, or zero if none. Notice that thisis going to be zero except
during a callback!

class FI_Select_Browser 165

FLTK 1.0 Programming Manual

class Fl_Single_Window

Class Hierarchy
Fl _W ndow

I
+----Fl _Si ngl e_W ndow

Include Files

#i ncl ude <FL/Fl _Si ngl e_W ndow. H>

Description

ThisisthesameasFl _W ndow. However, it is possible that some inplenmentations will provide

doubl e-buf fered wi ndows by default. This subclass can be used to force single-buffering. This may be
useful for nodifying existing prograns that use increnental update, or for sone types of inage data,
such as a novie flipbook.

Methods

*Fl _Sinale Wndow
e ~Fl _Sinale Wndow

FI_Single_Window::Fl_Single_Window(int x, int y, int w, int h, const char *label = 0)

Creates a new Fl_Single_Wndow wi dget using the given position, size, and label (title) string.

virtual FI_Single_Window::~Fl_Single_Window/()

Destroys the wi ndow and all child widgets.

166 class FI_Select_Browser

FLTK 1.0 Programming Manual

class Fl_Slider

Class Hierarchy

Fl _Val uat or
I
+----Fl _Slider

I
+----FI _Scrollbar, El_Value Slider

Include Files

#i ncl ude <FL/Fl _Slider.H>

Description
TheFl _sli der widget contains adliding knob inside a box. It if often used as a scrollbar. Moving the box all

the way to the top/left setsit to the ni ni nuny() , and to the bottom/right to the maxi mun() . The
mi ni murm() may be greater than the maxi mun{) to reverse the dlider direction.

Methods
e Fl_Slider
* ~F_Slider
« scrollvalue
 dider
e dider_size
* type
FI_Slider::FI_Slider(int x, int y, int w, int h, const char *label = 0)

Createsanew FI _Sl i der widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Slider::~FIl_Slider()
Destroys the valuator.
int FI_Slider::scrollvalue(int windowtop, int windowsize, int first, int totalsize)

Returns El_Scrol | bar::val ue().

FI_Boxtype FI_Slider::slider() const
void FI_Slider::slider(FI_Boxtype)

Set the type of box to draw for the moving part of the slider. The color of the moving part (or of the notch in

it for the nice diders) is controlled by sel ecti on_col or () . The default value of zero causes the slider to
figure out what to draw from box() .

class FI_Single_Window 167

FLTK 1.0 Programming Manual

float FI_Slider::slider_size() const
void FlI_Slider::slider_size(float)

Get or set the dimensions of the moving piece of dider. Thisisthe fraction of the size of the entire widget. If
you set thisto 1 then the dider cannot move. The default valueis .08.

For the "fill" dliders thisisthe size of the area around the end that causes a drag effect rather than causing the
dlider to jump to the mouse.

uchar FI_Widget::type() const
void FI_Widget::type(uchar t)

Setting this changes how the dlider is drawn, which can be one of the following:

* FL_VERTI CAL - Draws avertical dider (thisisthe default).

* FL_HORI ZONTAL - Draws a horizontal slider.

e FL_VERT_FI LL_SLI DER - Draws afilled vertical dider, useful as a progress or value meter.
FL_HOR FI LL_SLI DER - Draws afilled horizontal dlider, useful as a progress or value meter.
FL_VERT_NI CE_SLI DER - Draws avertical slider with a nice looking control knob.
FL_HOR NI CE_SLI DER - Draws a horizontal slider with anice looking control knob.

168 class FI_Slider

class FI_Tabs

FLTK 1.0 Programming Manual

Class Hierarchy

Fl _Group

+----Fl _Tabs

Include Files

#i ncl ude <FL/Fl _Tab. H>

Description

The FI _Tabs widget isthe "file card tabs" interface that allows you to put lots and lots of buttons and
switchesin a panel, as popularized by many toolkits.

Label1" tabZ. b2 tabs \

button1

input in box2

This is stuff inside the FI_Group "tab2"

Clicking the tab makes a child vi si bl e() (by calling show() onit) and all other children are invisible (by
caling hi de() onthem). Usually the children are EL _Gr oup widgets containing several widgets themselves.

Each child makes acard, and it's| abel () is printed on the card tab (including the label font and style). The
color of that child is used to color the card aswell. Currently this only draws nicely if you set box() tothe
default FL_THI N_UP_BOX or to FL_FLAT_BOX, which gets rid of the edges drawn on the sides and bottom.

The size of thetabsis controlled by the bounding box of the children (there should be some space between
the children and the edge of the FI _Tabs), and the tabs may be placed "inverted" on the bottom, thisis
determined by which gap islarger. It iseasiest to lay this out in fluid, using the fluid browser to select each
child group and resize them until the tabs look the way you want them to.

Methods

class FI_Slider

169

FLTK 1.0 Programming Manual

FI_Tab::Fl_Tab(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Tab widget using the given position, size, and label string. The default boxtypeis
FL_THI N_UP_BOX.

Useadd(Fl _W dget *) to add each child (which is probably itself aFl _G oup). The children should be sized
to stay away from the top or bottom edge of the FI _Tabs, which is where the tabs are drawn.

virtual FI_Tab::~FI_Tab()
The destructor also deletes all the children. This allows awhole tree to be deleted at once, without having to
keep a pointer to al the children in the user code. A kludge has been done so the FI _Tab and al of it's

children can be automatic (local) variables, but you must declare the FI _Tabfirst, so that it is destroyed last.

FI_Widget* FI_Tabs::value() const
int FI_Tabs::value(FI_Widget*)

Gets or sets the currently visible widget/tab.

170 class FI_Tabs

FLTK 1.0 Programming Manual

class Fl_Tile

Class Hierarchy

El _W dget
I
+----Fl _Tile
I
+----FI _Pack, Fl _Scroll, El _Tabs, El _Tile, FEl_Wndow
Include Files

#i nclude <FL/Fl _Tile. H

Description

TheFl _Ti | e classlets you resize the children by dragging the border between them:

FI _Ti | e allows objectsto be resized to zero dimensions. To prevent thisyou can usether esi zabl e() to
limit where corners can be dragged to.

Even though objects can be resized to zero sizes, they must initially have non-zero sizesso the FI _Ti | e can
figure out their layout. If desired, call posi ti on() after creating the children but before displaying the
window to set the borders where you want.

The"borders" are part of the children, an FI _Ti | edoes not draw any graphics of it's own. In the above
exanple all the final children have FL_DOM _BOX types, and the "ridges" you see are two adjacent
FL_DOWN_BOX's drawn next to each other.

Methods
 Fl Tile
e ~Fl_Tile
* position

class FI_Tabs 171

FLTK 1.0 Programming Manual

* resizeable
FI_Tile::FI_Tile(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Ti | e widget using the given position, size, and label string. The default boxtypeis
FL_NO BOX.

virtual Fl_Tile::~FI_Tile()

The destructor also deletes all the children. This allows awhole tree to be deleted at once, without having to
keep a pointer to all the children in the user code. A kludge has been done sothe Fl _Ti | e and all of it's
children can be automatic (local) variables, but you must declarethe FI _Ti | efirst, so that it is destroyed last.
void Fl_Tile::position(from_x, from_y, to_x, to_y)

Drag theintersection at from x, from y toto_x, t o_y. Thisredraws all the necessary children.

void FlI_Tile::resizable(FI_Widget The "resizable" child widget (which should be invisible)
limits where the border can be dragged to. If you don't set it, it will be possible to drag the

borders right to the edge, and thus resize objects on the edge to zero width or height. The
resi zabl e() widget is not resized by dragging any borders.

172 class Fl_Tile

FLTK 1.0 Programming Manual

class FI_Timer

Class Hierarchy

FL_W dget
I

+----Fl _Ti mer

Include Files

#i nclude <FL/Fl _Ti ner. H>

Description

Thisis provided only to emulate the Forms Timer widget. It works by making atimeout callback every 1/5
second. Thisiswasteful and inaccurate if you just want something to happen afixed timein the future. You
should directly call Fl : : add_ti neout () instead.

Methods
e Fl Timer
« ~F Timer
« direction
* suspended
* value

FI_Timer::Fl_Timer(uchar type, int x, inty, int w, int h, const char *label = 0)

Createsanew FI _Ti mer widget using the given type, position, size, and label string. Thet ype parameter can
be any of the following symbolic constants:

e FL_NORMAL_TI MER - The timer just does the callback and displays the string "Timer" in the widget.
* FL_VALUE_TI MER - The timer does the callback and displays the current timer value in the widget.
e FL_HI DDEN_TI MER - The timer just does the callback and does not display anything.

virtual FI_Timer::~FI_Timer()

Destroys the timer and removes the timeout.

char direction() const
void direction(char d)

Gets or setsthe direction of the timer. If the direction is zero then the timer will count up, otherwise it will
count down from theinitial val ue().

char suspended() const
void suspended(char d)

class FI_Tile 173

FLTK 1.0 Programming Manual

Gets or sets whether the timer is suspended.

float value() const
void value(float)

Gets or sets the current timer value.

174 class FI_Timer

FLTK 1.0 Programming Manual

class Fl_Valuator

Class Hierarchy

Fl _W dget
I
+----Fl _Val uat or
I
+----FI _Adjuster, El _Counter, Fl _Dial, El _Roller,
Fl _Slider, El_Value |Input, El _Value CQutput,
Include Files

#i ncl ude <FL/Fl _Val uator. H>

Description

TheFI _val uat or class controls a single floating-point value and provides a consistent interface to set the
value, range, and step, and insures that callbacks are done the same for every object.

There are probably more of these classes in fltk than any others:

class FI_Timer

175

FLTK 1.0 Programming Manual

In the above diagram each box surrounds an actual subclass. These are further differentiated by setting the
type() of thewidget to the symbolic value labeling the widget. The ones labelled "0" are the default versions

withatype(0). For consistency the symbol FL_VERTICAL is defined as zero.

Methods
e FI_Vauator * clamp * increment e range e step
e ~H Valuator * clear_changed * maximum round ¢ value
* changed e format * Mminimum e set_changed

Fl_Valuator::FI_Valuator(int x, int y, int w, int h, const char *label = 0)

Createsanew FI _Val uat or widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Valuator::~Fl_Valuator()

Destroys the valuator.

176 class Fl_Valuator

FLTK 1.0 Programming Manual

double FI_Valuator::value() const
int FI_Valuator::value(double)

Get or set the current value. The new value is not clamped or otherwise changed before storing it. Use
clanp() orround() to modify the value before calling thisif you want. If the new value is different than the
current one the object isredrawn. Theinitial valueis zero.

double FI_Valuator::minimum() const
void Fl_Valuator::minimum(double)

Gets or sets the minimum value for the valuator.

double FI_Valuator::maximum() const
void Fl_Valuator::maximum(double)

Gets or sets the maximum value for the valuator.

void Fl_Valuator::range(double min, double max);

Sets the minimum and maximum values for the valuator. When the user manipulates the widget, the valueis
limited to thisrange. This clamping is done after rounding to the step value (this makes a difference if the

rangeis not amultiple of the step).

The minimum may be greater than the maximum. This has the effect of "reversing" the object so the larger
values are in the opposite direction. This also switches which end of thefilled didersisfilled.

Some widgets consider this a"soft" range. This means they will stop at the range, but if the user releases and
grabs the control again and triesto move it further, it is allowed.

The range may affect the display. You must r edr aw() the widget after changing the range.
double FI_Valuator::step() const

void Fl_Valuator::step(double)

void Fl_Valuator::step(int A, int B)

Get or set the step value. As the user moves the mouse the value is rounded to the nearest multiple of the step
value. Thisis done before clamping it to the range. For most objects the default step is zero.

For precision the step is stored as the ratio of two integers, A/B. Y ou can set these integers directly. Currently
setting a floating point value sets the nearest A/1 or 1/B value possible.

int FI_Valuator::format(char*, double)

Format the passed value to show enough digits so that for the current step value. If the step has been set to
zero then it does avg format. The characters are written into the passed buffer.

double FI_Valuator::round(double)

Round the passed value to the nearest step increment. Does nothing if step is zero.

class FI_Valuator 177

FLTK 1.0 Programming Manual

double FI_Valuator::clamp(double)
Clamp the passed value to the valuator range.
double FI_Valuator::increment(double,int n)

Adds n times the step value to the passed value. If step was set to zero it usesf abs(maxi nun() -
mini mun()) / 100.

int Fl_Widget::changed() const

Thisvaueistrueif the user has moved the dider. It isturned off by val ue(x) and just before doing a
callback (the callback can turn it back on if desired).

void FI_Widget::set_changed()

Sets the changed() flag.

void FI_Widget::clear_changed()

Clearsthe changed() flag.

178 class Fl_Valuator

FLTK 1.0 Programming Manual

class Fl_Value_Input

Class Hierarchy

Fl _Val uat or

+----Fl _Val ue_I nput

Include Files

#i ncl ude <FL/Fl _Val ue_I nput. H>

Description

TheFl _val ue_I nput widget displays afloating point value. The user can click in the text field and edit it
(thereisin fact ahidden Fl _Vval ue_I nput widget withtype(FL_FLOAT_I NPUT) in there), and when they hit
return or tab the value updates to what they typed and the callback is done.

If step() isnot zero, the user can also drag the mouse across the object and thus slide the value. The left
button movesone st ep() per pixel, themiddleby 10 * step(), and theleft button by 100 * step().Itis
then impossible to select text by dragging acrossit, although clicking can still move the insertion cursor.

Methods

e F_Value Input

e ~F_Value Input
» cursor_color

* soft

* textcolor
* textfont
* textsize

Fl_Value_Input::Fl_Value_Input(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Val ue_| nput widget using the given position, size, and label string. The default boxtypeis
FL_NO_BOX.

virtual FI_Value_Input::~FI_Value_Input()
Destroys the valuator.

FI_Color FI_Value_Input::cursor_color() const
void Fl_Value_Input::cursor_color(FI_Color)

Get or set the color of the cursor. Thisis black by default.

uchar FI_Value_Input::soft() const
void Fl_Value_Input::soft(uchar)

class FI_Valuator 179

FLTK 1.0 Programming Manual

If "soft" isturned on, the user is allowed to drag the value outside the range. If they drag the value to one of
the ends, let go, then grab again and continue to drag, they can get to any value. Default is one.

FI_Color FI_Value_Input::textcolor() const
void Fl_Value_Input::textcolor(Fl_Color)

Gets or sets the color of the text in the value box.

FI_Font FI_Value_Input::textfont() const
void Fl_Value_Input::textfont(Fl_Font)

Gets or sets the typeface of the text in the value box.

uchar FI_Value_Input::textsize() const
void Fl_Value_Input::textsize(uchar)

Gets or sets the size of the text in the value box.

180 class Fl_Value_Input

FLTK 1.0 Programming Manual

class Fl_Value_ Output

Class Hierarchy

Fl _Val uat or

|
+----Fl _Val ue_Qut put

Include Files

#i ncl ude <FL/Fl _Val ue_Qut put . H>

Description

TheFI _val ue_cut put widget displays afloating point value. If st ep() isnot zero, the user can adjust the
value by dragging the mouse left and right. The left button moves onest ep() per pixel, the middle by 10 *
step(), and theright button by 100 * step().

Thisis much lighter-weight than EL_Val ue_I nput because it contains no text editing code or character
buffer.

Methods

« F_Value Output

* ~FH_Value Output
* soft

* textcolor
* textfont
* textsize

Fl_Value Output::Fl_Value Output(int x, inty, int w, int h, const char *label = 0)

Createsanew Fl _Val ue_aut put widget using the given position, size, and label string. The default boxtype
iSFL_NO BOX.

virtual FI_Value_Output::~F|I_Value_Output()
Destroys the valuator.

uchar FI_Value_Output::soft() const
void FI_Value_Output::soft(uchar)

If "soft" isturned on, the user is allowed to drag the value outside the range. If they drag the value to one of
the ends, let go, then grab again and continue to drag, they can get to any value. Default is one.

FI_Color FI_Value_Output::textcolor() const
void Fl_Value_Output::textcolor(Fl_Color)

class FlI_Value_Input 181

FLTK 1.0 Programming Manual

Gets or sets the color of the text in the value box.

FI_Font FI_Value Output::textfont() const
void Fl_Value Output::textfont(Fl_Font)

Gets or sets the typeface of the text in the value box.

uchar FI_Value_Output::textsize() const
void Fl_Value_Output::textsize(uchar)

Gets or sets the size of the text in the value box.

182

class Fl_Value_Output

class Fl _Value_Slider

FLTK 1.0 Programming Manual

Class Hierarchy

Fl _Slider

I
+----Fl _Val ue_Slider

Include Files

#i ncl ude <FL/Fl _Val ue_Slider. H>

Description

TheFl _val ue_Sl i der widgetisaFl _Sli der widget with abox displaying the current value.

0 FL_VERT_NICE_SLIDER
M 0.00
0.57

0.39
FL_HOR_SLIDER

FL_HOR_FILL_SLIDER

039
FL_HOR_NICE_SLIDER

05D][]

FL_VERT_FILL_SLIDER

Methods

* Fl_Vaue Slider
* ~F|_Vaue Slider
* textcolor

* textfont

* textsize

Fl_Value_Slider::FI_Value_Slider(int x, int y, int w, int h, const char *label = 0)

Createsanew Fl _Val ue_Sl i der widget using the given position, size, and label string. The default boxtype

iSFL_DOWN BOX.

virtual FI_Value_Slider::~Fl_Value_Slider()

Destroys the valuator.

FI_Color FI_Value_Slider::textcolor() const
void Fl_Value_Slider::textcolor(FI_Color)

Gets or sets the color of the text in the value box.

class Fl_Value_Output

183

FLTK 1.0 Programming Manual

FI_Font FI_Value_Slider::textfont() const
void Fl_Value_Slider::textfont(FI_Font)

Gets or sets the typeface of the text in the value box.

uchar FI_Value_Slider::textsize() const
void Fl_Value_Slider::textsize(uchar)

Gets or sets the size of the text in the value box.

184

class Fl_Value_Slider

FLTK 1.0 Programming Manual

class Fl_Widget

Class Hierarchy

Fl _W dget

I
+----FI_Box, El_Browser, El_Button, El_Chart, El_d ock,

Fl _Free, Fl _Goup, Fl _lnput, FI _Menu_, Fl_Positioner,
Fl_Tiner, El_Valuator

Include Files

#i ncl ude <FL/Fl _W dget.H>

Description

FI _W dget isthe baseclassfor all widgetsin FLTK. You can't create one of these because the constructor is
not public. However you can subclassit.

All "property" accessing methods, such ascol or (), parent (), Or ar gunent () areimplemented astrivial
inline functions and thus are as fast and small as accessing fields in a structure. Unless otherwise noted, the
property setting methods such ascol or (n) or | abel (s) arealsotrivial inline functions, even if they change
the widget's appearance. It is up to the user codeto call r edr aw() after these.

Methods
e Fl_Widget » changed * hide * position * type
» ~F_Widget * clear_changed e inside * redraw e user_data
* activate » color * |abel * resize * visible
* active * contains « |abelcolor » selection_color oW
* activevisible » damage « |abelfont * set_changed » when
« dign » deactivate * |abelsize » show » window
 argument » default_callback * |abeltype * Size e X
* box » do_callback * parent « take focus oy
« calback *h

FI_Widget::FI_Widget(int x, int y, int w, int h, const char* label=0);

Thisisthe protected constructor for an FI_Widget, but all derived widgets have a matching public
constructor. It takes avalue for x(), y(), w(), h(), and an optional value for label().

virtual FI_Widget::~FI_Widget();

Destroying single widgetsis not very common. It isyour responsibility to either remove() them from any
enclosing group, or to destroy that group immediately after destroying the children.

class FI_Value_Slider 185

FLTK 1.0 Programming Manual

uchar FI_Widget::type() const;
Thisvalueis used for Forms compatability and to smulate RTTI.

short FI_Widget::x() const
short FI_Widget::y() const
short FI_Widget::w() const
short FI_Widget::h() const

The position of the upper-left corner of the widget in its enclosing FI_Window (not its parent if that is not an
FI_Window), and its width and height.

virtual void FI_Widget::resize(int,int,int,int)
void FI_Widget::position(short x,short y)
void Fl_Widget::size(short w,short h)

Change the size or position of the widget. Thisisavirtual function so the widget may implement it's own
handling of resizing. The default version does not do redraw(), that is the parent widget's responsibility (this
is because the parent may know a faster way to update the display, such as scrolling from the old position).

posi tion(x,y) isashortcut forresi ze(x,y, w), h()), andsi ze(w, h) isashortcut for
resize(x(),y(),w h).

FI_Window* FI_Widget::window() const;

Return a pointer to the FI_W ndowthat thiswidget isin (it will skip any and all parent widgets between this
and the window). Returns NULL if none. Note: for an FI _W ndow, thisreturnsit's parent window (if any), not
this window.

FI_Boxtype FI_Widget::box() const
void FI_Widget::box(FI_Boxtype)

Thebox() identifies aroutine that draws the background of the widget. See Box Typesfor the available
types. The default depends on the widget, but is usually FL_NO BOX or FL_UP_BOX.

FI_Color FI_Widget::color() const
void FlI_Widget::color(FI_Color)

This color is passed to the box routine. Color is an index into an internal table of rgb colors. For most widgets
this defaults to FL_GRAY. Seethe enumeration list for predefined colors. Use El: :set _col or () toredefine
colors.

FI_Color FI_Widget::selection_color() const
void FI_Widget::selection_color(FI_Color)
void FI_Widget::color(FI_Color, FI_Color)

For Forms compatibility a second color is defined. Thisis usually used to color the widget whenitis

selected, although some widgets use this color for other purposes. Y ou can set both colors at once with
color(a,b).

186 class FI_Widget

FLTK 1.0 Programming Manual

const char* FI_Widget::label() const
void FI_Widget::label(const char?*)

The label is printed somewhere on the widget or next to it. The string is not copied, the passed pointer is
stored unchanged in the widget.

void FI_Widget::label(Fl_Labeltype, const char¥*)
uchar FI_Widget::labeltype() const
void FI_Widget::labeltype(Fl_Labeltype)

A | abel t ype identifies aroutine that draws the label of the widget. This can be used for specia effects such
as emboss, or to usethel abel () pointer as another form of data such as a bitmap. The value
FL_NORMAL_LABEL printsthe label as text.

FI_Align FI_Widget::align() const
void FI_Widget::align(FI_Align)

How the label is printed next to or inside the widget. The default value isFL_ALI GN_CENTER, which centers

the label. The value can be any of these constants or'd together:
« FL_ALI GN_CENTER
« FL_ALI GN_TOP
« FL_ALI GN_BOTTOM
« FL_ALI GN_LEFT
« FL_ALI GN_RI GHT
« FL_ALI GN_I NSI DE
«FL_ALIGN CLIP
« FL_ALI GN_WRAP

Fl_Color FI_Widget::labelcolor() const
void FI_Widget::labelcolor(Fl_Color)

This color is passed to the labeltype routine, and is typically the color of the label text. This defaults to
FL_BLACK.

FI_Font FI_Widget::labelfont() const
void FI_Widget::labelfont(FI_Font)

Fonts are identified by small 8-bit indexesinto atable. Seethe enumeration list for predefined typefaces. The
default value uses a Helvetica typeface (Arial for Microsoft® Windows®). The functionEL: : set _font () can
define new typefaces.

uchar FI_Widget::labelsize() const
void FI_Widget::labelsize(uchar)

Fonts are further identified by a point size. The default is 14.
typedef void (FI_Callback)(Fl_Widget*, void*)
Fl_Callback* FI_Widget::callback() const

void FI_Widget::callback(Fl_Callback*, void* = 0)

Each widget has a single callback. You can set it or examine it with these methods.

class FI_Widget 187

FLTK 1.0 Programming Manual
void* FI_Widget::user_data() const
void FI_Widget::user_data(void®*)
You can aso just changethevoi d * second argument to the callback with the user _dat a methods.

void FlI_Widget::callback(void (*)(FI_Widget*, long), long = 0)
long FI_Widget::argument() const
void FI_Widget::argument(long)

For convenience you can also define the callback as taking along argument. Thisisimplemented by casting
thisto aFl _cal | back and casting thel ong to avoi d * and may not be portable to some machines.

void FI_Widget::callback(void (*)(FI_Widget*))

For convenience you can also define the callback as taking only one argument. This isimplemented by
casting thisto aFl _cal | back and may not be portable to some machines.

void FI_Widget::do_callback()
void FI_Widget::do_callback(Fl_Widget*, void* = 0)
void FI_Widget::do_callback(FI_Widget*, long)

Y ou can cause awidget to do its callback at any time, and even pass arbitrary arguments.

int Fl_Widget::changed() const
void FI_Widget::set_changed()
void FI_Widget::clear_changed()

FI _W dget : : changed() isaflagthat isturned on when the user changes the value stored in the widget. This
isonly used by subclasses of FI _W dget that store values, but isin the base classso it is easier to scan al the
widgetsin apanel and do_cal | back() on the changed onesin response to an "OK" button.

Most widgets turn this flag off when they do the callback, and when the program sets the stored value.

FI_When FI_Widget::when() const
void FI_Widget::when(FI_When)

FI _W dget : : when() isaset of bitflags used by subclasses of FI _W dget to decide when to do the callback. If
the value is zero then the callback is never done. Other values are described in the individual widgets. This

field isin the base class so that you can scan apanel and do_cal | back() on all the ones that don't do their
own callbacks in response to an "OK" button.

static void FI_Widget::default_callback(Fl_Widget*, void*)

The default callback, which puts a pointer to the widget on the queue returned by FI : : r eadqueue() . You
may want to call this from your own callback.

int FI_Widget::visible() const
void FI_Widget::show()
void FlI_Widget::hide()

Aninvisible widget never gets redrawn and does not get events. An widget isrealy visibleif vi si bl e() is

188 class FI_Widget

FLTK 1.0 Programming Manual

trueon it and all it's parents. Changing it will send FL_SHowor FL_HI DE events to the widget. Do not change
it if the parent is not visible, as thiswill send false FL_SHowor FL_H DE eventsto the widget. r edraw() is
called if necessary on this or the parent.

int Fl_Widget::active() const

void FI_Widget::activate()
void FI_Widget::deactivate()

FI _Wdget:: active() returns whether the widget is active. An inactive widget does not get any events, but
it does get redrawn. A widget isactiveif acti ve() istrueonit and all it's parents. Changing this value will
send FL_ACTI VATE or FL_DEACTI VATE to the widget. Do not change it if the parent is not active, as this will
send false FL_ACTI VATE or FL_DEACTI VATE events to the widget.

Currently you cannot deactivate FI _W ndow widgets.

int FI_Widget::activevisible() const

Thisisthesameasactive() && visible() butisfaster.

void FI_Widget::redraw()

Mark the widget as needing itsdr aw() routine called.

uchar FI_Widget::damage() const

Non-zero if draw() needsto be called. Actually thisisabit field that the widget subclass can use to figure
out what partsto draw.

FI_Widget *FI_Widget::parent() const

Returns a pointer to the parent widget. Usually thisisa Fl _G oup orint FI_Widget::contains(Fl_Widget* b)
const

Returns true if b is a child of this widget, or is equal to this widget. Returns false if b is NULL.

int Fl_Widget::inside(const FI_Widget* a) const

Returnstrue if thisisachild of a, or isequal to a. Returnsfalseif a isNULL.

int FI_Widget::take focus()

Triesto make thiswidget betheFl : : f ocus() widget, by first sending it an FL_FOCUS event, and if it returns

non-zero, setting Fl : : f ocus() to thiswidget. Y ou should use this method to assign the focus to an widget.
Returnstrue if the widget accepted the focus.

class FI_Widget 189

Fl_Window><tt>Fl_Window</tt>. Returns <tt>NULL</tt> if none.

<h4><a name=
Fl_Window><tt>Fl_Window</tt>. Returns <tt>NULL</tt> if none.

<h4><a name=
Fl_Window><tt>Fl_Window</tt>. Returns <tt>NULL</tt> if none.

<h4><a name=
Fl_Window><tt>Fl_Window</tt>. Returns <tt>NULL</tt> if none.

<h4><a name=

FLTK 1.0 Programming Manual

class FI_Window

Class Hierarchy

Fl _Group
I
+----FI _W ndow
I
+----FI _Doubl e Wndow FI _d W ndow
Fl _Overlay Wndow Fl_Sinal e Wndow

Include Files

#i ncl ude <FL/Fl _W ndow. H>

Description

This widget produces an actual window. This can either be a main window, with a border and title and all the
window management controls, or a"subwindow" inside awindow. Thisis controlled by whether or not the
window hasaparent ().

Once you create awindow, you usually add children FI _W dget 'sto it by using wi ndow- >add(chi | d) for
each new widget. See FI _G oup for more information on how to add and remove children.

There are several subclasses of FI _W ndow that provide double-buffering, overlay, menu, and OpenGL
support.

The window's callback is doneif the user tries to close awindow using the window manager and
Fl : : nodal () iszero or equal to the window. FI _W ndow has a default callback that calls
FI _W ndow: : hi de() and callsexit (0) if thisisthe last top-level window.

Methods
* F_Window * first window * hotspot * modal * set_non_modal
e ~F|_Window « free position e [conize * next window » show
* border « fullscreen * iconlabel ¢ non_modal shown
e clear_border « fullscreen off * |abel e resize * Size range
e current * hide * make current * st modal e xclass

FI_Window::FI_Window(int x, int y, int w, int h, const char *title = 0)
FI_Window::FI_Window(int w, int h, const char *title = 0)

The first constructor takes 4 int arguments to create the window with a preset position and size. The second
constructor with 2 arguments will create the window with a preset size, but the window manager will choose
the position according to it's own whims.

190 class FI_Widget

FLTK 1.0 Programming Manual

FI _W dget : : box() issetto FL_FLAT_BOX. If you plan to completely fill the window with children widgets
you should change thisto FL_NO BOX. If you turn the window border off you may want to change thisto
FL_UP_BOX.

virtual FI_Window::~FI_Window()

The destructor also deletes all the children. This allows awhole tree to be deleted at once, without having to
keep a pointer to al the children in the user code. A kludge has been done so the FI _W ndow and all of it's
children can be automatic (local) variables, but you must declare the FI _W ndowfirst, so that it is destroyed
last.

void FI_Window::size_range(int minw, int minh, int maxw=0, int maxh=0, int dw=0, int dh=0,
int aspect=0)

Set the allowable range the user can resize this window to. This only works for top-level windows.

* mi nwand ni nh are the smallest the window can be.

» maxw and naxh are the largest the window can be. If either is equal to the minimum then you cannot
resizein that direction. If either is zero then FLTK picks a maximum size in that direction such that
the window will fill the screen.

* dwand dh are size increments. The window will be constrained to widths of mi nw + N * dw, where
Nisany non-negative integer. If these are less or equal to 1 they are ignored.

* aspect isaflag that indicates that the window should preserveit's aspect ratio. This only worksiif
both the maximum and minimum have the same aspect ratio.

If thisfunction is not called, FLTK triesto figure out the range from the setting of resi zeabl e():

* If resi zeabl e() iSNULL (thisisthe default) then the window cannot be resized and the resize border
and max-size control will not be displayed for the window.

« If either dimension of r esi zeabl e() islessthan 100, then that is considered the minimum size.
Otherwisether esi zeabl e() hasaminimum size of 100.

« If either dimension of r esi zeabl e() iszero, then that is also the maximum size (so the window
cannot resize in that direction).

It is undefined what happens if the current size does not fit in the constraints passed to si ze_r ange() .

virtual void FI_Window::show/()
int Fl_Window::show(int argc, char **argv, int i)
void FI_Window::show(int argc, char **argv)

Put the window on the screen. Usually this has the side effect of opening the display. The second two forms
are used for top-level windows and allow standard arguments to be parsed from the command-line.

If the window is already shown then it isrestored and raised to the top. Thisisreally convenient because your
program can call show() at any time, even if the window is already up. It also meansthat show() servesthe
purpose of rai se() in other toolkits.

virtual void FI_Window::hide()

Remove the window from the screen. If the window is already hidden or has not been shown then this does
nothing (and is harmless). Under the X Window System this actually destroys the xid.

class FI_Window 191

FLTK 1.0 Programming Manual

int Fl_Window::shown() const

Returns non-zero if show() has been called (but not hi de()). You can tell if awindow isiconified with
(w>shown() & w>visible()).

void FI_Window::iconize()

I conifies the window. If you call thiswhen shown() isfalseit will show() itasanicon. If thewindow is
already iconified this does nothing.

Call show() to restore the window.

When awindow isiconified/restored (either by these calls or by the user) the handl e() method is called with
FL_H DE and FL_SHowevents and vi si bl e() isturned on and off.

There is no way to control what is drawn in the icon except with the string passed to FI _W ndow: : xcl ass() .
Y ou should not rely on window managers displaying theicons.

FI_Window *Fl::first_window()

Returnsthe first shown() window in the widget hierarchy. If no windows are displayed
first_w ndowreturns NULL.

FI_Window *Fl::next_window(const FI_Window?)

Returns the next shown() window in the hierarchy. Y ou can use this call to iterate through al the windows
that are shown().

void FI_Window::resize(int,int,int,int)

Change the size and position of the window. If shown() istrue, these changes are communicated to the
window server (which may refuse that size and cause afurther resize). If shown() isfalse, the size and
position are used when show() iscalled. SeeFl _G oup for the effect of resizing on the child widgets.

You can also call theFl _W dget methodssi ze(x, y) and posi ti on(w, h), which areinline wrappersfor this
virtual function.

void FI_Window::free_position()

Undoes the effect of apreviousr esi ze() or show() so that the next time show() is called the window
manager is free to position the window.

void FI_Window::hotspot(int x, int y, int offscreen = 0)
void FI_Window::hotspot(const FI_Widget*, int offscreen = 0)
void FI_Window::hotspot(const FI_Widgetp, int offscreen = 0)

posi tion() thewindow so that the mouse is pointing at the given position, or at the center of the given
widget, which may be the window itself. If the optional of f scr een parameter is hon-zero, then the window is
allowed to extend off the screen (this does not work with some X window managers).

192 class FI_Window

FLTK 1.0 Programming Manual

void FI_Window::fullscreen()

Makes the window completely fill the screen, without any window manager border visible. Y ou must use
full screen_of f () toundo this. This may not work with all window managers.

int Fl_Window::fullscreen_off(int x, inty, int w, int h)
Turns off any side effects of f ul | screen() and doesresi ze(x,y, w, h).

int Fl_Window::border(int)
uchar FI_Window::border() const

Gets or sets whether or not the window manager border is around the window. The default value is true.
bor der (n) can be used to turn the border on and off, and returns non-zero if the value has been changed.
Under most X window manager s this does not work after show() has been called, although SGI's 4ADWM
does work.

void FI_Window::clear_border()

cl ear _bor der () isafast inline function to turn the border off. It only works before show() is called.

void FI_Window::set_modal()

A "moda" window, when shown() , will prevent any events from being delivered to other windowsin the
same program, and will also remain on top of the other windows (if the X window manager supports the
"transient for" property). Several modal windows may be shown at once, in which case only the last one
shown gets events. Y ou can see which window (if any) ismodal by calling Fl : : nodal () .

uchar FI_Window::modal() const

Returns true if this window is modal.

void FI_Window::set_non_modal()

A "non-modal" window (terminology borrowed from Microsoft Windows) acts like anodal () onein that it
remains on top, but it has no effect on event delivery. There are three states for awindow: modal, non-modal,
and normal.

uchar FI_Window::non_modal() const

Returnstrueif thiswindow is modal or non-modal.

void FI_Window::label(const char*)
const char* FI_Window::label() const

Gets or sets the window title bar 1abel.

void FI_Window::iconlabel(const char*)
const char* FI_Window::iconlabel() const

Gets or setstheicon |abel.

class FI_Window 193

FLTK 1.0 Programming Manual

void FI_Window::xclass(const char*)
const char* FI_Window::xclass() const

A string used to tell the system what type of window thisis. Mostly this identifies the picture to draw in the
icon. Under X, thisisturned into a XA W CLASS pair by truncating at the first non-alphanumeric character
and capitalizing thefirst character, and the second oneif the first is'x'. Thus "foo" turnsinto "foo, Foo", and
"xprog.1" turnsinto "xprog, XProg". This only works if called before calling show() .

This method has no effect under Microsoft Windows.

void FI_Window::make_current()

make_current () setsthings up so that the drawing functionsin<EL/ f | _dr aw. H> will go into this window.
Thisis useful for incremental update of windows, such asin anidle callback, which will make your program
behave much better if it draws a slow graphic. Danger: incremental updateisvery hard to debug and
maintain!

This method only works for the FI _wW ndowand FI _G _W ndow classes.
static FI_Window* FI_Window::current()

Returns the last window that was made current.

194 class FI_Window

B - Function Reference

This appendix describes all of thef | _ functionsand FI : : methods. For a description of the FLTK widgets,
see Appendix A.

Functions

int fl_color_chooser(const char*, double &r, double &g, double &b)
int fl_color_chooser(const char *, uchar &r, uchar &g, uchar &b)

The double version takes RGB values in the range 0.0 to 1.0. The uchar version takes RGB valuesin the
range O to 255.

B - Function Reference 195

FLTK 1.0 Programming Manual

f1_col or _chooser () popsup awindow to let the user pick an arbitrary RGB color. They can pick the hue
and saturation in the "hue box" on the left (hold down CTRL to just change the saturation), and the brighness
using the vertical dider. Or they can type the 8-bit numbersinto the RGB Fl _Val ue_I nput fields, or drag the
mouse across them to adjust them. The pull-down menu lets the user set the input fields to show RGB, HSV,
or 8-bit RGB (0 to 255).

This returns non-zero if the user picks ok, and updates the RGB values. If the user picks cancel or closesthe
window this returns zero and leaves RGB unchanged.

If you use the color chooser on an 8-bit screen, it will allocate all the available colors, leaving you no space to
exactly represent the color the user picks! Y ou can however use f1_rectf () tofill aregion with asimulated
color using dithering.

int fl_show_colormap(int oldcol)

f1 _show_col or map() popsup apane of the 256 colors you can access withf | _col or () and letsthe user
pick one of them. It returns the new color index, or the old one if the user types ESC or clicks outside the
window.

void fl_message(const char *, ...)

Displays a printf-style message in a pop-up box with an "OK" button, waits for the user to hit the button. The
message will wrap to fit the window, or may be many lines by putting \ n charactersinto it. The enter key isa

196 Functions

FLTK 1.0 Programming Manual

shortcut for the OK button.

void fl_alert(const char *, ...)

Sameasfl _nessage() except for the"!" symbol.

int fl_ask(const char *, ...)

Displays a printf-style message in a pop-up box with an "Yes"' and "No" button and waits for the user to hit a
button. The return valueis 1 if the user hits Yes, O if they pick No. The enter key is a shortcut for Y es and
ESC isashortcut for No.

int fl_choice(const char *q, const char *b0, const char *b1, const char
*b2, ...)

Shows the message with three buttons below it marked with the strings bo, b1, and b2. Returns O, 1, or 2
depending on which button is hit. ESC is a shortcut for button 0 and the enter key is a shortcut for button 1.
Notice the "misordered” position of the buttons. Y ou can hide buttons by passing NULL as their labels.

Functions 197

FLTK 1.0 Programming Manual

const char *fl_input(const char *label, const char *deflt =0, ...)

Pops up awindow displaying a string, lets the user edit it, and return the new value. The cancel button returns
NULL. Thereturned pointer is only valid until the nexttimef1 _i nput () iscalled. Due to back-compatability,
the arguments to any printf commands in the label are after the default value.

Please enter a string:

‘)

this is the default value

oK 7~ Cancel

const char *fl_password(const char *label, const char *deflt =0, ...)

Sameasfl _i nput () exceptan Fl_Secret | nput fieldisused.

Enter your password:

‘)

. ********I

oK 7 Cancel

void fl_message font(Fl_Font fontid, uchar size)

Change the font and font size used for the messagesin all the popups.

FI_Widget *fl_message_icon()

Returns a pointer to the box at the left edge of al the popups. Y ou can alter the font, color, or label (including
making it a Pixmap), before calling the functions.

char *fl_file_chooser(const char * message, const char *pattern, const
char *fname)

FLTK provides a"tab completion” file chooser that makesit easy to choose files from large directories. This

file chooser has several unique features, the major one being that the Tab key completes filenames like it does
in Emacs or tcsh, and the list always shows all possible completions.

198 Functions

FLTK 1.0 Programming Manual

file_chooser.C

1 font enumerate

fusridd/soft/spitzakfitk/test/file_chooser.C|

fl_file_chooser () pops up thefilechooser, waits for the user to pick afile or Cancel, and then returns a
pointer to that filename or NULL if Cancel is chosen.

message isastring used to title the window.

pat t er n isused to limit the files listed in adirectory to those matching the pattern. This matching is done by
filenanme_mat ch().UseNULL to show all files.

f name isadefault filename to fill in the chooser with. If thisis NULL then the last filename that was choosen is
used (unlessthat had a different pattern, in which case just the last directory with no nameis used). The first
time the file chooser is called this defaults to a blank string.

The returned value points at a static buffer that is only good until the next timef | _fil e_chooser () iscalled.

void fl_file_chooser_callback(void (*cb)(const char *))

Set afunction that is called every time the user clicks afilein the currently popped-up file chooser. This
could be used to preview the contents of the file. It hasto be reasonably fast, and cannot create FLTK
windows.

int filename_list(const char *d, dirent ***|ist)

Thisis aportable and const-correct wrapper for thef1 _scandi r function. d isthe name of a directory (it does
not matter if it has atrailing slash or not). For each file in that directory a"dirent" structure is created. The
only portable thing about a dirent isthat dirent.d_name is the nul-terminated file name. An array of pointers
to these direntsis created and a pointer to the array isreturnedin *1 i st . The number of entriesisgiven asa
return value. If there is an error reading the directory a number less than zero isreturned, and er r no has the
reason (er r no does not work under WIN32). The files are sorted in "al phanumeric" order, where an attempt
is made to put unpadded numbers in consecutive order.

Y ou can free the returned list of files with the following code:

Functions 199

FLTK 1.0 Programming Manual

for (int i =return_value; i > 0;) free((void*)(list[--i]));
free((void*)list);

int filename_isdir(const char *f)

Returns non-zero if the file exists and is a directory.

const char *filename_name(const char *f)

Returns a pointer to the character after the last dash, or to the start of the filename if there is none.

const char *filename_ext(const char *f)

Returns a pointer to the last period infi | ename_name(), or apointer to the trailing nul if none.

char *filename_setext(char *f, const char *ext)

Doesstrcpy(fil ename_ext (f), ext ? ext : "").Returnsapointer tof.

int filename_expand(char *out, const char *in)

Splitsi n at each dash character. Replaces any occurrance of $X with get env(" X") (leaving it as$x if the
environment variable does not exist). Replaces any occurances of ~X with user X's home directory (leaving it
as~x if the user does not exist). Any resulting double slashes cause everything before the second slash to be
deleted. Copiesthe result to out (i n and out may be the same buffer). Returns non-zero if any changes were
made. In true retro programming style, it is up to you to provide a buffer big enough for the result. 1024
characters should be enough.

int filename_absolute(char *out, const char *in)

If i n does not start with a slash, this prepends the current working directory to i n and then deletes any
occurances of . and x/ .. from theresult, which it copiesto out (i n and out may be the same buffer).
Returns non-zero if any changes were made. In true retro programming style, it is up to you to provide a
buffer big enough for the result. 1024 characters should be enough.

int filename_match(const char *f, const char *pattern)
Returnstrue if f matches pat t er n. The following syntax isused by pat t er n:

* * matches any sequence of O or more characters.

* 2 matches any single character.

* [set] matches any character in the set. Set can contain any single characters, or a-z to represent a
range. To match] or - they must be the first characters. To match ” or ! they must not be the first
characters.

e [~set]or [!set] matchesany character not in the set.

*{XY|Zor {X Y, 2z} matchesany one of the subexpressions literally.

* \ x quotes the character x so it has no special meaning.

200 Functions

FLTK 1.0 Programming Manual

« x all other characters must be matched exactly.

Fl:: Methods

static void Fl::add_fd(int fd, void (*cb)(int, void *), void * = 0)
static void Fl::add_fd(int fd, int when, void (*cb)(int, void *), void * = 0)
static void Fl::remove_fd(int)

Add file descriptor f d to listen to. When the f d becomes ready for reading the callback is done. The callback
ispassed the f d and the arbitrary voi d * argument. Fl : : wai t () will return immediately after calling the
callback.

The second version takes awhen bitfield, with the bits FL_READ, FL_WRI TE, and FL_EXCEPT defined, to
indicate when the callback should be done.

There can only be one callback of each type for afile descriptor. FI : : remove_fd() getsrid of all the
callbacks for a given file descriptor.

Under UNIX any file descriptor can be monitored (files, devices, pipes, sockets, etc.) Dueto limitationsin
Microsoft Windows, WIN32 applications can only monitor sockets.

static void Fl::add_handler(int (*f)(int))

Install afunction to parse unrecognized events. If FLTK cannot figure out what to do with an event, it calls
each of these functions (most recent first) until one of them returns non-zero. If none of them returns non zero
then the event isignored. Events that cause thisto be called are:

* FL_SHORTCUT events that are not recognized by any widget. Thislets you provide global shortcut
keys.
» System eventsthat FLTK does not recognize. See f1 _xevent .

» Some other events when the widget FLTK selected returns zero from its handl e() method. Exactly
which ones may change in future versions, however.

static Fl::add_idle(void (*cb)(void *), void *)

Adds a callback function that is called by FI : : wai t () when thereis nothing to do. This can be used for
background processing.

Warning: this can absorb all your machine's time!

Y ou can have multiple idle callbacks. To remove anidle callback useFl : : renove idle().

Only FlI : : wai t () callstheidle callbacks. FI : : wai t (tinme), Fl::check(),andFl::ready() ignorethem so
that these functions may be called by the idle callbacks themselves without having to worry about recursion.

Theidle callback can call any FLTK functions. However if you call something that callsFl : : wai t () (such as
amessage pop-up) you should first remove the idle callback so that it does not recurse.

Functions 201

FLTK 1.0 Programming Manual

static void Fl::add_timeout(float t, void (*cb)(void *),void *v=0)

Add a one-shot timeout callback. The timeout will happen as soon as possible after t seconds after the last
timewai t () wascaled. The optional voi d * argument is passed to the callback.

This code will print "TICK" each second on stdout, no matter what el se the user or program does:

voi d cal | back(void *) {
printf("TICK\n");
Fl ::add_tineout (1.0, cal | back);
}

mai n() {
Fl ::add_timeout (1.0, cal |l back);
Fl::run();

}

static int Fl::arg(int argc, char **argv, int &i)

Consume a single switch from ar gv, starting at word i . Returns the number of words eaten (L or 2, or OQif itis
not recognized) and adds the same valuetoi . Y ou can use this function if you prefer to control the
incrementing through the arguments yourself.

static int Fl::args(int argc, char **argv, int &i, int (*callback)(int, char**,int
&)=0)
void Fl::args(int argc, char **argv)

FLTK provides an entirely optional command-line switch parser. You don't have to cal it if you don't like
them! Everything it can do can be done with other callsto FLTK.

To use the switch parser, call FI : : args(...) near the start of your program. This does not open the display,
instead switches that need the display open are stashed into static variables. Then you must display your first
window by calling window->show(argc.argv), which will do anything stored in the static variables.

cal | back letsyou define your own switches. It is called with the same ar gc and ar gv, and withi the index
of each word. The callback should return zero if the switch is unrecognized, and not changei . It should

return non-zero if the switch is recognized, and add at least 1 toi (it can add more to consume words after the
switch). Thisfunction is called before any other tests, so you can override any FLTK switch.

Onreturni isset to theindex of the first non-switch. Thisis either:
* Thefirst word that does not start with '-'.

* Theword '-' (used by many programs to name stdin as afile)

 Thefirst unrecognized switch (return value is 0).
e argc

Thereturn valueisi unless an unrecognized switch isfound, in which case it is zero. If your program takes
no arguments other than switches you should produce an error if the return value islessthan ar gc.

All switches may be abbreviated to two letters and case isignored:

202 Fl:: Methods

FLTK 1.0 Programming Manual

 -di spl ay host:n.n The X display to use (ignored under WIN32).

e -geonetry WH+X+Y The window position and size will be modified according the the standard X
geometry string.

e -name string Fl_Window::xclass(string) will be done to the window, possibly changing itsicon.

e -title string F_Window::label(string) will be done to the window, changing both itstitle and the
icontitle.

e -i coni ¢ FI_Window::iconize() will be done to the window.

* -bg col or XParseColor is used to lookup the passed color and then Fl::background() is done. Under
WIN32 only color names of the form "#xxxxxx" are understood.

* -bg2 col or XParseColor is used to lookup the passed color and then Fl::background2() is done.

e -fg col or XParseColor is used to lookup the passed color and then Fl::foreground() is done.

The second form of FI : : ar gs() isuseful if your program does not have command line switches of its own. It
parses all the switches, and if any are not recognized it callsFI : : abort (FI : : hel p).

static void Fl::background(uchar, uchar, uchar)
Changesf 1 _col or (FL_GRAY) to the given color, and changes the gray ramp from 32 to 56 to black to white.

These are the colors used as backgrounds by almost all widgets and used to draw the edges of all the
boxtypes.

static void Fl::background2(uchar, uchar, uchar)

Changesf 1 _col or (FL_WHI TE) and the same colorsasFI : : f or eground() . Thiscolor isused asa
background by FI _I nput and other text widgets.

static FI_Widget *Fl.:belowmouse() const
static void Fl::belowmouse(Fl_Widget *)

Get or set the widget that is below the mouse. Thisis for highlighting buttons. It is not used to send

FL_PUSH or FL_MOVE directly, for several obscure reasons, but those events typically go to thiswidget. Thisis
also the first widget tried for FL_SHORTCUT events.

If you change the bel owmouse widget, the previous one and al parents (that don't contain the new widget)

are sent FL_LEAVE events. Changing this does not send FL_ENTER to this or any widget, because sending
FL_ENTER is supposed to test if the widget wants the mouse (by it returning non-zero from handl e()).

static int Fl::box_dh(FI_Boxtype)
Returns the height offset for the given boxtype.
static int Fl::box_dw(FI_Boxtype)
Returns the width offset for the given boxtype.

static int Fl::box_dx(Fl_Boxtype)

Returnsthe X offset for the given boxtype.

Fl:: Methods 203

FLTK 1.0 Programming Manual

static int Fl::box_dy(Fl_Boxtype)

Returnsthe Y offset for the given boxtype.

static int Fl::check()

This does the same thing asFl : : wai t (0) , except because it does not have to return the elapsed time value it
can be implemented faster on certain systems. Use this to interrupt a big calculation:

while (!calculation_done()) {
cal cul ate();
Fl :: check();
if (user_hit_abort_button()) break;

}

This returns non-zero if any windows are displayed, and O if no windows are displayed.

static int Fl::damage()

If truethen f1ush() will do something.

static void Fl::display(const char *)

Setsthe X display to use for all windows. This function isignored under WIN32.

static void Fl::enable_symbols()

Enables the symbol drawing code.

static int Fl::event_button()

Returns which mouse button was pressed. This returns garbage if the most recent event was not aFL_PUSH or
FL_RELEASE event.

int Fl::event_clicks()
void Fl::event_clicks(int)

The first form returns non-zero if the most recent FL_PUSH or FL_ KEYBOARD was a "double click". Returns N-1
for N clicks. A double click is counted if the same button is pressed again whileevent _i s_cl i ck() istrue.

The second form directly sets the number returned by Fi : : event _cl i cks() . Thiscan be used to set it to zero
so that later code does not think an item was double-clicked.

int Fl::event_inside(const FI_Widget *) const
int Fl::event_inside(int x, inty, int w, int h)

Returns non-zero if the current event _x and event _y put it inside the widget or inside an arbitrary bounding

204 Fl:: Methods

FLTK 1.0 Programming Manual

box. Y ou should always call this rather than doing your own comparison so you are consistent about edge
effects.

int Fl::event_is_click()
void Fl::event_is_click(0)

The first form returns non-zero if the mouse has not moved far enough and not enough time has passed since
the last FL_PUSH or FL_KEYBOARD event for it to be considered a"drag" rather than a"click". Y ou can test this
On FL_DRAG, FL_RELEASE, and FL_MOVE events. The second form clears the value returned by
Fl::event_is_click().Useful to prevent the next click from being counted as a double-click or to make a
popup menu pick an item with a single click. Don't pass non-zero to this.

int Fl::event_key/()
int Fl::event_key(int)
int Fl::get_key(int)

Fl :: event _key() returnswhich key on the keyboard was last pushed.

Fl :: event _key(int) returnstrueif the given key was held down (or pressed) during the last event. Thisis
constant until the next event is read from the server.

Fl :: get _key(int) returnstrueif the given key is held down now. Under X thisrequires around-trip to the
server and is much slower than Fl : : event _key(int).

Keys are identified by the unshifted values. FLTK defines a set of symbols that should work on most modern
machines for every key on the keyboard:

« All keys on the main keyboard producing a printable ASCII character use the value of that ASCI|
character (as though shift, ctrl, and caps lock were not on). The space bar is 32.

« All keys on the numeric keypad producing a printable ASCII character use the value of that ASCI|
character plus FL_KP. The highest possible valueisFL_KP_Last S0 you can range-check to see if
something is on the keypad.

« All numbered function keys use the number on the function key plus FL_F. The highest possible
number iISFL_F_Last , SO you can range-check avalue.

« Buttons on the mouse are considered keys, and use the button number (where the left button is 1) plus
FL_But t on.

« All other keys on the keypad have a symbol: FL_Escape, FL_BackSpace, FL_Tab, FL_Enter,
FL_Print, FL_Scroll_Lock, FL_Pause, FL_Insert, FL_Home, FL_Page_Up, FL_Del ete,
FL_End, FL_Page_Down, FL_Left, FL Up, FL_Right, FL Down, FL_Shift L, FL_Shift_R
FL_Control _L, FL_Control R, FL_Caps_Lock, FL_At L, FL_AIt_R FL_Meta_L,
FL_Meta_R, FL_Menu, FL_Num Lock, FL_KP_Enter.Be careful not to confuse these with the very
similar, but all-caps, symbolsused by ElL::event _state().

On X Fl : : get _key(FL_Butt on+n) does not work.

OnWIN32FI ::get_key(FL_KP_Enter) andFl ::event _key(FL_KP_Enter) do not work.

char *Fl::event_length()

Fl:: Methods 205

FLTK 1.0 Programming Manual

Returnsthe length of thetext in Fi : : event _t ext (). There will always be anul at this position in the text.
However there may be anul before that if the keystroke trand ates to anul character or you paste anul
character.

ulong Fl::event_state()
unsigned int Fl::event_state(ulong)

Thisisabitfield of what shift states were on and what mouse buttons were held down during the most recent
event. The second version returns non-zero if any of the passed bits are turned on. The legal bits are:

e FL_SH FT
« FL_CAPS_LOCK

« FL_CTRL

e FLLALT

« FL_NUM LOCK

« FL_META

« FL_SCROLL_LOCK
« FL_BUTTONL

« FL_BUTTON2

« FL_BUTTONS

X servers do not agree on shift states, and FL_ NUM_LOCK, FL_META, and FL_SCROLL_LOCK may not
work. The values were selected to match the X Free86 server on Linux. In addition there isabug in the way X

works so that the shift state is not correctly reported until the first event after the shift key is pressed or
released.

char *Fl::event_text()

Returns the ASCI| text (in the future this may be UTF-8) produced by the last FL_KEYBQOARD or FL_PASTEMOr
possibly other event. A zero-length string is returned for any keyboard function keys that do not produce text.
This pointer points at a static buffer and is only valid until the next event is processed.

Under X thisistheresult of calling XLookupSt ring().

static int Fl::event_x()
static int Fl::event_y()

Returns the mouse position of the event relative to the FI _W ndow it was passed to.

static int Fl::event_x_root()
static int Fl::event_y root()

Returns the mouse position on the screen of the event. To find the absolute position of an FI _W ndow on the
screen, use the difference between event _x_root (), event _y root () andevent _x(), event _y().

static FI_Window *Fl::first_window()

Returns the first top-level window in the widget hierarchy.

206 Fl:: Methods

FLTK 1.0 Programming Manual

static void Fl::flush()

Causes al the windows that need it to be redrawn and graphics forced out through the pipes. Thisiswhat
wai t () does before looking for events.

static FI_Widget *Fl::focus() const
static void Fl::focus(Fl_Widget *)

Get or set the widget that will receive FL_KEYBOARD events.
If you changeFl : : f ocus() , the previous widget and all parents (that don't contain the new widget) are sent

FL_UNFOCUS events. Changing the focus does not send FL_FOCUS to this or any widget, because sending
FL_FOCUS is supposed to test if the widget wants the focus (by it returning non-zero from handl e()).

static void Fl::foreground(uchar, uchar, uchar)

Changesf | _col or (FL_BLACK) . Also changes FL_| NACTI VE_COLOR and FL_SELECTI ON_COLOR to be aramp
between thisand FL_WH TE.

static void Fl::free_color(Fl_Color, int overlay = 0)

Frees the specified color from the colormap, if applicable. If over | ay is non-zero then the color is freed from
the overlay colormap.

static unsigned Fl::get_color(Fl_Color)
static void Fl::get_color(FlI_Color, uchar &r, uchar &g, uchar &b)

Returns the color index or RGB value for the given FLTK color index.

static const char *Fl.:get_font(int face)
Get the string for this face. This string is different for each face. Under X this value is
passed to XListFonts to get all the sizes of this face.

static const char *Fl.:get_font_name(int face, int *attributes = 0)

Get a human-readabl e string describing the family of thisface. Thisis useful if you are presenting a choiceto
the user. Thereis no guarantee that each face has a different name. The return value points to a static buffer
that is overwritten each call.

The integer pointed to by at t ri but es (if the pointer is not zero) is set to zero, FL_BOLD or FL_| TALI Cor

FL_BOLD | FL_I TALI C. To locate a"family" of fonts, search forward and back for a set with non-zero
attributes, these faces along with the face with a zero attribute before them constitute afamily.

int get_font_sizes(int face, int *&sizep)

Fl:: Methods 207

FLTK 1.0 Programming Manual

Return an array of sizesinsi zep. Thereturn value is the length of this array. The sizes are sorted from
smallest to largest and indicate what sizes can be giventof1 _font () that will be matched exactly

(f1 _font () will pick the closest size for other sizes). A zero in thefirst location of the array indicates a
scalable font, where any size works, although the array may list sizes that work "better" than others. Warning:
the returned array points at a static buffer that is overwritten each call. Under X this will open the display.

static void Fl::get_mouse(int &x, int &y)

Return where the mouse is on the screen by doing a round-trip query to the server. Y ou should use
Fl::event_x_root() andFl::event_y_root () if possible, but thisisnecessary if you are not sureif a
mouse event has been processed recently (such as to position your first window). If the display is not open,
thiswill openiit.

static void Fl::get_system_colors()

Read the user preference colors from the system and usethemto call Fi : : f or egr ound() ,

Fl : : background(), and Fl : : background2() . Thisisdone by FI _W ndow: : show(ar gc, ar gv) before
applying the -fg and -bg switches.

Currently this only does something on WIN32. In future versionsfor X it may read the window manager
(KDE, Gnome, etc.) setup as well.

static int Fl::gl_visual(int)

Thisdoesthe samething as EL:: vi sual (int) but aso requires OpenGL drawing to work. This must be done
if you want to draw in normal windows with OpenGL with gl _start () and gl _end() . It may be useful to
call this so your X windows use the same visual asan Fl _d _W ndow, which on some servers will reduce
colormap flashing.

SeeFl _d _W ndowfor alist of additional values for the argument.

static void Fl::grab(FI_Window static FI_Window *Fl::grab()

Thisis used when pop-up menu systems are active. Send al events to the passed window no matter where the
pointer or focus is (including in other programs). The window does not have to be shown() , thislets the
handl e() method of a"dummy" window override all event handling and allows you to map and unmap a
complex set of windows (under both X and WIN32 some window must be mapped because the system
interface needs awindow id).

Fl::event_x() andFl::event_y() are undefined if the passed widget is not a mapped
FI_Wndow. Use Fl::event_x_ root() and Fl::event_y root() instead.

Be careful that your program does not enter an infinite loop while gr ab() ison. On X thiswill lock up your
screen!

The second function returns the current grab window, or NULL if none.

208 Fl:: Methods

FLTK 1.0 Programming Manual

static int Fl::h()

Returns the height of the screen in pixels.

static int Fl::handle(int, FI_Window *)

Sends the event to awindow for processing. Returns non-zero if any widget uses the event.

static const char *Fl::help

Thisisthe usage string that is displayed if FI : : ar gs() detects an invalid argument on the command-line.

static FI_Window *FIl::modal()
Thenodal () window hasitshandl e() method called for al events, and no other windows will have

handl e() caled. If grab() hasbeen donethen thisisequal to gr ab() . Otherwise thisis the most recently
shown() window withnodal () true, or NULL if there are no nodal () windows shown() .

static FI_Window *Fl::next_window(FI_Window *)

Returns the next top-level window in the widget hierarchy.

static void Fl::own_colormap()

Makes FLTK use its own colormap. This may make FLTK display better and will reduce conflicts with other
programs that want lots of colors. However the colors may flash as you move the cursor between windows.

This does nothing if the current visual is not colormapped.

static void Fl::paste(Fl_Widget *receiver)

Set things up so the receiver widget will be called with an FL_PASTE event sometimein the future. The
reciever should be prepared to be called directly by this, or for it to happen later, or possibly not at all. This
allows the window system to take as long as necessary to retrieve the paste buffer (or even to screw up
completely) without complex and error-prone synchronization codein FLTK.

static FI_Widget *Fl::pushed() const
static void Fl::pushed(FI_Widget *)

Get or set the widget that is being pushed. FL_DRAG or FL_RELEASE (and any more FL_PUSH) events will be
sent to this widget.

If you change the pushed widget, the previous one and al parents (that don't contain the new widget) are sent

FL_RELEASE events. Changing this does not send FL_PUSH to this or any widget, because sending FL_PUSH is
supposed to test if the widget wants the mouse (by it returning non-zero from handl e()).

Fl:: Methods 209

FLTK 1.0 Programming Manual

static FI_Widget *Fl::readqueue()

All FI _W dget s that don't have a callback defined use a default callback that puts a pointer to the widget in
this queue, and this method reads the oldest widget out of this queue.

static int Fl::ready()

Returns non-zero if there are pending timeouts or events or file descriptors. This does not call
Fl::flush() orany callbacks, whichisuseful if your programisin a state where such callbacks areillegal:

while (!calculation_done()) {
cal cul ate();
if (Fl::ready()) {
do_expensi ve_cl eanup();
Fl :: check();
if (user_hit_abort_button()) break;

}
}

static void Fl::redraw()

Redraws all widgets.

static void Fl::release()

Turn off thegrab() behavior.

static void Fl::remove_idle(void (*cb)(void *), void *= 0)

Removes the specified idle callback.

static void Fl::remove_timeout(void (*cb)(void *), void *= 0)

Removes atimeout callback. It is harmless to remove atimeout callback that no longer exists.

static Fl::run()

Runs FLTK until there are no windows displayed, and then returnsa zero. Fl : : run() isexactly equivalent to:

while (Fl::wait());
return O;

static void Fl::selection(FI_Widget *owner, const char *stuff, int len)
static const char* Fl::selection()
static int Fl::selection_length()

The first form changes the current selection. The block of text is copied to an internal buffer by FLTK (be
careful if doing thisin response to an FL_PASTE as this may be the same buffer returned by event _text ()).

210 Fl:: Methods

FLTK 1.0 Programming Manual

Thesel ecti on_owner () widget is set to the passed owner (possibly sending FL_SELECTI ONCLEAR to the
previous owner). The second form looks at the buffer containing the current selection. The contents of this
buffer are undefined if this program does not own the current selection.

static FI_Widget *Fl.:selection_owner() const
static void Fl::selection_owner(FI_Widget *)

The single-argument sel ect i on_owner (x) call can be used to move the selection to another widget or to set
the owner to NULL, without changing the actual text of the selection. FL_SELECTI ONCLEAR is sent to the
previous selection owner, if any.

Copying the buffer every time the selection is changed is obviously wasteful, especially for large selections.

An interface will probably be added in a future version to allow the selection to be made by a callback
function. The current interface will be emulated on top of this.

static void Fl::set_boxtype(FI_Boxtype, FI Box_ Draw_F * uchar, uchar,
uchar, uchar)
static void Fl::set_boxtype(FI_Boxtype, Fl_Boxtype from)

The first form sets the function to call to draw a specific boxtype.

The second form copies the f r omboxtype.

static void Fl::set_color(Fl_Color, uchar r, uchar g, uchar b)

Setsanentry inthef | _col or index table. You can set it to any 8-bit RGB color. The color is not allocated
until f1 _col or (i) isused.

static int Fl::set_font(int face, const char *)
static int Fl::set_font(int face, int from)

Thefirst form changes aface. The string pointer is simply stored, the string is not copied, so the string must
be in static memory.

The second form copies one face to another.

int Fl::set_fonts(const char * = 0)

FLTK will open the display, and add every font on the server to the face table. It will attempt to put
"families' of facestogether, so that the normal one isfirst, followed by bold, italic, and bold italic.

The optional argument is a string to describe the set of fonts to add. Passing NULL will select only fonts that
have the 1SO8859-1 character set (and are thus usable by normal text). Passing "-*" will select al fonts with
any encoding as long as they have normal X font names with dashesin them. Passing "*" will list every font
that exists (on X this may produce some strange output). Other values may be useful but are system
dependent. With WIN32 NULL selects fonts with 1SO8859-1 encoding and non-NULL selects al fonts.

Fl:: Methods 211

FLTK 1.0 Programming Manual

The return value is how many faces are in the table after thisis done.

static void Fl::set_labeltype(Fl_Labeltype, FI_Label Draw F *,
FI_Label Measure F *)
static void Fl:set_labeltype(Fl_Labeltype, FI_Labeltype from)

The first form sets the functions to call to draw and measure a specific labeltype.

The second form copies the f r omlabeltype.

int Fl::test_shortcut(ulong) const

Test the current event, which must be an FL_KEYBOARD or FL_SHORTCUT, against a shortcut value (described in
Fl _But t on). Returns non-zero if there is amatch. Not to be confused with FI _W dget : : test _shortcut ().

static int Fl::visual(int)

Selects avisual so that your graphics are drawn correctly. This does nothing if the default visual satisfies the
capabilities, or if no visual satisfies the capabilities, or on systems that don't have such brain-dead notions.

Only the following combinations do anything useful:
o Fl ::visual (FL_RGB)
Full/true color (if there are several depths FLTK chooses the largest). Do thisif you use
f1_draw i mage for much better (non-dithered) output.
o FI ::visual (FL_RGBS8)
Full color with at least 24 bits of color. FL_RGB will always pick thisif available, but if not it will
happily return aless-than-24 bit deep visual. This call failsif 24 bits are not available.

o Fl ::visual (FL_DOUBLE| FL_I NDEX)
Hardware double buffering. Call thisif you are going to use FI _Doubl e_W ndow.

o Fl ::visual (FL_DOUBLE| FL_RGB)
o FI : :visual (FL_DOUBLE| FL_RGBS8)
Hardware double buffering and full color.

Thisreturnstrue if the system has the capabilities by default or FLTK suceeded in turing them on. Y our
program will still work even if thisreturns false (it just won't look as good).

static int Fl::w()

Returns the width of the screen in pixels.

static int wait()
static double wait(double time)

212 Fl:: Methods

FLTK 1.0 Programming Manual

Cdlstheidle function if any, then calls any pending timeout functions, then calls Fi - : f1 ush() . If thereare
any windows displayed it then waits some time for events (zero if thereis an idle(), the shortest timeout if
there are any timeouts, or forever) and calls the handle() function on those events, and then returns non-zero.

Y our program can check its global state and update things after each call to FI : : wai t () , which can be very
useful in complex programs.

If there are no windows (thisis checked after the idle and timeouts are called) then FI : : wai t () returns zero
without waiting for any events. Y our program can either exit at this point, or call show() on some window so
the GUI can continue to operate. The second form of FI : : wai t () waitsonly acertain amount of time for
anything to happen. This doesthe same aswai t () except if the given time (in seconds) passes it returns. The
return value is how much time remains. If the return value is zero or negative then the entire time period
elapsed.

If you do severa wai t (ti me) callsinarow, the subsequent ones are measured from when the first oneis
called, even if you do time-consuming calculations after they return. This allows you to accurately make
something happen at regular intervals. This code will accurately call A() once per second (as long as it takes
less than a second to execute):

for (;;) {
for (float time = 1.0; time >0;) time = Fl::wait(tine);
}A();

static void (*Fl::warning)(const char *, ...)
static void (*Fl::error)(const char *, ...)
static void (*Fl::fatal)(const char *, ...)

FLTK will call theseto print messages when unexpected conditions occur. By default they f pri nt f to
stderr,andFl::error andFl::fatal cal exit(1).You canoverridethe behavior by setting the function
pointers to your own routines.

Fl : : war ni ng means that there was a recoverable problem, the display may be messed up but the user can
probably keep working (all X protocol errors call this). Fl : : err or meansthere is arecoverable error, but the
display isso messed up it is unlikely the user can continue (very little callsthis now). Fi : : f at al must not
return, as FLTK isin an unusable state, however your version may be able to use | ongj np or an exception to
continue, aslong asit does not call FLTK again.

Fl:: Methods 213

FLTK 1.0 Programming Manual

214 Fl:: Methods

C - FLTK Enumerations.H

This appendix lists the enumerations provided in the <FL/ Enurrer at i ons. H> header file, organized by
section.

Version Numbers
The FLTK version number is stored in anumber of compile-time constants:

* FL_MAJOR VERSI ON - The major release number, currently 1.

* FL_M NOR_VERSI ON - The minor release number, currently O.

e FL_PATCH_VERSI ON - The patch release number, currently 0.

* FL_VERSI ON - A combined floating-point version number for the major and minor release numbers,
currently 1.0.

Events
Events areidentified by an FI _Event enumeration value. The following events are currently defined:

* FL_NO_EVENT - No event occurred.

FL_PUSH - A mouse button was pushed.

* FL_RELEASE - A mouse button was released.

FL_ENTER - The mouse pointer entered a widget.

FL_LEAVE - The mouse pointer left awidget.

FL_DRAG - The mouse pointer was moved with a button pressed.

C - FLTK Enumerations.H 215

FLTK 1.0 Programming Manual

FL_FOCuUs - A widget should receive keyboard focus.

FL_UNFOCUS - A widget loses keyboard focus.

FL_KEYBOARD - A key was pressed.

FL_CLOSE - A window was closed.

FL_MOVE - The mouse pointer was moved with no buttons pressed.
FL_SHORTCUT - The user pressed a shortcut key.

FL_DEACTI VATE - The widget has been deactivated.

FL_ACTI VATE - The widget has been activated.

FL_H DE - The widget has been hidden.

FL_SHOw- The widget has been shown.

FL_PASTE - The widget should paste the contents of the clipboard.
FL_SELECTI ONCLEAR - The widget should clear any selections made for the clipboard.

Callback "When" Conditions

The following constants determine when a callback is performed:

FL_WHEN NEVER - Never call the callback.

FL_WHEN_CHANGED - Do the callback only when the widget value changes.

FL_WHEN_NOT_CHANGED - Do the callback whenever the user interacts with the widget.
FL_WHEN_RELEASE - Do the callback when the button or key is released and the value changes.
FL_WHEN_ENTER_KEY - Do the callback when the user presses the ENTER key and the value changes.
FL_WHEN RELEASE_ALWAYS - Do the callback when the button or key is released, even if the value
doesn't change.

FL_WHEN_ENTER_KEY_ALWAYS - Do the callback when the user pressesthe ENTER key, even if the
value doesn't change.

Fl::event_key() Values

The following constants define the non-ASCI| keys on the keyboard for FL_KEYBOARD and
FL_SHORTCUT events:

216

FL_But t on - A mouse button; use FI _Button + n for mouse button n.
FL_BackSpace - The backspace key.
FL_Tab - Thetab key.

FL_Ent er - The enter key.

FL_Pause - The pause key.

FL_Scrol | _Lock - Thescroll lock key.
FL_Escape - The escape key.

FL_Home - The home key.

FL_Left - Theleft arrow key.

FL_Up - The up arrow key.

FL_Ri ght - Theright arrow key.

FL_Down - The down arrow key.
FL_Page_Up - The page-up key.
FL_Page_Down - The page-down key.
FL_End - Theend key.

FL_Print - The print (or print-screen) key.
FL_l nsert - Theinsert key.

Events

FLTK 1.0 Programming Manual

e FL_Menu - The menu key.

* FL_Num Lock - The num lock key.

* FL_KP - One of the keypad numbers; use FL_KP + n for number n.
* FL_KP_Ent er - The enter key on the keypad.

* FL_F - One of the function keys; use FL_F + n for function key n.
e FL_Shi ft _L - Thelefthand shift key.

e FL_Shi ft _R- Therighthand shift key.

* FL_Control _L - Thelefthand control key.

e FL_Cont rol _R- Therighthand control key.

* FL_Caps_Lock - The caps lock key.

* FL_Met a_L - Theleft meta/Windows key.

e FL_Met a_R - Theright meta/Windows key.

* FL_AI't _L - Theleft alt key.

* FL_AIt _R- Theright at key.

* FL_Del et e - The delete key.

Fl::event_state() Values
The following constants define bitsinthe Fl : : event _state() vaue:

e FL_SHI FT - One of the shift keysis down.

e FL_CAPS_LOCK - The capslock ison.

* FL_CTRL - One of the ctrl keysis down.

* FL_ALT - One of the alt keysis down.

* FL_NUM LOCK - The num lock ison.

* FL_NETA - One of the meta/Windows keys is down.
* FL_SCROLL_LOcK - The scrall lock ison.

e FL_BUTTON1 - Mouse button 1 is pushed.

e FL_BUTTON2 - Mouse button 2 is pushed.

e FL_BUTTON3 - Mouse button 3 is pushed.

Alignment Values

The following constants define bits that can be used with EI_W dget : : al i gn() to control the positioning of
the label:

* FL_ALI GN_CENTER - Thelabdl is centered.

* FL_ALI GN_TOP - The label istop-aligned.

* FL_ALI GN_BOTTOM- The label is bottom-aligned.

* FL_ALI GN_LEFT - The label isleft-aligned.

* FL_ALI GN_RI GHT - The label isright-aligned.

* FL_ALI GN_I NSI DE - The label is put inside the widget.
* FL_ALI GN_CLI P - Thelabel is clipped to the widget.

* FL_ALI GN_WRAP - The label text is wrapped as needed.

Fonts
The following constants define the standard FLTK fonts:

Fl::event_key() Values 217

FLTK 1.0 Programming Manual

FL_HELVETI CA - Helvetica (or Arial) normal.
FL_HELVETI CA_BOLD - Helvetica (or Arial) bold.
FL_HELVETI CA_| TALI C- Helvetica (or Arial) oblique.

FL_HELVETI CA_BOLD | TALI C- Helvetica (or Arial) bold-obligue.

FL_COUR! ER - Courier normal.

FL_COURI ER_BOLD - Courier bold.

FL_COURI ER | TALI C- Courier italic.

FL_COURI ER BOLD | TALI C- Courier bold-italic.
FL_TI MES - Times roman.

FL_TI MES_BOLD - Times bold.

FL_TI MES_ | TALI C- Timesitalic.

FL_TI MES BOLD | TALI C- Times bold-italic.
FL_SYMBOL - Standard symbol font.

FL_SCREEN - Default monospaced screen font.
FL_SCREEN BOLD - Default monospaced bold screen font.
FL_ZAPF_DI NGBATS - Zapf-dingbats font.

Colors

The following color constants can be used to access the colors in the FLTK standard color palette:

FL_BLACK
FL_RED
FL_GREEN
FL_YELLOW
FL_BLUE
FL_MAGENTA
FL_CYAN
FL_VWH TE
FL_GRAYO
FL_DARK3
FL_DARK2
FL_DARK1
FL_GRAY
FL_LI GHT1
FL_LI GHT2
FL_LI GHT3

Cursors

The following constants define the mouse cursors that are availablein FLTK:

218

FL_CURSOR_DEFAULT - the default cursor, usually an arrow
FL_CURSOR_ARROW- an arrow pointer

FL_CURSOR_CROCSS - crosshair

FL_CURSOR_WAI T - watch or hourglass

FL_CURSOR_| NSERT - |-beam

FL_CURSOR_HAND - hand (uparrow on M SWindows)
FL_CURSOR_HELP - question mark

FL_CURSOR_MOVE - 4-pointed arrow

FL_CURSOR_NS - up/down arrow

FL_CURSOR_VE - |€eft/right arrow

Fonts

FLTK 1.0 Programming Manual

* FL_CURSOR_NW&E - diagonal arrow
* FL_CURSOR_NESW- diagonal arrow
* FL_CURSOR_NONE - invisible

FD "When" Conditions

* FL_READ - Call the callback when there is data to be read.

* FL_WRI TE - Call the callback when data can be written without blocking.

e FL_EXCEPT - Cadll the callback if an exception occurs on the file.

Damage Masks
The following damage mask bits are used by the standard FLTK widgets:

* FL_DAVAGE_CHI LD - A child needs to be redrawn.
FL_DAMAGE_EXPQSE - The window was exposed.
FL_DAMAGE_SCROLL - TheFl _Scrol | widget was scrolled.
FL_DAMAGE_OVERLAY - The overlay planes need to be redrawn.
FL_DAMAGE_ALL - Everything needs to be redrawn.

Cursors

219

FLTK 1.0 Programming Manual

220 Cursors

D - GLUT Compatibility

This appendix describesthe GLUT compatibility header file supplied with FLTK.

Using the GLUT Compatibility Header File

Y ou should be able to compile existing GLUT source code by including <FL/ gl ut . H> instead of

<@/ gl ut . h>. This can be done by editing the source, by changing the - I switches to the compiler, or by
providing asymbolic link from GL/ gl ut. h to FL/ gl ut . H.

All files calling GLUT procedures must be compiled with C++. Y ou may haveto alter them dlightly to get
them to compile without warnings, and you may have to rename them to get make to use the C++ compiler.

You must link with the FLTK library. If you call any GLUT drawing functions that FLTK does not emulate
(gl ut Ext ensi onsSupported(), gl utWre*(), gl utSolid*(),andgl ut Stroke*()), youwill also haveto
link with the GLUT library (after the FLTK library!)

Most of FL/ gl ut . Hisinline functions. Y ou should take alook at it (and maybe at t est / gl ut . cxx in the
FLTK source) if you are having trouble porting your GLUT program.

This has been tested with most of the demo programs that come with the GLUT 3.3 distribution.

Known Problems

The following functions and/or arguments to functions are missing, and you will have to replace them or

D - GLUT Compatibility 221

FLTK 1.0 Programming Manual

comment them out for your code to compile:

o gl ut Layer Get (GLUT_LAYER_| N_USE)

o gl ut Layer Get (GLUT_HAS_OVERLAY)

e glutSetColor(), glutCetColor(), glutCopyColormap()
e glutlnitDisplayMde(GLUT_STEREO)

e glutlnitDi splayMyde(GLUT_LUM NANCE)

o gl ut PushW ndow()

o gl ut War pPoi nter ()

* Spaceball, buttonbox, dials, tablet functions, gl ut Devi ceGet ()
o gl ut Wndowst at usFunc()

« gl ut Get (GLUT_W NDOW NUM CHI LDREN)

« gl ut Get (GLUT_SCREEN W DTH_MV)

o gl ut Get (GLUT_SCREEN_HEI GHT_MV)

« gl ut Get (GLUT_ELAPSED TI MVE)

* gl ut Vi deoResi ze() missing.
Most of the symbols/enumerations have different values than GLUT uses. Thiswill break code that relies on
the actual values. The only symbols guaranteed to have the same values are true/false pairslike
GLUT_DOWN and GLUT_UP, mouse buttons GLUT_LEFT_BUTTON, GLUT_M DDLE_BUTTON, GLUT_RI GHT_BUTTON,
and GLUT_KEY_F1 thru F12.
The strings passed as menu labels are not copied.

gl ut Post Redi spl ay() does not work if called from inside a display function. Y ou must use
gl ut I dl eFunc() if you want your display to update continuously.

gl ut SwapBuf f er s() does not work from inside adisplay function. Thisis on purpose, because FLTK swaps
the buffers for you.

gl ut UseLayer () doesnot work well, and should only be used to initialize transformations inside aresize
callback. Y ou should redraw overlays by using gl ut Over | ayDi spl ayFunc() .

Overlays are cleared before the overlay display function is called.

gl ut Layer Get (GLUT_OVERLAY_DAMAGED) always returns true for compatibility with some GLUT overlay
programs. Y ou must rewrite your code so that gl _col or () isused to choose colorsin an overlay, or you will
get random overlay colors.

gl ut Set Cur sor (GLUT_CURSOR_FULL_CROSSHAI R) just resultsin asmall crosshair.

The fonts used by gl ut Bi t mapChar acter () and gl ut Bi t rapW dt h() may be different.

glutInit(argc, argv) will consume different switchesthan GLUT does. It accepts the switches recognized
by Fl : : args(), and will accept any abbreviation of these switches (such as"-di" for "-display™).

Mixing GLUT and FLTK Code

Y ou can make your GLUT window a child of aFl _w ndow with the following scheme. The biggest trick is
that GLUT insists on show() 'ing the window at the point it is created, which meansthe FI _W ndow parent
window must already be shown.

e Don'tcal glutinit().

222 Known Problems

FLTK 1.0 Programming Manual

* Create your FI _W ndow, and any FLTK widgets. Leave ablank areain the window for your GLUT
window.

* show() the FI _W ndow. Perhaps call show(ar gc, ar gv) .

* Call wi ndow >begi n() so that the GLUT window will be automatically added to it.

e Usegl ut | nit WndowsSi ze() and gl ut | ni t WndowPosi ti on() to set the location in the parent
window to put the GLUT window.

* Put your GLUT code next. It probably does not need many changes. Call
wi ndow >end() immediately after the gl ut Cr eat eW ndow() !

* You can cal either gl ut Mai nLoop(), Fl : : run(), or loop calling Fl : : wai t () to run the program.

Mixing GLUT and FLTK Code 223

FLTK 1.0 Programming Manual

class FlI_Glut_Window

Class Hierarchy

Fl _d _W ndow

I
+----Fl _d ut_W ndow

Include Files

#i ncl ude <FL/glut.H>

Description

Each GLUT window is an instance of this class. Y ou may find it useful to manipulate instances directly
rather than use GLUT window id's. These may be created without opening the display, and thus can fit better
into FLTK's method of creating windows.

The current GLUT window is available in the global variable gl ut _wi ndow.

new Fl _d ut_Wndow(...) isthesameasgl ut Cr eat eW ndow() except it does not show() the window or
make the window current.

wi ndow >make_current () isthe sameasgl ut Set W ndow nunber) . If the window has not had show() called
on it yet, some functions that assumme an OpenGL context will not work. If you do show() the window, call
make_current () again to set the context.

~Fl _d ut_W ndow() isthe same asgl ut Dest r oyW ndow() .

Methods

e FI Glut Window
e ~F_Glut Window

FI_Glut_Window::FI_Glut_Window(int x, int y, int w, int h, const char *title = 0)
FI_Glut_Window::FI_Glut_Window(int w, int h, const char *title = 0)

The first constructor takes 4 int arguments to create the window with a preset position and size. The second
constructor with 2 arguments will create the window with a preset size, but the window manager will choose
the position according to it's own whims.

virtual FI_Glut_Window::~FI_Glut_Window()

Destroys the GLUT window.

224 Mixing GLUT and FLTK Code

E - Forms Compatibility

This appendix describes the Forms compatibility included with FLTK.

Importing Forms Layout Files

FLUID can read the .fd files put out by all versions of Forms and XForms fdesign. However, it will mangle
them abit, but it prints a warning message about anything it does not understand. FLUID cannot write
fdesign files, so you should save to a new name so you don't write over the old one.

Y ou will need to edit your main code considerably to get it to link with the output from FLUID. If you are
not interested in this you may have more immediate luck with the forms compatibility header, <FL/ f or ms. H>.
Using the Compatibility Header File

Y ou should be able to compile existing Forms or XForms source code by changing the include directory
switch to your compiler so that thef or ns. h file supplied with FLTK isincluded. Take alook at f or ns. h to
see how it works, but the basic trick islots of inline functions. Most of the XForms demo programs work

without changes.

Y ou will also have to compile your Forms or XForms program using a C++ compiler. The FLTK library does
not provide C bindings or header files.

Although FLTK was designed to be compatable with the GL Forms library (version 0.3 or so), XForms has
bloated severely and it'sinterface is X-specific. Therefore, X Forms compatibility is no longer agoal of

E - Forms Compatibility 225

FLTK 1.0 Programming Manual

FLTK. Compatibility was limited to things that were free, or that would add code that would not be linked in
if the feature is unused, or that was not X-specific.

To use any new features of FLTK, you should rewrite your code to not use the inline functions and instead
use "pure” FLTK. Thiswill makeit alot cleaner and make it easier to figure out how to call the FLTK
functions. Unfortunately this conversion is harder than expected and even Digital Domain's inhouse code still
usesforns. Halot.

Problems you will encounter

Many parts of XForms use X-specific structures like Xevent in their interface. | did not emulate these!
Unfortunately these features (such as the "canvas' widget) are needed by most large programs. Y ou will need
to rewrite these to use FLTK subclasses.

Fl _Fr ee widgets emulate the old Forms "free" widget. It may be useful for porting programs that change the
handl e() function on widgets, but you will still need to rewrite things.

Fl _Ti ner widgets are provided to emulate the X Forms timer. These work, but are quite inefficient and
inaccurate compared to using Fl: : add_t i meout () .

All instance variables are hidden. If you directly refer to the x, y, w, h, label, or other fields of your Forms
widgets you will have to add empty parenthesis after each reference. The easiest way to do thisisto globally
replace "->X" with "->x()", etc. Replace "boxtype" with "box()".

const char * argumentsto most FLTK methods are simply stored, while Formswould st r dup() the passed
string. Thisis most noticable with the label of widgets. Y our program must always pass static data such as a
string constant or malloc'd buffer to | abel () . If you are using labels to display program output you may

want to try the EI _Qut put widget.

The default fonts and sizes are matched to the older GL version of Forms, so al 1abels will draw somewhat
larger than an XForms program does.

fdesign outputs a setting of a"fdui” instance variable to the main window. | did not emulate this because |
wanted all instance variables to be hidden. Y ou can store the same information inthe user _dat a() field of a
window. To do this, search through the fdesign output for all occurances of "->fdui" and edit to use
"->user_data()" instead. Thiswill require casts and is not trivial.

The prototype for the functions passed tof1 _add_ti meout () andfl _set _i dl e_cal | back() calback are
different.

All the following XForms calls are missing:

* FL_REVISION, fl _library_version()

* FL_RETURN_DBLCLI CK (UseFl : : event _clicks())
o f1 _add_si gnal _cal | back()

e fl_set_formatactivate() fl _set_form atdeactivate()
o fl _set_formproperty()

e fl_set_app_mainform(),fl_get_app_mai nforn()

226 Using the Compatibility Header File

FLTK 1.0 Programming Manual

o fl_set_formnminsize(),fl_set_formmaxsize()
e fl_set_formevent_crmask(),fl _get_formevent_crmask()

e fl_set_formdblbuffer(),fl_set_object_dbl buffer() (useanFl _Doubl e W ndowinstead)
o f1 _adjust_formsize()

o fl _register_raw call back()

e fl_set_object_bw),fl_set_border_wi dt h()

e fl _set_object_resize(),fl _set_object_gravity()

o f1 _set_object_shortcutkey()

o f1 _set_object_automatic()

e f1 _get_obj ect _bbox() (maybe FLTK should do this)

e fl _set_object_prehandler(),fl_set_object_posthandl er ()
o fl _enunerate_fonts()

» Most drawing functions

e fl_set_coordunit() (FLTK usespixesall thetime)
o f1 _ringbell ()
o fl_gettime()

e f1_win*() (al thesefunctions)
efl_initialize(argc,argv,x,Yy, z) ignoreslast 3 arguments

ofl _read_bitmapfile(),fl_read_pixmapfile()

o f1 _addt o_browser_chars()

e FL_MENU_BUTTON just draws normally

o fl_set_bitmapbutton_file(),fl_set_pixmapbutton_file()
* FL_CANVAS objects

* FL_DI G TAL_CLOCK (comes out anal og)

e fl _create_bitmap_cursor(),fl_set_cursor_col or()
o f1 _set_dial _angl es()

o f1 _show_ oneliner ()

o fl _set _choice_shortcut(a,b, c)

» command log

» Only some of file selector is emulated
o FL_DATE_| NPUT

e f1_pup*() (all thesefunctions)
* textbox object (should be easy but | had no sample programs)
* xyplot object

Additional Notes

These notes were written for porting programs written with the older IRISGL version of Forms. Most of these
problems are the same ones encountered when going from old Forms to X Forms:

Does Not Run In Background
The IRISGL library aways forked when you created the first window, unless "foreground()" was called.

FLTK actslike "foreground()" is called all thetime. If you really want the fork behavior do "if (fork())
exit(0)" right at the start of your program.

You Cannot Use IRISGL windows or fl_queue

If aForms (not XForms) program if you wanted your own window for displaying things you would create a
IRISGL window and draw init, periodically calling Formsto check if the user hit buttons on the panels. If
the user did things to the IRISGL window, you would find this out by having the value FL_EVENT returned

Problems you will encounter 227

FLTK 1.0 Programming Manual

from the call to Forms.
None of thisworkswith FLTK. Nor will it compile, the necessary calls are not in the interface.

Y ou have to make a subclass of FI _d _W ndow and write adr aw() method and handl e() method. This may
regquire anywhere from atrivial to amajor rewrite.

If you draw into the overlay planes you will have to also write adr aw_over | ay() method and call
redraw_overlay() onthe OpenGL window.

One easy way to hack your program so it works isto make the dr aw() and handl e() methods on your

window set some static variables, storing what event happened. Then in the main loop of your program, call
Fl::wai t () and then check these variables, acting on them as though they are eventsread from f I _queue.

You Must Use OpenGL to Draw Everything

Thefile<FL/ gl . h> defines replacements for alot of IRISGL calls, trandating them to OpenGL. There are
much better trandators available that you might want to investigate.

You Cannot Make Forms Subclasses

Programsthat call 1 _make_obj ect or directly setting the handle routine will not compile. Y ou have to
rewrite them to use a subclass of FI _W dget . It isimportant to note that the handl e() method is not exactly
the same asthe handl e() function of Forms. Where a Forms handl e() returned non-zero, your

handl e() must call do_cal | back() . And your handl e() must return non-zero if it "understood" the event.

An attempt has been made to emulate the "free" widget. This appears to work quite well. It may be quicker to
modify your subclassinto a"free" widget, since the "handle" functions match.

If your subclass draws into the overlay you are in trouble and will have to rewrite thingsalot.

You Cannot Use <device.h>

If you have written your own "free" widgets you will probably get alot of errors about "getvaluator". Y ou
should substitute:

Forms FLTK
MOUSE X Fl::event_x_root()
MOUSE_Y Fl::event_y root()

LEFTSHIFTKEY ,RIGHTSHIFTKEY | Fl::event_shift()

CAPSLOCKKEY Fl::event_capsock()

LEFTCTRLKEY ,RIGHTCTRLKEY | Fl::event_ctrl()

LEFTALTKEY ,RIGHTALTKEY Fl::event_alt()

228 Additional Notes

FLTK 1.0 Programming Manual

MOUSEL,RIGHTMOUSE Fl::event_state()
MOUSE2,MIDDLEMOUSE Fl::event_state()
MOUSE3,LEFTMOUSE Fl::event_state()

Anything elsein get val uat or and you are on your own...

Font Numbers Are Different

The "style" humbers have been changed because | wanted to insert bold-italic versions of the normal fonts. If
you use Times, Courier, or Bookman to display any text you will get adifferent font out of FLTK. If you are
really desperate to fix this use the following code:

fl _font_name(3, "*courier-nmedi umr-no*");
fl _font_nanme(4, "*courier-bold-r-no*");

fl _font_name(5, "*courier-medi um o-no*");
fl _font_nane(6,"*times-medi umr-no*");

fl _font_name(7,"*tines-bold-r-no*");

fl _font_nane(8,"*tines-nmedi umi-no*");

fl _font_nanme(9, "*bookman-1ight-r-no*");
fl _font_nanme(10, "*bookman-dem -r-no*");
fl _font_name(11, "*bookman-1ight-i-no*");

Additional Notes

229

FLTK 1.0 Programming Manual

230 Additional Notes

F - Operating System Issues

This appendix describes the X and WIN32 specific interfacesin FLTK.

X-Specific Interface

#i ncl ude <FL/x.H>
On X you can include this file to access FLTK's X-specific functions. Be warned that some of the structures

and callsin it are subject to change in future version of FLTK. Try to avoid doing this so your codeis
portable.

Handling Other X Events

void Fl::add_handler(int (*f)(int))

Installs a function to parse unrecognized events. If FLTK cannot figure out what to do with an event, it calls
each of these functions (most recent first) until one of them returns non-zero. If none of them returns
non-zero then the event isignored.

FLTK callsthisfor any X eventsit does not recognize, or X events with awindow id that FLTK does not
recognize. You can look at the X event withthe f1 _xevent variable.

The argument is zero for unrecognized X events. These handlers are also called for global shortcuts and some
other events that the widget they were passed to did not handle. In this case the argument is non-zero (for

F - Operating System Issues 231

FLTK 1.0 Programming Manual

example FL_SHORTCUT).
extern XEvent *fl_xvent
The most recent X event.
extern ulong fl_event_time

Thisis the time stamp from the most recent X event that reported it (not all do). Many X calls (like cut and
paste) need this value.

Window fl_xid(const FI_Window ¥*)
Returns the X1D for awindow, or zero if not shown() .
FI_Window *fl_find(ulong xid)

Returnsthe FI _W ndow that corresponds to the given XID, or NULL if not found. Thisusesacache soit is
dightly faster than iterating through the windows yourself.

int fl_handle(const XEvent &)

This call allows you to supply the X eventsto FLTK, which may allow FLTK to cooperate with another
toolkit or library. The return value istrue if FLTK understood the event (if the window does not belong to
FLTK andthe add_handl er () functionsall ignore it this returns false).

Besides feeding events your code should call FI - : f1 ush() periodically so that FLTK redraws its windows.
This function will call the callback functions. It will not return until they complete. In particular if a callback

pops up amodal window (by calling f1 _ask(), for instance) it will not return until the modal function
returns.

Drawing using Xlib

The following global variables are set before FI _W dget : : draw() iscalled, or by
Fl _W ndow: : make_current():

extern Display *fl_display;
extern W ndow fl_wi ndow;
extern GC fl _gc;

extern int fl_screen;

extern XVisual Info *fl _visual;
extern Col ormap fl _col or map;

Y ou must use them to produce Xlib calls. Don't attempt to change them. A typical X drawing call iswritten
like this:

XDr awSonet hi ng(fl _di splay, fl_wi ndow, fl_gc, ...);

Other information such as the position or size of the X window can be found by looking at
Fl _W ndow: : current (), which returns a pointer to the FI _W ndow being drawn.

232 X-Specific Interface

FLTK 1.0 Programming Manual

unsigned long fl_xpixel(FI_Color i)
unsigned long fl_xpixel(uchar r, uchar g, uchar b)

Returns the X pixel number used to draw the given FLTK color index or RGB color. Thisisthe X pixel that
f1_color() would use.

extern XFontStruct *fl_xfont

Points at the font selected by the most recent f1 _f ont () . Thisis not necessarily the current font of f1 _gc,
which isnot set until £1 _draw() iscalled.

Changing the Display, Screen, or X Visual

FLTK usesonly asingle display, screen, X visual, and X colormap. This greatly simplifiesits internal
structure and makes it much smaller and faster. Y ou can change which it uses by setting global variables
before the first FI _wW ndow: : show() iscalled. You may also want to call Fl::visual (), which is a portable
interface to get afull color and/or double buffered visual.

int Fl::display(const char *)

Set which X display to use. This actually does put env(" DI SPLAY=. . .") so that child programs will display
on the same screen if called with exec() . Thismust be done before the display is opened. Thiscall is
provided under WIN32 but it has no effect.

extern Display *fl_display

The open X display. Thisis needed as an argument to most Xlib calls. Don't attempt to changeit! Thisis
NULL before the display is opened.

void fl_open_display()

Opens the display. Does nothing if it is already open. Thiswill make suref | _di spl ay iShon-zero. You
should call thisif you wish to do X calls and there is a chance that your code will be called before the first
show() of awindow.

Thismay call FI : : abort () if thereisan error opening the display.

void fl_close_display()

This closes the X connection. Y ou do not need to call thisto exit, and in fact it is faster to not do so! It may
be useful to call thisif you want your program to continue without the X connection. Y ou cannot open the
display again, and probably cannot call any FLTK functions.

extern int fl_screen

Which screen number to use. Thisisset by f1 _open_di spl ay() tothe default screen. You can changeit by

setting this to a different value immediately afterwards. It can also be set by changing the last number in the
Fl :: di spl ay() stringto "host:0,#".

X-Specific Interface 233

FLTK 1.0 Programming Manual

extern XVisuallnfo *fl_visual
extern Colormap fl_colormap

The visual and colormap that FLTK will use for all windows. These are set by f1 _open_di spl ay() tothe
default visual and colormap. Y ou can change them before calling show() on the first window. Typical code
for changing the default visud is:

FI ::args(argc, argv); // do this first so $DI SPLAY is set

fl _open_di spl ay();

fl _visual = find_a_good_visual (fl_display, fl_screen);

if (!'fl_visual) Fl::abort("No good visual");

fl _colormap = make_a_col ormap(fl _di splay, fl_visual->visual, fl_visual->depth);
/1 it is now ok to show() w ndows:

wi ndow >show(argc, argv);

Using a Subclass of FI_Window for Special X Stuff

FLTK can manage an X window on a different screen, visual and/or colormap, you just can't use FLTK's
drawing routines to draw into it. But you can write your own dr aw() method that uses Xlib (and/or OpenGL)
calsonly.

FLTK can also manage X1D's provided by other libraries or programs, and call those libraries when the
window needs to be redrawn.

To do this, you need to make a subclass of FI _W ndow and override some of these virtual functions:
virtual void FI_Window::show()

If the window is already shown() thismust cause it to be raised, this can usually be done by calling
FI _W ndow: : show() . If not shown() your implementation must call either FI _X: : set _xi d() or
FI _X:: make_xid().

An example:

void MyW ndow: : show() {
if (shown()) {FI _Wndow: :show(); return;} // you nust do this!
f1 _open_displ ay(); /1 necessary if this is first w ndow
/1 we only cal cualte the necessary visual col ormap once:
static XVisuallnfo *visual;
static Col ormap col or map;
if (!visual) {
visual = figure_out_visual ();
col ormap = XCreat eCol ormap(fl _di spl ay, Root W ndow fl _display, fl_screen),
vi s->visual, AllocNone);
}
FI _X::make_xid(this, visual, col ormap);

}
FI_X*FI_X::set_xid(FI_Window *, Window xid)

Allocate a hidden structure called an FI _X, put the XID into it, and set a pointer to it from the FI _W ndow.
Thiscauses FI _W ndow: : shown() to return true.

234 X-Specific Interface

FLTK 1.0 Programming Manual

void Fl_X::make_xid(FI_Window *, XVisuallnfo *=fl_visual, Colormap =fl_colormap)

This static method does the most onerous parts of creating an X window, including setting the label, resize
limitations, etc. It then doesFl _X: : set _xi d() with this new window and maps the window.

virtual void FI_Window::flush()

Thisvirtual functioniscalled by FI : : f1 ush() to update the window. For FLTK's own windows it does this
by setting the global variablesf| _wi ndowand fI _gc and then calling the dr aw() method. For your own
windows you might just want to put all the drawing code in here.

The X region that is acombination of all danage() callsdonesofarisinFl _X: :i (this)->region. If
NULL then you should redraw the entire window. The undocumented function

f1_clip_regi on(XRegi on) will initialize the FLTK clip stack with aregion or NULL for no clipping. You
must set region to NULL afterwardsasf| _cli p_regi on() now ownsit and will delete it when done.

If damage() FL_DAMAGE EXPOSE then only X expose events have happened. This may be useful if you have
an undamaged image (such as a backing buffer) around.

Here is a sample where an undamaged image is kept somewhere;

void MyW ndow: : fl ush() {
fl_clip_region(Fl_X: :i(this)->region);
FI _X:i(this)->region = 0;
if (damage() !'=2) {... draw things into backing store ...}
. copy backing store to wi ndow ...
}

virtual void FI_Window::hide()

Destroy the window server copy of the window. Usually you will destroy contexts, pixmaps, or other
resources used by the window, and then call FI _W ndow: : hi de() to get rid of the main window identified by
xi d() . If you override this, you must also override the destructor as shown:

voi d MyW ndow: : hi de() {
it (nypixmap) {
XFreePi xmap(fl _di spl ay, mypi xmap) ;
nypi xmap = 0;
}
FI _Wndow :hide(); // you nust call this

}

virtual void FI_Window::~FI_Window()

Because of the way C++ works, if you override hi de() you must override the destructor as well (otherwise
only the base class hi de() iscalled):

MW ndow: : ~MyW ndow() {
hi de();
}

Setting the Icon of a Window

X-Specific Interface 235

FLTK 1.0 Programming Manual

FLTK currently supports setting awindow's icon *before* it is shown using the
FI _W ndow: : i con() method.

void FI_Window::icon(char *)

Sets the icon for the window to the passed pointer. Y ou will need to cast the icon Pi xmap to achar * when
calling this method. To set the icon using a bitmap compiled with your application use:

#incl ude "icon. xbn{

Pi xmap p = XCreat eBi t mapFronDat a(f| _di spl ay, Defaul t Root Wndow(fl _di spl ay),
icon_bits, icon_w dth, icon_height);

wi ndow >i con((char *)p);

WIN32-Specific Interface

#i ncl ude <FL/x. H>

The <FL/ x. H> header file defines the interface to FLTK's WIN32-specific functions. Be warned that some of
the structures and callsin it are subject to change in future version of FLTK. Try to avoid doing this so your
code is portable.

Handling Other WIN32 Messages

By default asingle WNDCLASSEX called "FLTK" is created. All FI _W ndows are of this class unless you
use Fl _W ndow: : xcl ass() . Thewindow classis created the first time FI _W ndow: : show() iscalled.

Y ou can probably combine FLTK with other libraries that make their own WIN32 window classes. The
easiest way istocall FI : :wait (), itwill call Di spat chMessage for all messages to the other windows. If
necessary you can let the other library take over (aslong asit calls bi spat chMessage()), but you will have to
arrange for the function Fi : : f 1 ush() to be called regularily so that widgets are updated, timeouts are
handled, and theidle functions are called.

extern MSG fl_msg

The most recent message read by Get Message (whichiscaled by Fl : : wai t () . This may not be the most
recent message sent to an FLTK window, because silly WIN32 calls the handle procedures directly for some
events (sigh).

void Fl::add_handler(int (*f)(int))

Install afunction to parse unrecognized messages sent to FLTK windows. If FLTK cannot figure out what to
do with amessage, it calls each of these functions (most recent first) until one of them returns non-zero. The
argument passed to the fuctionsis zero. If al the handlers return zero then FLTK calls Def W ndowPr oc() .
HWND fl_xid(const FI_Window *)

Returns the window handle for aFl _W ndow, or zero if not shown() .

236 X-Specific Interface

FLTK 1.0 Programming Manual

FI_Window *fl_find(HWND xid)

Return the FI _W ndow that corresponds to the given window handle, or NULL if not found. This uses acache
so it isdlightly faster than iterating through the windows yourself.

Drawing Things Using the WIN32 GDI

When the virtual function FI _W dget : : draw() iscaled, FLTK has stashed in some global variables all the
silly extra arguments you need to make a proper GDI call. These are;

extern H NSTANCE f| _di spl ay;
extern HWND fl _wi ndow;
extern HDC fl _gc;

COLORREF fl _RGB();

HPEN f1 _pen();

HBRUSH f 1 _brush();

These global variables are set beforedr aw() iscaled, or by FI _W ndow: : make_current (). You can refer to
them when needed to produce GDI calls. Don't attempt to change them. The functions return GDI objects for
the current color set by f1 _col or () and are created as needed and cached. A typical GDI drawing call is
written like this:

Dr awSonet hi ng(fl _gc, ..., fl_brush());

It may also be useful to refer to FI _W ndow: : current () to get the window's size or position.

Setting the Icon of a Window

FLTK currently supports setting awindow's icon *before* it is shown using the
FI _W ndow: : i con() method.

void FI_Window::icon(char *)

Sets the icon for the window to the passed pointer. Y ou will need to cast the H coN handleto achar * when
calling this method. To set the icon using an icon resource compiled with your application use:

wi ndow >i con((char *)Loadl con(fl _display, MAKEI NTRESOURCE(IDI _I CON)));

How to Not Get a MSDOS Console Window

WIN32 has areally stupid mode switch stored in the executables that controls whether or not to make a
console window.

To always get a console window you simply create a console application (the "/SUBSY STEM:CONSOLE"
option for the linker). For a GUI-only application create a WIN32 application (the
"/SUBSY STEM:WINDOWS" option for the linker).

FLTK includesaw niai n() function that callsthe ANSI standard mai n() entry point for you. This function
creates a console window when you use the debug version of the library.

WIN32-Specific Interface 237

FLTK 1.0 Programming Manual

WIN32 applications without a console cannot write to st dout or st der r, even if they are run from a console
window. Any output is silently thrown away.

Known Bugs

If aprogram is deactivated, FI : : wai t () doesnot return until it is activated again, even though many events
are delivered to the program. This can cause idle background processes to stop unexpectedly. Thisalso
happens while the user is dragging or resizing windows or otherwise holding the mouse down. | was forced to
remove most of the efficiency FLTK uses for redrawing in order to get windows to update while being
moved. Thisisadesign error in WIN32 and probably impossible to get around.

FI _G _Wndow: : can_do_over | ay() returnstrue until thefirst timeit attempts to draw an overlay, and then
correctly returns whether or not thereis overlay hardware.

Cut text contains ~J rather than *M”J to break lines. Thisis afeature, not a bug.

Set Capt ur e (used by FI : : grab()) doesn't work, and the main window title bar turns gray while menus are
popped up.

FLUID does not support BMP files yet.

238 WIN32-Specific Interface

G - Software License

GNU LIBRARY GENERAL PUBLIC LICENSE

Version 2, June 1991
Copyright (C) 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
Everyoneis permitted to copy and distribute verbatim copies of this license document, but changing it is not
alowed.
[Thisisthefirst released version of the library GPL. It is numbered 2 because it goes with version 2 of the
ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and changeit. By contrast,
the GNU Genera Public Licenses are intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.

Thislicense, the Library General Public License, appliesto some specially designated Free Software
Foundation software, and to any other libraries whose authors decide to useit. Y ou can use it for your

libraries, too.

When we speak of free software, we are referring to freedom, not price. Our Genera Public Licenses are

G - Software License 239

FLTK 1.0 Programming Manual

designed to make sure that you have the freedom to distribute copies of free software (and charge for this
serviceif you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions transate to certain responsibilities for you if you distribute copies of
thelibrary, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for afee, you must give the recipients
all therights that we gave you. Y ou must make sure that they, too, receive or can get the source code. If you
link a program with the library, you must provide complete object files to the recipients so that they can
relink them with the library, after making changesto the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps. (1) copyright the library, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the library.

Also, for each distributor's protection, we want to make certain that everyone understands that thereis no
warranty for thisfreelibrary. If the library is modified by someone else and passed on, we want its recipients
to know that what they have is not the original version, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
companies distributing free software will individually obtain patent licenses, thus in effect transforming the
program into proprietary software. To prevent this, we have made it clear that any patent must be licensed for
everyone's free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License,
which was designed for utility programs. This license, the GNU Library General Public License, appliesto
certain designated libraries. Thislicense is quite different from the ordinary one; be sureto read it in full, and
don't assume that anything in it is the same asin the ordinary license.

The reason we have a separate public license for some librariesis that they blur the distinction we usually
make between modifying or adding to a program and simply using it. Linking a program with alibrary,
without changing the library, isin some sense simply using the library, and is analogous to running a utility
program or application program. However, in atextual and legal sense, the linked executable is a combined
work, a derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively
promote software sharing, because most devel opers did not use the libraries. We concluded that weaker
conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit
from the free status of the libraries themselves. This Library General Public License isintended to permit
devel opers of non-free programs to use free libraries, while preserving your freedom as a user of such
programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as
regards changes in header files, but we have achieved it as regards changes in the actual functions of the
Library.) The hope isthat thiswill lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the
difference between a"work based on the libary" and a "work that uses the library". The former contains code

240 Preamble

FLTK 1.0 Programming Manual

derived from the library, while the latter only works together with the library.

Note that it is possible for alibrary to be covered by the ordinary General Public License rather than by this
special one.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License Agreement appliesto any software library which contains a notice placed by the copyright
holder or other authorized party saying it may be distributed under the terms of this Library General Public
License (also called "this License"). Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be conveniently linked with
application programs (which use some of those functions and data) to form executabl es.

The"Library", below, refersto any such software library or work which has been distributed under these
terms. A "work based on the Library" means either the Library or any derivative work under copyright law:
that isto say, awork containing the Library or aportion of it, either verbatim or with modifications and/or
trandated straightforwardly into another language. (Hereinafter, trandation is included without limitation in
the term "modification".)

"Source code" for awork means the preferred form of the work for making modificationsto it. For alibrary,
compl ete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running a program using the Library is not restricted, and output from such a program is
covered only if its contents constitute awork based on the Library (independent of the use of the Library ina
tool for writing it). Whether that is true depends on what the Library does and what the program that uses the
Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code as you receiveit, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the Library.

You may charge afeefor the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for afee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming awork based on the
Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet al of these conditions:

a) The modified work must itself be a software library.

b) Y ou must cause the files modified to carry prominent notices stating that you changed the files and the
date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this
License.

Preamble 241

FLTK 1.0 Programming Manual

d) If afacility in the modified Library refersto afunction or atable of datato be supplied by an application
program that uses the facility, other than as an argument passed when the facility is invoked, then you must
make a good faith effort to ensure that, in the event an application does not supply such function or table, the
facility still operates, and performs whatever part of its purpose remains meaningful.

(For example, afunction in alibrary to compute sguare roots has a purpose that is entirely well-defined
independent of the application. Therefore, Subsection 2d requires that any application-supplied function or
table used by this function must be optional: if the application does not supply it, the square root function
must still compute square roots.) These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived fromthe Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections as part of a whole whichisa
work based on the Library, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and every part regardless of who
wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with awork
based on the Library) on avolume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of thisLicenseto a
given copy of the Library. To do this, you must alter al the notices that refer to this License, so that they refer
to the ordinary GNU General Public License, version 2, instead of to this License. (If anewer version than
version 2 of the ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this changeis made in agiven copy, it isirreversible for that copy, so the ordinary GNU General Public
License appliesto all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you accompany it with the complete
corresponding machine-readabl e source code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a"work that usesthe Library". Such awork, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a"work that uses the Library" with the Library creates an executable that is a derivative of
the Library (because it contains portions of the Library), rather than a"work that uses the library". The

242 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTIONAND MODIFICATION

FLTK 1.0 Programming Manual

executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a"work that usesthe Library" uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether thisis
true is especialy significant if the work can be linked without the Library, or if the work isitself alibrary.
The threshold for thisto be trueis not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or lessin length), then the use of the object file is unrestricted, regardless
of whether it islegally a derivative work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is aderivative of the Library, you may distribute the object code for the work under
the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they
are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a"work that uses the Library" with
the Library to produce awork containing portions of the Library, and distribute that work under terms of your
choice, provided that the terms permit modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

Y ou must give prominent notice with each copy of the work that the Library isused in it and that the Library
and its use are covered by this License. Y ou must supply a copy of this License. If the work during execution
displays copyright notices, you must include the copyright notice for the Library among them, aswell asa
reference directing the user to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the compl ete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2 above);
and, if the work is an executable linked with the Library, with the complete machine-readable "work that uses
the Library", as object code and/or source code, so that the user can modify the Library and then relink to
produce a modified executable containing the modified Library. (It is understood that the user who changes
the contents of definitions filesin the Library will not necessarily be able to recompile the application to use
the modified definitions.)

b) Accompany the work with awritten offer, valid for at least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent thisuser a
copy. For an executable, the required form of the "work that uses the Library" must include any data and
utility programs needed for reproducing the executable fromit. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do
not normally accompany the operating system. Such a contradiction means you cannot use both them and the
Library together in an executable that you distribute.

7. You may placelibrary facilities that are awork based on the Library side-by-sidein asingle library

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTIONAND MODIFICATION 243

FLTK 1.0 Programming Manual

together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilitiesis
otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any
other library facilities. This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is awork based on the Library,
and explaining where to find the accompanying uncombined form of the same work. 8. You may not copy,
modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or distribute the Library isvoid, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such partiesremain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Library or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and all itsterms and conditions for copying,
distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives alicense from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. Y ou may not impose any further restrictions on the recipients' exercise of the
rights granted herein. Y ou are not responsible for enforcing compliance by third partiesto this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you
cannot distribute so asto satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies directly or
indirectly through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section isintended to apply, and the section as awhole isintended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she iswilling to distribute software
through any other system and alicensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

12. If the distribution and/or use of the Library isrestricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the limitation as if written in

244 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTIONAND MODIFICATION

FLTK 1.0 Programming Manual

the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this
License which appliesto it and "any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Library does
not specify alicense version number, you may choose any version ever published by the Free Software
Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by the
Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of al derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY ISLICENSED FREE OF CHARGE, THERE ISNO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY "ASIS' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ASTO
THE QUALITY AND PERFORMANCE OF THE LIBRARY ISWITH YOU. SHOULD THE LIBRARY
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY ASPERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER
SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTIONAND MODIFICATION 245

FLTK 1.0 Programming Manual

246 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTIONAND MODIFICATION

	Table of Contents
	Preface
	Organization
	Conventions
	Abbreviations
	Copyrights and Trademarks

	1 - Introduction to FLTK
	History of FLTK
	Features
	Licensing
	What Does "FLTK" Mean?
	Building and Installing FLTK Under UNIX
	Building FLTK Under Micrsoft Windows
	Building FLTK Under OS/2
	Internet Resources
	Reporting Bugs

	2 - FLTK Basics
	Naming
	Header Files
	Compiling Programs with Standard Compilers
	Compiling Programs with Microsoft Visual C++
	Writing Your First FLTK Program

	3 - Common Widgets and Attributes
	Buttons
	Text
	Valuators
	Groups
	Setting the Size and Position of Widgets
	Colors
	Box Types
	Labels and Label Types
	Callbacks
	Shortcuts

	4 - Designing a Simple Text Editor
	Determining the Goals of the Text Editor
	Designing the Main Window
	Variables
	Menu_Bars and Menus
	Editing the Text
	The Replace Dialog
	Callbacks
	Other Functions
	Compiling the Editor
	The Final Product

	5 - Drawing Things in FLTK
	When Can You Draw Things in FLTK?
	FLTK Drawing Functions
	Images
	class Fl_Pixmap

	6 - Handling Events
	The FLTK Event Model
	Mouse Events
	Focus Events
	Keyboard Events
	Widget Events
	Clipboard Events
	Fl::event_*() methods
	Event Propagation

	7 - Adding and Extending Widgets
	Subclassing
	Making a Subclass of Fl_Widget
	The Constructor
	Protected Methods of Fl_Widget
	Handling Events
	Drawing the Widget
	Resizing the Widget
	Making a Composite/Group Widget
	Cut and Paste Support
	Making a subclass of Fl_Window

	8 - Programming with FLUID
	What is FLUID?
	A Short Tutorial
	Running FLUID Under UNIX
	Running FLUID Under Microsoft Windows
	Compiling .fl files
	The Widget Browser
	Menu Items
	The Widget Panel
	Widget Attributes
	Selecting Moving Widgets
	Image Labels

	9 - Using OpenGL
	Using OpenGL in FLTK
	Making a Subclass of Fl_Gl_Window
	Using OpenGL in Normal FLTK Windows
	OpenGL drawing functions
	Using OpenGL Optimizer with FLTK

	A - Widget Reference
	class Fl_Adjuster
	class Fl_Box
	class Fl_Browser
	class Fl_Browser_
	class Fl_Button
	class Fl_Chart
	class Fl_Check_Button
	class Fl_Choice
	class Fl_Clock
	class Fl_Color_Chooser
	class Fl_Counter
	class Fl_Dial
	class Fl_Double_Window
	class Fl_End
	class Fl_Float_Input
	class Fl_Free
	class Fl_Gl_Window
	class Fl_Group
	class Fl_Hold_Browser
	class Fl_Input
	class Fl_Input_
	class Fl_Int_Input
	class Fl_Light_Button
	class Fl_Menu_
	class Fl_Menu_Bar
	class Fl_Menu_Button
	struct Fl_Menu_Item
	class Fl_Menu_Window
	class Fl_Multi_Browser
	class Fl_Multiline_Input
	class Fl_Multiline_Output
	class Fl_Output
	class Fl_Overlay_Window
	class Fl_Pack
	class Fl_Positioner
	class Fl_Repeat_Button
	class Fl_Return_Button
	class Fl_Roller
	class Fl_Round_Button
	class Fl_Scroll
	class Fl_Scrollbar
	class Fl_Secret_Input
	class Fl_Select_Browser
	class Fl_Single_Window
	class Fl_Slider
	class Fl_Tabs
	class Fl_Tile
	class Fl_Timer
	class Fl_Valuator
	class Fl_Value_Input
	class Fl_Value_Output
	class Fl_Value_Slider
	class Fl_Widget
	class Fl_Window

	B - Function Reference
	Functions
	Fl:: Methods

	C - FLTK Enumerations.H
	Version Numbers
	Events
	Callback "When" Conditions
	Fl::event_key() Values
	Fl::event_state() Values
	Alignment Values
	Fonts
	Colors
	Cursors
	FD "When" Conditions
	Damage Masks

	D - GLUT Compatibility
	Using the GLUT Compatibility Header File
	Known Problems
	Mixing GLUT and FLTK Code
	class Fl_Glut_Window

	E - Forms Compatibility
	Importing Forms Layout Files
	Using the Compatibility Header File
	Problems you will encounter
	Additional Notes

	F - Operating System Issues
	X-Specific Interface
	WIN32-Specific Interface

	G - Software License
	GNU LIBRARY GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	NO WARRANTY
	END OF TERMS AND CONDITIONS

