
PLT MzScheme: Language Manual

Matthew Flatt
mflatt@cs.rice.edu
Rice University

Version 100alpha3
June 1999

Department of Computer Science – MS 132
Rice University

6100 Main Street
Houston, Texas 77005-1892



Copyright notice

Copyright c©1995-99 Matthew Flatt

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

libscheme: Copyright c©1994 Brent Benson. All rights reserved.

Conservative garbage collector: Copyright c©1988, 1989 Hans-J. Boehm, Alan J. Demers. Copyright c©1991-
1996 by Xerox Corporation. Copyright c©1996-1998 by Silicon Graphics. All rights reserved.

Collector C++ extension by Jesse Hull and John Ellis: Copyright c©1994 by Xerox Corporation. All rights
reserved.

Send us your Web links

If you use any parts or all of the DrScheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize
the fact on some Web page, we would like to link to that page. Please drop us a line at scheme@cs.rice.edu.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Thanks

Thanks to Brent Benson for libscheme, and to Hans Boehm and John Ellis for the conservative garbage
collector and their help.

Thanks also to Shriram Krishnamurthi, Robby Findler, Matthias Felleisen, Cormac Flanagan, Sebastian
Good, Bruce Duba, and many others for feedback and help.

This manual was typest using LATEX and a patched version of latex2html. Some typesetting macros were
originally taken from Julian Smart’s Reference Manual for wxWindows 1.60: a portable C++ GUI toolkit.



Contents

1 Introduction 1

1.1 MrEd, DrScheme, and mzc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Multiple Return Values 3

3 Basic Syntax Extensions 5

3.1 Evaluation Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.1 Cond and Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.2 When and Unless . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2.3 And and Or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.3 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Quasiquote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5 Binding Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5.1 Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5.2 Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.5.3 Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5.4 Fluid-Let . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5.5 Syntax Expansion and Internal Definitions . . . . . . . . . . . . . . . . . . . . . . . . 8

3.6 Case-Lambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Basic Data Extensions 10

4.1 Void and Undefined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Booleans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

i



CONTENTS CONTENTS

4.4 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.6 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.7 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.8 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.9 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.10 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.10.1 Arity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.10.2 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.10.3 Procedure Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.11 Promises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.12 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Structures 16

5.1 Creating Structure Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2 Creating Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Structure Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Classes and Objects 19

6.1 Object Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Creating Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3 Creating Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.3.1 Initialization Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3.2 Instance Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3.3 Initial Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.4 Creating Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.5 Instance Variable Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.5.1 Generic Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.6 Object Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Units 29

ii



CONTENTS CONTENTS

7.1 Core Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.1 Creating Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.2 Invoking Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1.3 Linking Units and Creating Compound Units . . . . . . . . . . . . . . . . . . . . . . . 32

7.1.4 Unit Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2 Units with Signatures Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2.1 Importing and Exporting with Signatures . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.2 Linking with Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.2.3 Restricting Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2.4 Embedded Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Units with Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.1 Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.3.2 Signed Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.3.3 Signed Compound Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.3.4 Invoking Signed Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.4 Mixing Core and Signed Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.4.1 Extracting a Primitive Unit from a Signed Unit . . . . . . . . . . . . . . . . . . . . . . 41

7.4.2 Adding a Signature to Primitive Units . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.4.3 Expanding Signed Unit Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Exceptions and Control Flow 44

8.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1.1 Primitive Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.2 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.2.1 Application Type Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.2.2 Application Mismatch Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.2.3 Syntax Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2.4 Inferred Value Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.3 Continuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.4 Dynamic Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



CONTENTS CONTENTS

8.5 Continuation Marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.6 Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.7 Error Escape Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9 Threads and Namespaces 52

9.1 Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.1.1 Thread Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.2 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.3 Global Variable Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.3.1 Global Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.3.2 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.4.1 Built-in Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

9.4.2 Parameter Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.5 Custodians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10 Regular Expressions 61

11 System Utilities 64

11.1 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11.1.1 Current Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11.1.2 Opening File Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11.1.3 Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11.1.4 String Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11.1.5 File Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

11.1.6 Custom Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

11.1.7 Reading and Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

11.1.8 Customizing Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

11.1.9 Customizing Display, Write, and Print . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

11.2 Filesystem Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11.2.1 Pathnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iv



CONTENTS CONTENTS

11.2.2 Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11.2.3 Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11.3 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11.4 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

11.4.1 Real Time and Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

11.4.2 Machine Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.4.3 Timing Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.5 Operating System Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11.6 Operating System Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11.7 Runtime Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12 Memory Management 79

12.1 Weak Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

12.2 Will Executors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

12.3 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

13 Macros 81

13.1 Defining Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

13.2 Identifier Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

13.3 Expansion Time Binding and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

13.4 Primitive Syntax and Expanding Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

14 Support Facilities 85

14.1 Eval and Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

14.2 Exiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14.3 Input Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14.4 Output Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

14.5 Data Sharing in Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

14.6 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14.7 Dynamic Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14.8 Saving and Restoring Program Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

v



CONTENTS CONTENTS

15 Library Collections and MzLib 91

15.1 MzLib Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

15.1.1 Thanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

15.2 MzLib Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

15.2.1 Awk: awk.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

15.2.2 Command-line Parsing: cmdline.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

15.2.3 Compatibility: compat.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

15.2.4 Compiling Files: compile.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

15.2.5 Core: core.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

15.2.6 Dates: date.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

15.2.7 Structures: defstru.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

15.2.8 Filesystem: file.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

15.2.9 Functions: functio.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

15.2.10Inflating Compressed Data: inflate.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

15.2.11Invoking with Exports to a Namespace: invoke.ss . . . . . . . . . . . . . . . . . . . . 107

15.2.12Macros: macro.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

15.2.13Match: match.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

15.2.14Math: math.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

15.2.15MzLib: mzlib.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

15.2.16Converted Printing: pconver.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

15.2.17Pretty Printing: pretty.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

15.2.18Requiring Libraries and Files: refer.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

15.2.19Restarting MzScheme with Arguments: restart.ss . . . . . . . . . . . . . . . . . . . . . 117

15.2.20Sharing: shared.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

15.2.21MrSpidey: spidey.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

15.2.22Strings: string.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

15.2.23Syntax Rules: synrule.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

15.2.24Threads: thread.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

15.2.25Tracing: trace.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

vi



CONTENTS CONTENTS

15.2.26Tracing Loads: traceld.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

15.2.27Transcripts: transcr.ss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

16 Running MzScheme 124

Index 126

vii



CONTENTS CONTENTS

viii



1. Introduction

The core of the Scheme programming language is described in Revised5 Report on the Algorithmic Language
Scheme. This manual assumes familiarity with Scheme and only contains information specific to MzScheme.
(Many sections near the front of this manual simply clarify MzScheme’s position with respect to the standard
report.)

MzScheme (pronounced “Ms. Scheme” or “Miz Scheme”) is nearly R5RS-compliant. MzScheme does not
provide the define-syntax, let-syntax, and letrec-syntax forms, although they are partially supported
by an external library. All other R5RS syntactic forms and procedures are provided by MzScheme with their
prescribed semantics. Certain parameters in MzScheme can change features affecting R5RS-compliance; for
example, case-sensitivity can be enabled (see §9.4.1.3).

MzScheme provides several notable extensions to R5RS Scheme:

• A class and object system (see Chapter 6).

• A unit system for separate compilation of program components (see Chapter 7).

• An exception system that is used for all primitive errors (see Chapter 8).

• Pre-emptive threads and multiple global variable namespaces (see Chapter 9).

MzScheme can be run as a stand-alone application, or it can be embedded within other applications. This
manual describes the language that is common to all uses of MzScheme. For information about running the
stand-alone version of MzScheme, see Chapter 16.

1.1 MrEd, DrScheme, and mzc

MrEd is an extension of MzScheme for graphical programming. MrEd is described separately in PLT MrEd:
Graphical Toolbox Manual .

DrScheme is a development environment for writing MzScheme- and MrEd-based programs. DrScheme pro-
vides debugging and project-management facilities, which are not provided by the stand-alone MzScheme ap-
plication, and a user-friendly interface with special support for using Scheme as a pedagogical tool. DrScheme
is described in PLT DrScheme: Development Environment Manual .

The mzc compiler takes MzScheme (or MrEd) source code and produces either platform-independent byte
code compiled files (.zo files) or platform-specific native code libraries (.so or .dll files) to be loaded into
MzScheme (or MrEd). The mzc compiler is described in PLT mzc: MzScheme Compiler Manual .

1.2 Notation

Throughout this manual, the syntax for new forms is described using a pattern notation with ellipses. Plain,
centered ellipses (· · ·) indicate zero or more repetitions of the preceding S-expression pattern. Ellipses with

1



1.2. Notation 1. Introduction

a “1” subscript (· · ·1) indicate one or more repetitions of the preceding S-expression pattern.

For example:

(let-values (((variable · · ·) expr) · · ·)
body-expr
· · ·1)

The first set of ellispes indicate that any number of variables (or none) can be provided with a single expr .
The second set of ellipses indicate that any number of ((variable · · ·) expr) combinations (or none) can
appear in the parentheses following the let-values syntax name. The last set of ellipses indicate that a
let-values expression can contain any number of body-expr expressions, as long as at least one expression
is provided. In describing parts of the let-values syntax, the name variable is used to refer to a single
binding variable in a let-values expression.

Some examples contain simple ellipses (...); these ellipses indicate that an unimportant part of the example
expression has been omitted.

Square brackets (“[” and “]”) are normally treated as parentheses by MzScheme, and this manual uses square
brackets as parentheses in example code. However, in describing a MzScheme procedure, this manual uses
square brackets to denote optional arguments. For example,

(raise-syntax-error name-symbol message-string [expr sub-expr ])

describes the calling convetion for a procedure raise-syntax-error where the name-symbol and message-
string arguments are required, and the expr and sub-expr arguments are optional (but expr must be provided
if sub-expr is provided).

2



2. Multiple Return Values

Most Scheme expressions return a single value. For example, in the following procedure:

(define quotient-and-remainder

(lambda (n d)

(let ([q (quotient n d)]

[r (remainder n d)])

(cons q r))))

the expressions (quotient n d) and (remainder n d) each return a single value. The expression (cons

q r) also returns a single value; although two other values can be extracted from the cons-cell created by
cons, the cons-cell is itself just a single value. Thus, this quotient-and-remainder procedure returns a
single value.

On the other hand, a context using quotient-and-remainder is probably interested only in the two numbers
returned by the procedure, not the cons-cell used to store the numbers. A client context might be best
expressed with the let-values form:

(let-values ([(q r) (quotient-and-remainder-values n d)])

(printf "~a * ~a + ~a = ~a~n" q d r n))

This let-values form expresses the idea that quotient-and-remainder-values returns two values, and
these two values are bound directly to q and r. For the let-values expression to be correct, the
quotient-and-remainder-values procedure must specifically return two values by using the values pro-
cedure:

(define quotient-and-remainder-values

(lambda (n d)

(values (quotient n d)

(remainder n d))))

Any MzScheme expression can return multiple values. Multiple return values are generated by the values

procedure, which bundles and returns its arguments as multiple return values. A bundle of return values is
not itself a first-class value. Rather, the individual values must unbundled by the context of the expression
returning multiple values. A run-time error is signalled when multiple values are returned to a context
expecting a single value. For example, the following expression signals a run-time error:

(let ([x (values 1 2)]) x)

In this example, the expression for x’s value must return a single value (since x is a single variable), but
(values 1 2) returns multiple values to the binding context. Most contexts are like this one, expecting a
single value. The let-values form creates a context expecting (a particular number of) mulitple values. The
call-with-values procedure also creates a multiple values return context by transforming the individual
values of a multiple-value return into the arguments of a procedure call.

Binding form contexts for multiple-value expressions are discussed in §3.5. Only the values and
call-with-values procedures are described here:

3



2. Multiple Return Values

• (values v · · ·) returns the vs as multiple values. If zero vs or more than one v is provided, the
result of this expression must be used in a multiple-value context; e.g., the result must be used by
call-with-values, define-values, or let-values, or it must be ignored. (values v) is always
equivalent to v .

• (call-with-values producer-proc consumer-proc) invokes producer-proc and passes the result to
consumer-proc. The producer-proc argument is a procedure that takes no arguments and returns
some number of values. The consumer-proc argument is a procedure that takes the same number of
arguments as the number of values returned by producer-proc. The result of the call-with-values

expression is the result of applying consumer-proc.

Multiple return values are legal whenever the return value of an expression is ignored, or when it passed on
as the result of an enclosing expression (provided that the enclosing expression can legally return multiple
values). For example, either branch of an if expression can return multiple values; in this case the result
of the entire if expression might be multiple values. However, the test expression of an if expression must
return a single value because that value is used as a test. Similarly, the body expressions of a let form can
return multiple values, but the binding expressions must return single values. (This is true even when the
variable that is bound is not used in the body of the let expression.) An expression used in a procedure
application (either as the procedure to be applied or one of the arguments) must always return a single value.

If a built-in procedure takes a procedure argument, and it does not inspect the result of the supplied
procedure, then the supplied procedure can return multiple values. For example, the procedure supplied to
for-each can return any number of values, but the procedure supplied to map must return a single value.

When the number of values returned by an expression does not match the number of values expected by the
expression’s context, the exn:application:arity exception is raised (at run time).

Examples:

(- (values 1)) ; ⇒ -1

(- (values 1 2)) ; ⇒ exn:application:arity, returned 2 values to single-value context

(- (values)) ; ⇒ exn:application:arity, returned 0 values to single-value context

(call-with-values

(lambda () (values 1 2))

(lambda (x y) y)) ; ⇒ 2

(call-with-values

(lambda () (values 1 2))

(lambda z z)) ; ⇒ (1 2)

(call-with-values

(lambda () (let/cc k (k 3 4)))

(lambda (x y) y)) ; ⇒ 4

(call-with-values

(lambda () (values ’hello 1 2 3 4))

(lambda (s . l)

(format "∼s = ∼s" s l))) ; ⇒ "hello = (1 2 3 4)"

4



3. Basic Syntax Extensions

3.1 Evaluation Order

In an application expression, the procedure expression and the argument expressions are always evaluated
left-to-right.

3.2 Conditionals

3.2.1 Cond and Case

In MzScheme’s normal mode,1 the result of a cond expression with no matching clause is void (see §4.1). In
other modes, evaulating a non-matching cond raises the exn:else exception.

Every case expression is expanded into a cond expression; depending on the MzScheme’s running mode,
evaluating a case expression with no matching clause will raise the exn:else exception.

An else clause in a cond or case expression must be the last clause, otherwise a syntax error is signalled. If
=> is used in the second position within a cond clause and it is not followed by a single recipient expression,
a syntax error is signalled.

The else and => identifiers in a cond or case statement are handled specially only when they are not
lexically bound:

(cond ([1 => add1])) ; ⇒ 2

(let ([=> 5]) (cond ([1 => add1]))) ; ⇒ #<primitive:add1>

3.2.2 When and Unless

The when and unless forms conditionally evaluate a single body of expressions:

• (when test expr · · ·1) evaluates the expr body expressions only when test returns a true value.

• (unless test expr · · ·1) evaluates the expr body expressions only when test returns #f.

The result of a when or unless expression is the result of the last body expression if the body is evaluated,
or void (see §4.1) if the body is not evaluated.

1This mode is controlled by the compile-allow-cond-fallthrough parameter (see §9.4.1.5). The default mode of a running
MzScheme depends on command line arguments or internal settings established by an application with an embedded MzScheme.
In MrEd, the default mode is to raise the exn:else exception for non-matching cond and case expressions.

5



3.3. Sequences 3. Basic Syntax Extensions

3.2.3 And and Or

In an and or or expression, the last test expression can return multiple values (see Chapter 2). If the last
expression is evaluated and it returns multiple values, then the result of the entire and or or expression is
the multiple values. Other sub-expressions in an and or or expression must return a single value.

3.3 Sequences

The begin0 form is like begin, but the value of the first expression in the form is returned instead of the
last expression:

(let ([x 4])

(begin0 x (set! x 9) (display x))) ; ⇒ displays 9 then returns 4

3.4 Quasiquote

The standard Scheme quasiquote has been extended so that unquote and unquote-splicing work within
immediate boxes:

‘#&(,(- 2 1) ,@(list 2 3)) ; ⇒ #&(1 2 3)

See §14.3 for more information about immediate boxes.

3.5 Binding Forms

3.5.1 Global Variables

Top-level variables are bound with the standard Scheme define form. Multiple values are bound to multiple
variables at once with define-values:

(define-values (variable · · ·) expr)

The number of values returned by expr must match the number of variables provided.

All of the variables are bound sequentially after expr is evaluated. If an error occurs while binding one of
the definitions (perhaps because the variable is a constant that is already defined), then the definitions for
the preceding variables will have already completed, but definitions for the remaining variables will never
complete.

Examples:

(define x 1)

x ; ⇒ 1

(define-values (x) 2)

x ; ⇒ 2

(define-values (x y) (values 3 4))

x ; ⇒ 3

y ; ⇒ 4

(define-values (x y) (values 5 (add1 x)))

y ; ⇒ 4

(define-values () (values)) ; same as (void)

6



3. Basic Syntax Extensions 3.5. Binding Forms

(define x (values 7 8)) ; ⇒ exn:application:arity, 2 values for 1-value context

(define-values (x y) 7) ; ⇒ exn:application:arity, 1 value for 2-value context

(define-values () 7) ; ⇒ exn:application:arity, 1 value for 0-value context

3.5.2 Local Variables

Local variables are bound with standard Scheme’s let, let*, and letrec. MzScheme’s letrec form guran-
tees sequential evaualtion of the binding expressions.

Multiple values are bound to multiple local variables at once with let-values, let*-values, and
letrec-values. The syntax for let-values is:

(let-values (((variable · · ·) expr) · · ·) body-expr · · ·1)

As in define-values, the number of values returned by each expr must match the number of variables
declared in the corresponding clause. Each expr remains outside of the scope of all variables bound by the
let-values expression.

The syntax for let*-values and letrec-values is the same as for let-values, and the binding semantics
for each form corresponds to the single-value binding form:

• In a let*-values expression, the scope of the variables of each clause includes all of the remaining
binding clauses. The clause expressions are evaluated and bound to variables sequentially.

• In a letrec-values expression, the scope of the variables of each clause includes all of the binding
clauses. The clause expressions are evaluated and bound to variables sequentially.

When a letrec or letrec-values expression is evaluated, each variable binding is initially assigned the
special undefined value (see §4.1); the undefined value is replaced once the corresponding expression is
evaluated.

Examples:

(define x 0)

(let ([x 5] [y x]) y) ; ⇒ 0

(let* ([x 5] [y x]) y) ; ⇒ 5

(letrec ([x 5] [y x]) y) ; ⇒ 5

(letrec ([x y] [y 5]) x) ; ⇒ undefined
(let-values ([(x) 5] [(y) x]) y) ; ⇒ 0

(let-values ([(x y) (values 5 x)]) y) ; ⇒ 0

(let*-values ([(x) 5] [(y) x]) y) ; ⇒ 5

(let*-values ([(x y) (values 5 x)]) y) ; ⇒ 0

(letrec-values ([(x) 5] [(y) x]) y) ; ⇒ 5

(letrec-values ([(x y) (values 5 x)]) y) ; ⇒ undefined
(letrec-values ([(odd even)

(values

(lambda (n) (if (zero? n) #f (even (sub1 n))))

(lambda (n) (if (zero? n) #t (odd (sub1 n)))))])

(odd 17)) ; ⇒ #t

7



3.5. Binding Forms 3. Basic Syntax Extensions

3.5.3 Assignments

The standard set! form assigns a value to a single global or local variable. Multiple variables can be assigned
at once using set!-values:

(set!-values (variable · · ·) expr)

The number of values returned by expr must match the number of variables provided.

The variables can be any mixture of global and local variables. Assignments are performed sequentially
from the first variable to the last. If an error occurs in one of the assignments (perhaps because a global
variable is a constant or is not yet bound), then the assignments for the preceding variables will have already
completed, but assignments for the remaining variables will never complete.

3.5.4 Fluid-Let

The syntax for a fluid-let expression is the same as for let:

(fluid-let ((variable expr) · · ·) body-expr · · ·1)

Each variable must be either a local variable or a global variable that is bound before the fluid-let

expression is evaluated. Before the body-exprs are evaluated, the bindings for the variables are set! to the
values of the corresponding exprs. Once the body-exprs have been evaluated, the values of the variables are
restored. The value of the entire fliud-let expression is the value of the last body-expr .

3.5.5 Syntax Expansion and Internal Definitions

All binding forms are macro expanded into define-values, let-values, and letrec-values expressions.
The set!-values form is expanded to let-values with set!. See §13.4 for more information.

All define-values expressions that are inside only begin expressions are treated as top-level definitions.
Immediate body define-value expressions in a unit expression are handled specially as described in §7.1.1.
Any other define-values expression is either an internal definition or syntactically illegal.

Internal definitions can appear at the beginning of the body in a lambda, case-lambda, let, let-values,
let*, let*-values, letrec, letrec-values, fluid-let, let-macro, let-id-macro, let-epansion-time,
parameterize, or with-handlers expression. At least one non-definition expression must follow a sequence
of internal definitions.

When a begin expression appears within an implicit sequence, its content is inlined into the sequence
(recursively, if the begin expression contains other begin expressions). Like top-level begin expressions
(and unlike other begin expressions), a begin expression in an internal definition context can be empty.

An internal define-values expression is transformed along with the rest of the expressions following it into
a letrec-values expression: the variables originally bound by the define-values expressions become the
binding variables of the new letrec-values expression, and the expressions that followed the define-values
expressions become the body of the new letrec-values expression.

Multiple adjacent define-values statements are collected into a single letrec-values transformation so
that the definitions can be mutually-recursive, but the define-values expressions really must be adjacent:
a define-values expressions following a non-define-values expression is not an internal definition.

An internal defintion cannot shadow a syntax form or macro name. Thus, an internal definition cannot
alter the decision of whether another expression is also an internal definition in the same letrec-values

8



3. Basic Syntax Extensions 3.6. Case-Lambda

transformation.2

Internal macro definitions (using define-macro) are desecribed in §13.1.

3.6 Case-Lambda

The case-lambda form creates a procedure that dispatches to a particular body of expressions based on the
number of arguments it receives. This provides a mechanism for creating variable-arity procedures with more
control and efficiency than using a “rest arg” — e.g., the x in (lambda (a . x) ...) — with a lambda

expression.

A case-lambda expression has the form:

(case-lambda

(formals expr · · ·1)
· · ·)

formals is one of:
variable
(variable · · ·)
(variable · · · . identifer)

Each (formals expr · · ·1) clause of a case-lambda expression is analogous to a lambda expression of the
form (lambda formals expr · · ·1). The scope of the variables in each clause’s formals includes only the
same clause’s exprs. The formals variables are bound to actual arguments in an application in the same way
that lambda variables are bound in an application.

When a case-lambda procedure is invoked, one clause is selected and its exprs are evaluated for the appli-
cation; the result of the last expr in the clause is the result of the application. The clause that is selected for
an application is the first one with a formals specification that can accommodate the number of arguments
in the application.3

Examples:

(define f

(case-lambda

[(x) x]

[(x y) (+ x y)]

[(a . any) a]))

(f 1) ; ⇒ 1

(f 1 2) ; ⇒ 3

(f 4 5 6 7) ; ⇒ 4

(f) ; raises exn:application:arity

The result of a case-lambda expression is a regular procedure. Thus, the procedure? predicate returns #t

when applied to the result of a case-lambda expression.

2Since an internal macro definition is not a regular internal definition, there is no ambiguity about whether an internal macro
defintion applies to previous expressions that are potentially internal defintions; the macro only applies to expressions after the
macro definition.

3It is possible that a clause in a case-lambda expression can never be evaluated because a preceding clause always matches
the arguments.

9



4. Basic Data Extensions

4.1 Void and Undefined

MzScheme returns the unique void value — printed as #<void> — for expressions that have undefined
results in R5RS. The procedure void takes any number of arguments and returns void:

• (void v · · ·) returns void.

• (void? v) returns #t if v is void, #f otherwise.

Non-global variables that are accessible but do not yet have a value are bound to the unique undefined value,
printed as #<undefined>. Such variables are created by letrec-values expressions (see §3.5), partially-
initialized objects (see Chapter 6), and partially-invoked units (see Chapter 7).

4.2 Booleans

Unless otherwise specified, two instances of a particular MzScheme data type are equal? only when they
are eq?.

The andmap and ormap procedures apply a test procedure to the elements of a list, returning immediately
when the result for testing the entire list is determined. The arguments to andmap and ormap are the same
as for map, but a single Boolean value is returned as the result rather than a list:

• (andmap proc list ···1) applies proc to elements of the lists from the first elements to the last, returning
#f as soon as any application returns #f. If no application of proc returns #f, then the result of the
last application of proc is returned. If the lists are empty, then #t is returned.

• (ormap proc list · · ·1) applies proc to elements of the lists from the first elements to the last. If any
application returns a value other than #f, that value is immediately returned as the result of the ormap
application. If all applications of proc return #f, then the result is #f. If the lists are empty, then #f

is returned.

Examples:

(andmap positive? ’(1 2 3)) ; ⇒ #t

(ormap eq? ’(a b c) ’(a b c)) ; ⇒ #t

(andmap positive? ’(1 2 a)) ; ⇒ raises exn:application:type

(ormap positive? ’(1 2 a)) ; ⇒ #t

(andmap positive? ’(1 -2 a)) ; ⇒ #f

(andmap + ’(1 2 3) ’(4 5 6)) ; ⇒ 9

(ormap + ’(1 2 3) ’(4 5 6)) ; ⇒ 5

10



4. Basic Data Extensions 4.3. Numbers

4.3 Numbers

A number in MzScheme is one of the following:

• a fixnum exact integer (30 bits1 plus a sign bit)

• a bignum exact integer (cannot be represented in a fixnum)

• a fraction exact rational (represented by two exact integers)

• a flonum inexact rational (double-precision floating-point number)

• a complex number; either the real and imaginary parts are both exact or inexact, or the number
has an exact zero real part and an inexact imaginary part; a complex number with an inexact zero
imaginary part is a real number

The following are inexact numerical constants: +inf.0 (infinity), -inf.0 (negative infinity), +nan.0 (not
a number), and -nan.0 (same as +nan.0). They have no exact form. Dividing by an inexact zero returns
+inf.0 or -inf.0, depending on the sign of the dividend. The infinities are integers, and they answer #t for
both even? and odd?; +nan.0 is not an integer and is not = to itself, but +nan.0 is eqv? to itself.2 Similarly,
(= 0.0 -0.0) is #t, but (eqv? 0.0 -0.0) is #f.

All multi-argument arithmetic procedures operate pairwise on arguments from right to left.

The string->number procedure works on all number representations and exact integer radix values in
the range 2 to 16 (inclusive). The number->string procedure accepts all number types and the radix
values 2, 8, 10, and 16; however, if an inexact number is provided with a radix other than 10, the
exn:application:mismatch exception is raised.

The add1 and sub1 procedures work on any number:

• (add1 z) returns z + 1.

• (sub1 z) returns z − 1.

The following procedures work on exact integers in their (semi-infinite) two’s complement representation:

• (bitwise-ior n · · ·1) returns the bitwise “inclusive or” of the ns.

• (bitwise-and n · · ·1) returns the bitwise “and” of the ns.

• (bitwise-xor n · · ·1) returns the bitwise “exclusive or” of the ns.

• (bitwise-not n) returns the bitwise “not” of n.

• (arithmetic-shift n m) returns the bitwise “shift” of n. The integer n is shifted left by m bits; i.e.,
m new zeros are introduced as rightmost digits. If m is negative, n is shifted right by -m bits; i.e., the
rightmost -m digits are dropped.

The random procedure generates pseudo-random integers:

130 bits for a 32-bit architecture, 62 bits for a 64-bit architecture.
2This definition of eqv? technically contradicts R5RS, but R5RS does not address strange “numbers” like +nan.0.

11



4.4. Characters 4. Basic Data Extensions

• (random k) returns a random exact integer in the range 0 to k −1 where k is an exact integer between
1 and 231 − 1, inclusive. The number is provided by the current psuedo-random number generator,
which maintains an internal state for generating numbers.3

• (random-seed k) seeds the current pseudo-random number generator with k , an exact integer between
0 and 231−1, inclusive. Seeding a generator sets its internal state deterministically; seeding a generator
with a particular number forces it to produce a sequence of pseudo-random numbers that is the same
across runs and across platforms.

• (current-pseudo-random-generator) returns the current pseudo-random number generator, and
(current-pseudo-random-generator generator) sets the current generator to generator . See also
§9.4.1.13.

• (make-pseudo-random-generator) returns a new pseudo-random number generator. The new gener-
ator is seeded with a number derived from (current-milliseconds).

• (pseudo-random-generator? v) returns #t if v is a pseudo-random number generator, #f otherwise.

4.4 Characters

MzScheme character values range over the characters for ASCII values 0 to 255. The procedure
char->integer returns the ASCII value of a character and integer->char takes an ASCII value and
returns the corresponding character. If integer->char is given an integer that is not in 0 to 255, the
exn:application:type exception is raised.

The character comparison procedures — char=?, char-ci=?, etc. — take one or more character arguments
and check the arguments pairwise (like the numerical comparison procedures).

4.5 Strings

When a string is created with make-string without a fill value, it is initialized with the null character
(#\nul) in all positions.

The string comparison procedures — string=?, string-ci=?, etc. — take one or more string arguments
and check the arguments pairwise (like the numerical comparison procedures).

4.6 Symbols

MzScheme provides two ways of generating an uninterned symbol, i.e., a symbol that is not eq?, eqv?,
or equal? to any other symbol:

• (string->uninterned-symbol string) is like (string->symbol string), but the resulting symbol is
a new uninterned symbol. Calling string->uninterned-symbol twice for the same s returns two
distinct symbols.

• (gensym [symbol/string ]) creates an uninterned symbol with an automatically-generated name. The
optional symbol/string argument is a prefix symbol or string.

3The random number generator uses a relatively standard Unix random() implementation in its degree seven polynomial
mode.

12



4. Basic Data Extensions 4.7. Vectors

4.7 Vectors

When a vector is created with make-vector without a fill value, it is initialized with 0 in all positions.

4.8 Lists

The global variable null is bound to the empty list.

(reverse! list) is the same as (reverse list), but list is destructively reversed.

(append! list · · ·1) destructively appends the lists.

(list* v · · ·1) is similar to (list v · · ·1) but the last argument is used directly as the cdr of the last pair
constructed for the list:

(list* 1 2 3 4) ; ⇒ (1 2 3 . 4)

The list-ref and list-tail procedures accept an improper list as a first argument. If either procedure
is applied to an improper list and an index that would require taking the car or cdr of a non-cons-cell, the
exn:application:mismatch exception is raised.

The member, memv, and memq procedures accept an improper list as a second argument. If the membership
search reaches the improper tail, the exn:application:mismatch exception is raised.

The assoc, assv, and assq procedures accept an improperly formed asscociation list as a second argu-
ment. If the association search reaches an improper list tail or a list element that is not a pair, the
exn:application:mismatch exception is raised.

4.9 Boxes

MzScheme provides boxes, records with a single mutable field:

• (box v) returns a new box that contains v .

• (unbox box) returns the content of box . For any v , (unbox (box v)) returns v .

• (set-box! box v) sets the content of box to v .

• (box? v) returns #t if v is a box, #f otherwise.

Two boxes are equal? if the contents of the boxes are equal?.

4.10 Procedures

4.10.1 Arity

MzScheme’s arity procedure inspects the input arity of a procedure:

• (arity proc) returns information about the number of arguments accepted by the procedure proc.
The result a is either:

– an exact non-negative integer ⇒ the procedure always takes exactly a arguments;

13



4.11. Promises 4. Basic Data Extensions

– an arity-at-least structure value ⇒ the procedure takes (arity-at-least-value a) or
more arguments; or

– a list containing integers and arity-at-least structure values⇒ the procedure takes any number
of arguments that can match one of the arities in the list.

• (procedure-arity-includes? proc k) returns #t if the procedure can accept n arguments (where k
is an exact non-negative integer), #f otherwise.

Examples:

(arity cons) ; ⇒ 2

(arity list) ; ⇒ #<struct:arity-at-least>

(arity-at-least? (arity list)) ; ⇒ #t

(arity-at-least-value (arity list)) ; ⇒ 0

(arity-at-least-value (arity (lambda (x . y) x))) ; ⇒ 1

(arity (case-lambda [(x) 0] [(x y) 1])) ; ⇒ (1 2)

(procedure-arity-includes? cons 2) ; ⇒ #t

(procedure-arity-includes? display 3) ; ⇒ #f

4.10.2 Primitives

A primitive procedure is a procedure that is built into MzScheme, although not all built-in procedures (see
§9.3.1) are primitives. Almost all R5RS procedures are primitives, as are most of the procedures described
in this manual (except for MzLib procedures).

• (primitive? v) returns #t if v is a primitive procedure or #f otherwise.

• (primitive-name prim-proc) returns the name of the primitive procedure prim-proc as a string.

• (primitive-result-arity prim-proc) returns the arity of the result of the primitive procedure prim-
proc (as opposed to the procedure’s input arity as returned by arity; see §4.10.1). For most primitives,
this procedure returns 1 since most primitives return a single value when applied. For information about
arity values, see §4.10.1.

• (primitive-closure? v) returns #t if v is internally implemented as a primitive closure rather than
an simple primitive procedure, #f otherwise. This information is intended for use by the mzc compiler.

• (simple-return-primitive? prim-proc) returns #t if the given primitive procedure never computes
its return value by an internal chained tail call. This information is intended for use by the mzc
compiler.

4.10.3 Procedure Names

See §8.2.4 for information about the names inferred for lambda and case-lambda procedures.

4.11 Promises

MzScheme implements delay as a macro that expands to make-promise. The force procedure can only be
applied to values returned by make-promise, and promises are never implicitly forced.

• (make-promise thunk) returns a new promise, where thunk is a procedure of zero arguments.

• (promise? v) returns #t if v is a promise created by make-promise or #f otherwise.

14



4. Basic Data Extensions 4.12. Hash Tables

4.12 Hash Tables

MzScheme provides efficient built-in hash tables. Key comparisons use eq?.

• (make-hash-table) creates and returns a new hash table.

• (make-hash-table-weak) creates a hash table with weakly-held keys (see §12.1).

• (hash-table? v) returns #t if v was created by make-hash-table or make-hash-table-weak, #f
otherwise.

• (hash-table-put! hash-table key-v v) maps key-v to v in hash-table, overwriting any existing map-
ping for key-v .

• (hash-table-get hash-table key-v [failure-thunk ]) returns the value for key-v in hash-table. If no
value is found for key-v , then the result of invoking failure-thunk (a procedure of no argments) is
returned. If failure-thunk is not provided, the exn:application:mismatch exception is raised if no
value is found for key-v .

• (hash-table-remove! hash-table key-v) removes the value mapping for key-v if it exists in hash-table.

• (hash-table-map hash-table proc) applies the procedure proc to each element in hash-table, accumu-
lating the results into a list. The procedure proc must take two arguments: a key and its value.

• (hash-table-for-each hash-table proc) applies the procedure proc to each element in hash-table (for
the side-effects of proc) and returns void. The procedure proc must take two arguments: a key and its
value.

15



5. Structures

A structure type is a record datatype composed of a number of named fields. A structure, an instance
of a structure type, is a first-class value that contains a value for each field of the structure type. A structure
instance is created with a type-specific constructor procedure, and its field values are accessed and changed
with type- and field-specific selector and setter procedures. In addition, each structure type has a predicate
procedure that answers #t for instances of the structure type and #f for any other value.

5.1 Creating Structure Types

A new structure type is created with one of two struct forms:

(struct s (field · · ·))
(struct (s t-expr) (field · · ·))

where s and each field are identifiers. The latter form is described in §5.2.

A struct expression with n fields returns 3 + 2n values:

• struct:s, a structure type descriptor value that represents the new datatype. The purpose of this
value is explained in §5.2.

• make-s, a constructor procedure that takes n arguments and returns a new structure value.

• s?, a predicate procedure that returns #t for a value constructed by make-s (or the constructor for a
subtype; see §5.2) and #f for any other value.

• s-field , for each field , a selector procedure that takes a structure value and extracts the value for field .

• set-s-field!, for each field , a setter procedure that takes a structure and a new field value. The field
value in the structure is destructively updated with the new value, and void is returned.

The order of the return values from a struct expression is the same as in the list above, up and including
to the setter procedure for the first field (if the structure type has any fields). If the structure type has more
than one field, the selector for the second field is next, followed by the setter for the second field, and so on
for additional fields.

The names make-s, etc. are only used by the return values of struct for error-reporting. But these names
are used as binding variables by the define-struct and let-struct macros:

(define-struct s (field · · ·))
⇒
(define-values (struct:s make-s s? s-field set-s-field! · · ·) (struct s (field · · ·)))

(let-struct s (field · · ·)

16



5. Structures 5.2. Creating Subtypes

body-expr · · ·1)
⇒
(let-values ([(struct:s make-s s? s-field set-s-field! · · ·) (struct s (field · · ·))])

body-expr · · ·1)

Each time a struct expression is evaluated, a new structure type is created with distinct constructor,
predicate, selector, and setter procedures. If the same struct expression is evaluated twice, instances
created by the constuctor returned by the first evaluation will answer #f to the predicate returned by the
second evaluation.

Examples:

(define-struct cons-cell (car cdr))

(define x (make-cons-cell 1 2))

(cons-cell? x) ; ⇒ #t

(cons-cell-car x) ; ⇒ 1

(set-cons-cell-car! x 5)

(cons-cell-car x) ; ⇒ 5

(define orig-cons-cell? cons-cell?)

(define-struct cons-cell (car cdr))

(define y (make-cons-cell 1 2))

(cons-cell? y) ; ⇒ #t

(cons-cell? x) ; ⇒ #f, cons-cell? now checks for a different type
(orig-cons-cell? x) ; ⇒ #t

(orig-cons-cell? y) ; ⇒ #f

5.2 Creating Subtypes

The second struct form shown in §5.1 creates a new structure type that is a structure subtype of an
existing base structure type. An instance of a structure subtype can always be used as an instance of the
base structure type, but the subtype gets its own predicate procedure and may have its own fields in addition
to the fields of the base type.

The t-expr expression in a subtyping struct form is evaluated when the struct expression is evaluated.
The result of t-expr must be a structure type descriptor (returned as the first value of a struct expression
that was evaluated earlier). The structure type associated with this descriptor is used as the base structure
type for the new subtype. If the value of t-expr is not a structure type descriptor value, the exn:struct

exception is raised.

A structure subtype “inherits” the fields of its base type. If the base type has m fields and n fields are
specified in the subtyping struct expression, the resulting structure type has m+n fields. This means that
m+n field values must be provided to the subtype’s constructor procedure. Values for the first m fields of a
subtype instance are accessed with selector procedures for the original base type, and the last n are accessed
with subtype-specific selectors. Subtype-specific selectors and setters for the first m fields are not created
(so the number of values returned by a struct expression is always syntactically known, even though the
actual base type is not known until run time).

The define-struct and let-struct macros have forms that support subtyping:

(define-struct (s t) (field · · ·))

⇒

17



5.3. Structure Utilities 5. Structures

(define-values (struct:s make-s s? s-field set-s-field! · · ·) (struct (s t) (field · · ·)))

(let-struct (s t) (field · · ·)
body-expr · · ·1)

⇒
(let-values ([(struct:s make-s s? s-field set-s-field! · · ·) (struct (s t) (field · · ·))])

body-expr · · ·1)

Examples:

(define-struct cons-cell (car cdr))

(define x (make-cons-cell 1 2))

(define-struct (tagged-cons-cell struct:cons-cell) (tag))

(define z (make-tagged-cons-cell 3 4 ’t))

(cons-cell? z) ; ⇒ #t

(tagged-cons-cell? z) ; ⇒ #t

(tagged-cons-cell? x) ; ⇒ #f

(cons-cell-car z) ; ⇒ 3

(tagged-cons-cell-tag z) ; ⇒ ’t

5.3 Structure Utilities

Structures can only be created and changed with the constructor and setter procedures created by struct,
but structures are not opaque. These utility procedures work with all structure instance values:

• (struct? v) returns #t if v was created by any make-s or #f otherwise. All other built-in predicates
return #f for values constructed by a make-s.

• (struct-length struct) returns the number of field values in the structure struct .

• (struct-ref struct k) returns the value of the kth field of the structure struct . (The first field is index
0.) If struct does not have an kth field value, the exn:application:mismatch exception is raised.

• (struct->vector struct) converts the structure value struct to a vector. The first slot of the result
vector contains an symbol of the form struct:s. The remaining slots contain the field values of struct .
The struct->vector procedure is intended for printing and debugging use.

Two structure values are eqv? if and only if they are eq?. Two structure values are equal? if they have the
same structure type and their corresponding field values are all equal?.

Each kind of value returned by struct has a recognizing predicate:

• (struct-type? v) returns #t if v is a structure type descriptor value, #f otherwise.

• (struct-constructor-procedure? v) returns #t if v is a constructor procedure generated by struct,
#f otherwise.

• (struct-predicate-procedure? v) returns #t if v is a predicate procedure generated by struct, #f
otherwise.

• (struct-getter-procedure? v) returns #t if v is a selector procedure generated by struct, #f

otherwise.

• (struct-setter-procedure? v) returns #t if v is a setter procedure generated by struct, #f other-
wise.

18



6. Classes and Objects

A MzScheme class specifies

• a collection of instance variables;

• initial value expressions for the instance variables; and

• initialization variables that are bound to initialization. arguments.

An object is a collection of bindings for instance variables that are instantiated according to a class descrip-
tion. There is no distinction between “methods” and “instance variables”; a method is simply an instance
variable with a procedural value.

The core feature of the object system is the ability to define a new class (a derived class) in terms of an
existing class (the superclass) using inheritance and overriding:

• inheritance: An object of a derived class instantiates variables declared by the derived class’s super-
class as well as variables declared in the derived class expression.

• overriding: A variable declared in a superclass can be redeclared in the derived class. References to
the overridden variable in the superclass use the binding of the derived class’s declaration.

An interface is a collection of variable names that could be declared by a class. A class implements an
interface when it

• declares (or inherits) a public instance variable for each variable in the interface; and

• specifically declares its intention to implement the interface.

A single class can implement any number of interfaces. A derived class automatically implements any
interface that its superclass implements.

A new interface can extend one or more interfaces with additional variables; classes that implement the
extended interface also implement the original interfaces.

Classes, objects, and interfaces are all first-class Scheme values. However, a MzScheme class or interface is
not a MzScheme object (i.e., there are no “meta-classes” or “meta-interfaces”).

6.1 Object Example

Since most readers will be familiar with a other object systems, we begin with an example use of MzScheme’s
object system to illustrate its particular style.

19



6.1. Object Example 6. Classes and Objects

(define stack<%> (interface () push! pop! empty?))

(define stack%

(class* object% (stack<%>) ()

(private

[stack null]) ; A private instance variable

(public

[name ’stack] ; A public instance variable

[push! (lambda (v)

(set! stack (cons v stack)))]

[pop! (lambda ()

(let ([v (car stack)])

(set! stack (cdr stack))

v))]

[empty? (lambda () (null? stack))]

[print-name (lambda ()

(display name) (newline))])

(sequence (super-init))))

(define named-stack%

(class stack% (stack-name)

(override

[name stack-name])

(sequence

(super-init))))

(define double-stack%

(class stack% ()

(inherit push!)

(override

[name ’double-stack])

(public

[double-push! (lambda (v)

(push! v)

(push! v))])

(sequence (super-init))))

(define-values (make-safe-stack-class is-safe-stack?)

(let ([safe-stack<%> (interface (stack<%>))])

(values

(lambda (super%)

(class* super% (safe-stack<%>) ()

(inherit empty?)

(rename [std-pop! pop!])

(override

[name ’safe-stack]

[pop! (lambda ()

(if (empty?) #f (std-pop!)))])

(sequence (super-init))))

(lambda (obj)

(implementation? (object-class obj) safe-stack<%>)))))

(define safe-stack% (make-safe-stack-class stack%))

20



6. Classes and Objects 6.1. Object Example

The interface stack<%>1 defines the ever-popular stack interface with the methods push!, pop!, and empty?.
The class stack%2 is derived from the built-in empty class object% and implements the stack<%> interface.
Three additional classes are derived from the basic stack% implementation:

• The class named-stack% defines a stack that is named through the initialization argument. It overrides
the definition of name in stack%.

• The class double-stack% extends the functionality stack% with a new method, double-push!, and
also overrides the definition of name in stack%.

• The class safe-stack% overrides name and the pop! method of stack%, insuring that #f is returned
whenever the stack is empty.

In each derived class, the call (super-init) causes the bindings of the superclass’s instance variables to be
initialized when an instance of the derived class is initialized.

The creation of safe-stack% illustrates the use of classes as first-class values. Applying
make-safe-stack-class to named-stack% or double-stack% — indeed, any class with push, pop!, and
empty? methods — creates a “safe” version of the class. A stack object can be recognized as a safe stack
by testing it with is-safe-stack?; this predicate returns #t only for instances of a class created with
make-safe-stack-class (because only those classes implement the safe-stack<%> interface).

In each of the example classes, the instance variable name contains the name of the class. The name instance
variable is introduced as a new instance variable in stack%, so it is declared there with the public keyword.
The name declarations in named-stack%, double-stack%, and safe-stack% override the declaration in
stack%, so they are declared with the override keyword. When the print-name method of an object from
double-stack% is invoked, the name printed to the screen is “double-stack”.

While all of named-stack%, double-stack%, and safe-stack% inherit the push! method of stack%, it
is declared with inherit only in double-stack%; this is because new declarations in named-stack% and
safe-stack% do not need to refer to push!, so the inheritance does not need to be declared. Similarly, only
safe-stack% needs to declare (inherit empty?).

The safe-stack% class overrides pop! to extend the implementation of pop!. The new definition of pop!
must access the original pop! method that is defined in stack%. The rename declaration binds a new name,
std-pop! to the original pop!. Then, std-pop! is used in the overriding pop!. Variables declared with
rename cannot be overridden, so std-pop! will always refer to the superclass’s pop!.

The make-object procedure creates an object from a class; additional arguments to make-object are passed
on as initialization arguments. Here are some object creations using the classes defined above:

(define stack (make-object stack%))

(define fred (make-object named-stack% ’Fred))

(define joe (make-object named-stack% ’Joe))

(define double-stack (make-object double-stack%))

(define safe-stack (make-object safe-stack%))

Note that an extra argument is given to make-object for the named-stack% class because named-stack%

requires one initialization argument (the stack’s name).

The ivar and send forms are used to access the instance variables of an object. The ivar form looks up
a variable by name. The send form uses ivar to extract a variable’s value, which should be a procedure;

1A bracketed percent sign (“<%>”) is used by convention in MzScheme to indicate that a variable’s value is a interface.
2A percent sign (“%”) is used by convention in MzScheme to indicate that a variable’s value is a class.

21



6.2. Creating Interfaces 6. Classes and Objects

it then applies the procedure to arguments. For example, here is a simple expression that uses the objects
created above:

((ivar stack push!) fred) ; or (send stack push! fred)

(send stack push! double-stack)

(let loop ()

(if (not (send stack empty?))

(begin

(send (send stack pop!) print-name)

(loop))))

This loop displays ’double-stack and ’Fred to the standard output port.

6.2 Creating Interfaces

The interface form creates a new interface:

(interface (super-interface-expr · · ·) variable · · ·)

All of the variables must be distinct.

Each super-interface-expr is evalauted (in order) when the interface expression is evaluated. The result
of each super-interface-expr must be an interface value, otherwise the exn:object exception is raised. The
interfaces returned by the super-interface-exprs are the new interface’s superinterfaces, which are all extended
by the new interface. Any class that implements the new interface also implements all of the superinterfaces.

The result of an interface expression is an interface that includes all of the specified variables, plus all
variables from the superinterfaces. Duplicate variable names among the superinterfaces are ignored, but if a
superinteface contains one of the variables in the interface expression, the exn:object exception is raised.

6.3 Creating Classes

The built-in class object% has no methods and implements no interfaces. All other classes are derived from
object%.

The class*/names form creates a new class:

(class*/names local-names superclass-expr (interface-expr · · ·) initialization-variables
instance-variable-clause
· · ·)

local-names is:
(this-variable super-init-variable)

initialization-variables is one of:
variable
(variable · · · variable-with-default · · ·)
(variable · · · variable-with-default · · · . variable)

variable-with-default is:
(variable default-value-expr)

22



6. Classes and Objects 6.3. Creating Classes

instance-variable-clause is one of:
(sequence expr · · ·)
(public public-var-declaration · · ·)
(override public-var-declaration · · ·)
(private private-var-declaration · · ·)
(inherit inherit-var-declaration · · ·)
(rename rename-var-declaration · · ·)

public-var-declaration is one of:
((internal-instance-variable external-instance-variable) instance-var-initial-value-expr)
(instance-variable instance-var-initial-value-expr)
(instance-variable)
instance-variable

private-var-declaration is one of:
(internal-instance-variable instance-var-initial-value-expr)
(internal-instance-variable)
internal-instance-variable

inherit-var-declaration is one of:
inherited-variable
(internal-instance-variable external-inherited-variable)

rename-var-declaration is:
(internal-instance-variable external-inherited-variable)

The class* macro is used to avoid specifying local-names:

(class* superclass-expr (interface-expr · · ·) initialization-variables
instance-variable-clause
· · ·)

⇒
(class*/names (this super-init) superclass-expr (interface-expr · · ·) initialization-variables

instance-variable-clause
· · ·)

The class macro omits both local-names and the interface-exprs:

(class superclass-expr initialization-variables
instance-variable-clause
· · ·)

⇒
(class* superclass-expr () initialization-variables

instance-variable-clause
· · ·)

The this-variable and super-init-variable variables (usually this and super-init) are bound in the rest of
the class*/names expression, excluding superclass-expr and the interface-exprs. In instances of the new
class, this-variable (i.e., this) is bound to the object itself, and super-init-variable (i.e., super-init) is
bound to a procedure that must be invoked (once) to initialize instance variable bindings in the superclass
(see §6.4).

The superclass-expr expression is evalauted when the class*/names expression is evaluated. The result

23



6.3. Creating Classes 6. Classes and Objects

must be a class value (possibly object%), otherwise the exn:object exception is raised. The result of the
superclass-expr expression is the new class’s superclass.

The interface-expr expressions are also evaluated when the class*/names expression is evaluated, after
superclass-expr is evaluated. The result of each interface-expr must be an interface value, otherwise the
exn:object exception is raised. The interfaces returned by the interface-exprs are all implemented by the
class. For each variable in each interface, the class (or one of its ancestors) must declare a public instance
variable with the same name, otherwise the exn:object exception is raised.

The initialization-variables part of a class*/names expression defines the initialization variables as de-
scribed in §6.3.1. The instance-variable-clauses define the class’s instance variables as described in §6.3.2.

The result of a class*/names expression is a new class, derived from the specified superclass and implement-
ing the specified interfaces. Instances of the class are created with the make-object procedure as described
in §6.4.

6.3.1 Initialization Variables

A class’s initialization variables are instantiated for each object of a class. The values bound to initialization
variables are

• the arguments passed to the make-object procedure if the object is created as a direct instance of the
class; or,

• the arguments passed to a superclass initialization procedure when the object is created as an instance
of a derived class.

Initialization variables can be used in the initial value expressions of instance variables. Object creation and
superclass initialization are described in detail in §6.4.

As shown in the the grammar in §6.3, the initialization-variables part of a class*/names expression has one
of three forms. In the first form, all initialization arguments are put into a list and variable is bound to the
list. In the second form, each variable is bound to an individual initialization argument. In the last form,
initialization arguments are assigned to variables preceding the dot; leftover initialization arguments are put
into a list that is assigned to a the single variable after the dot.

If an initialization argument is not provided for a variable that has a default-value-expr , then the default-
value-expr expression is evaluated to obtain a value for the variable. A default-value-expr is only evaluated
when an argument is not provided for its variable. The environment of default-value-expr includes all of the
initialization variables and all of the instance variables in the class (the latter have certainly not yet been
initialized). If multiple default-value-exprs are evaluated, they are evaluated from left to right.

If too few initialization arguments are provided to make-object or to a superclass initialization procedure,
then the exn:application:arity exception is raised.

6.3.2 Instance Variables

Each instance-variable-clause declares a number of instance variables for instances of the class, or expressions
to be evaluated when an instance of the class is created. The first part of a clause is the clause specifier,
one of sequence, public, private, etc. A clause specifier determines the properties of instance variables
declared in its clause:

24



6. Classes and Objects 6.3. Creating Classes

• sequence does not declare any instance variables. It only specifies expressions to be evaluated (in
order) when an instance of the class is initialized.

• public declares fresh instance variables that are visible outside the class. A derived class can override a
public declaration, but a public declaration never overrides an existing declaration in the superclass.

• override is like public, but an override declaration always overrides an existing declaration in the
superclass. A derived class can override the instance variable again.

• private declares instance variables that can be accessed only within the class expression. They cannot
be overridden in a derived class and do not override declarations in the superclass.

• inherit declares instance variables that must be defined in the superclass or one of its ancestors (as
public). An inherit declaration can be overridden in derived classes.

• rename is similar to inherit, but a new name is always used to access the value locally and the
reference cannot be overridden. The new name can only be used within the class definition. A rename

declaration accesses the superclass-defined variable value, even if the variable is overridden.

Each clause specifier can be used for any number of clauses in any order within a single class*/names

expression.

The collection of instance variable declarations induces two sets of variables:

• The internal instance variables bound within the class* expression: this is the collection of all
instance-variables, internal-instance-variables, and inherited-variables. Along with the variables for
initialization variables, this-variable, and super-init-variable, all of these variables must be distinct.

• The external instance variables visible outside the class* expression (for derived classes or refer-
ence via ivar): this is the collection of all instance-variables and external-instance-variables. All of
these variables must be distinct.

The same identifier can be used as an internal variable and an external variable, and it is possible to use the
same identifier as internal and external variables for different bindings (as long as all internal variables are
distinct and all external variables are distinct).

For public, override, and private instance variables, the instance-var-initial-value-expr expression pro-
vides a value for the variable in an object; when an initial value expression is not given, (void) is used. The
process for evaluating initial value expressions is decribed in §6.3.3 and §6.4.

For each public instance variable defined in a class, the superclass (or any of its ancestors) must not contain
a declaration for the variable. For each override instance variable, the superclass must already contain a
declaration. These properties are verified when the class*/name expression is evaluated; if a public variable
is found in the superclass or a override variable is not found, the exn:object exception is raised.

For inherit and rename instance variables, the inherited-variable or external-inherited-variable specifies a
(public) instance variable from the superclass. This inheritance is verified when the class*/name expression
is evaluated; if an inherited instance variable is not found in the superclass (or one of its ancestors), the
exn:object exception is raised. The process that gives values to inherited variables is described in §6.4.

6.3.3 Initial Values

The initial value and sequence expressions for an instance of the class are evaluated in an environment that
comprises

25



6.4. Creating Objects 6. Classes and Objects

• the environment of the class*/name expression;

• all internal instance variables and initialization variables of the class declaration;

• this-variable (usually this, bound to the object itself); and

• super-init-variable (usually super-init, bound to an initialization procedure for the superclass).

The initial value and sequence expressions are evaluated each time an object of the class is created. The
expressions are evaluated in the order in which they occur in the class*/name expression (across clauses
and including sequence clauses).

Before an initial value expression has been evaluated, the value of the corresponding instance variable is
initialized to undefined (see §4.1). Because all of the instance variables have mutually-recursive scopes, the
undefined value of an instance variable can be exposed. The initialzation process is described in more detail
in §6.4.

6.4 Creating Objects

The make-object procedure creates a new object:

(make-object class init-v · · ·)

The init-vs are passed as initialization arguments, bound to the initialization variables of class for the newly
created object. If class is not a class, the exn:application:type exception is raised.

All instance variables in the newly created object are initially bound to the special undefined value (see
§4.1). Initialization variables with default value expressions (and no provided value) are also initialized to
undefined. After values are assigned to the initialization variables, default value expressions are evaluated
for un-assigned initialization variables, and then the initial value expressions and sequence expressions are
evaluated. The expressions are evaluated sequentially from left to right, but the enviornment for every
expression includes all of the class’s variables.

Sometime during the evaluation of these expressions, superclass-declared instance variables must be initial-
ized (once) by calling the procedure bound to super-init-variable (usually super-init):

(super-init-variable super-init-arg · · ·)

The super-init-args are bound to the superclass’s initialization variables, following the instance variable ini-
tialization process recursively until variables from all of the ancestor classes are initialized. The initialization
procedure for the object% class accepts zero arguments.

Instance variables inherited from a superclass will not be initialized until the superclass’s initialization
procedure is invoked. Note that a variable declared with inherit may actually have a value before the
superclass’s initialization procedure is invoked, because inherited variables can be overridden. However, the
value of a rename variable is always undefined before the superclass’s initialization procedure is invoked.

It is an error to reach the end of initialization for any class in the hierarchy without invoking the superclasses
initialization procedure; exn:object exception is raised in this case. If a superclass initialization procedure
is invoked more than once, the exn:object exception is raised.

26



6. Classes and Objects 6.5. Instance Variable Access

6.5 Instance Variable Access

In expressions within a class definition (e.g., within an instance variable’s initial value expression), the
internal variables declared in the class are all part of the environment. Thus, an internal instance variable
is used directly to get a value, and set! is used to set an instance variable’s value. However, set! can only
be used on definition variables (public and private), not reference variables (inherit and rename).3

Instance variable values are accessed from outside an object with the ivar/proc procedure: (ivar/proc

object symbol) extracts the value of the instance variable of object with the external name symbol .

Hidden instance variables (declared with private or rename) can never be accessed using ivar/proc, and
internal names for exposed variables are not recognized by ivar/proc. If a specified instance variable cannot
be found by ivar/proc, the exn:object exception is raised.

Instead of using the ivar/proc procedure directly, instance variable values are usually obtained with the
ivar form:

(ivar o name)
⇒
(ivar/proc o (quote name))

The send macro is useful for invoking methods:

(send o name arg · · ·)
⇒
((ivar o name) arg · · ·)

6.5.1 Generic Procedures

A generic procedure takes an object and extracts an instance variable value from the object. Each generic
procedure works on instances of a single class (including instances of classes derived from that class) or
interface (i.e., instances of classes that implement the interface) and always extracts the value for the same
instance variable.

Generic procedures are provided for efficiency. To extract the value of the same instance variable from
multiple objects, it is usually more efficient to create a single generic procedure and use it each time than to
use ivar each time. Generic procedures also provide run-time type checking, since a generic procedure only
consumes objects of a particular class or interface.

The make-generic/proc procedure creates a generic procedure:

• (make-generic/proc class symbol) returns a generic procedure that consumes and instance of class
(or an instance of a class derived from class) and returns the value of its symbol instance variable.

If class or its superclasses does not contain an instance variable with the (external) name symbol , the
exn:object exception is raised by make-generic/proc.

• (make-generic/prof interface symbol) returns a generic procedure that consumes an instance of any
class that implements interface and returns the values of its symbol instance variable.

If interface does not contain an instance variable with the name symbol , the exn:object exception is
raised by make-generic/proc.

3This set! restriction avoids certain bad forms of variable aliasing.

27



6.6. Object Utilities 6. Classes and Objects

If a generic procedure is applied to an object that is not an instance of the generic procedure’s class or
interface, the exn:object exception is raised.

The make-generic form expands to an application to make-generic/proc:

(make-generic ci name)
⇒
(make-generic/proc ci (quote name))

6.6 Object Utilities

(object? v) returns #t if v is a object, #f otherwise.

(class? v) returns #t if v is a class, #f otherwise.

(interface? v) returns #t if v is an interface, #f otherwise.

(object-class object) returns the class of object .

(is-a? v class) returns #t if v is an instance of class (or of a class derived from class), #f otherwise.

(is-a? v interface) returns #t if v is an instance of a class that implements interface, #f otherwise.

(subclass? v class) returns #t if v is a class derived from (or equal to) class, #f otherwise.

(implementation? v interface) returns #t if v is a class that implements interface, #f otherwise.

(interface-extension? v interface) returns #t if v is an interface that extends interface, #f otherwise.

(ivar-in-class? symbol class) returns #t if class (or any of its ancestor classes) defines an instance variable
with the (external) name symbol , #f otherwise.

(ivar-in-interface? symbol interface) returns #t if interface (or any of its ancestor interfaces) defines an
instance variable with the name symbol , #f otherwise.

28



7. Units

MzScheme’s units are used to organize a program into separately compilable and reusable components. A
unit resembles a procedure in that both are first-class values that are used for abstraction. While procedures
abstract over values in expressions, units abstract over names in collections of definitions. Just as a procedure
is invoked to evaluate its expressions given actual arguments for its formal parameters, a unit is invoked
to evaluate its definitions given actual references for its imported variables. Unlike a procedure, however,
a unit’s imported variables can be partially linked with the exported variables of another unit prior to
invocation. Linking merges multiple units together into a single compound unit. The compound unit itself
imports variables that will be propagated to unresolved imported variables in the linked units, and re-exports
some variables from the linked units for further linking.

MzScheme supports two layers of units. The core unit system comprises the unit, compound-unit, and
invoke-unit syntactic forms. These forms implement the basic mechanics of units for separate compi-
lation and linking. While the semantics of units is most easily understood via the core forms, they are
too verbose for specifying the interconnections between units in a large program. Therefore, a system of
units with signatures is provided on top of the core forms, comprising the define-signature, unit/sig,
compound-unit/sig, and invoke-unit/sig syntactic forms.

The core system is described first in §7.1. The signature system is roughly described in §7.2, and then
described in detail in §7.3. Finally, gory details about mixing core and signed units are presented in §7.4.

7.1 Core Units

7.1.1 Creating Units

The unit form creates a unit:

(unit

(import variable · · ·)
(export exportage · · ·)
unit-body-expr
· · ·)

exportage is one of:
variable
(internal-variable external-variable)

The variables in the import clause are bound within the unit-body-expr expressions. The variables for
exportages in the export clause must be defined in the unit-body-exprs as described below; additional private
variables can be defined as well. The imported variables cannot occur on the left-hand side of an assignment
(i.e., a set! expression).

The first exportage form exports the binding defined as variable in the unit body using the external name
variable. The second form exports the binding defined as internal-variable using the external name external-

29



7.1. Core Units 7. Units

variable. The external variables from an export clause must be distinct.

Each exported variable or internal-variable must be defined in a define-values expression as a unit-body-
expr .1 All identifers defined by the unit-body-exprs together with the variables from the import clause must
be distinct.

A unit-body-expr cannot reference a variable in the global namespace. However, MzScheme’s built-in variables
are implicitly imported into all units. Lexical bindings of built-in identifers can override the built-in value,
but bindings in the top-level environment cannot. For example, assuming the variable cons is not lexically
bound, the cons in a unit-body-expr denotes the expected Scheme pairing primitive, regardless of the current
binding of cons in the top-level environment.

Examples

The unit defined below imports and exports no variables. Each time it is invoked, it prints and returns the
current time in seconds:2

(define f1@

(unit

(import) (export x)

(define x (current-seconds))

(display x) (newline) x))

The expression below is syntactically invalid because current-date is not a built-in procedure:

(define f2-bad@

(unit

(import) (export x)

(define x (current-date))

(display x) (newline) x))

but the next expression is valid because the unit expression is in the scope of the let-bound variable:

(define f2@

(let ([current-date current-seconds])

(unit

(import) (export x)

(define x (current-date))

(display x) (newline) x)))

The following units define two parts of an interactive phone book:

(define database@

(unit (import show-message)

(export insert lookup)

(define table (list))

(define insert

(lambda (name info)

(set! table (cons (cons name info) table))))

(define lookup

(lambda (name)

(let ([data (assoc name table)])

1A unit-body-expr definition cannot shadow a syntax form or macro name. The detection of unit definitions is the same as
for internal definitions (see §3.5.5), so the define and define-struct forms can be used for definitions.

2The “@” in the variable name “f1@” indicates (by convention) that its value is a unit.

30



7. Units 7.1. Core Units

(if data

(cdr data)

(show-message "info not found")))))

insert))

(define interface@

(unit (import insert lookup make-window make-button)

(export show-message)

(define show-message

(lambda (msg) ...))

(define main-window

...)))

In this example, the database@ unit implements the database-searching part of the program, and the
interface@ unit implements the graphical user interface. The database@ unit exports insert and lookup

procedures to be used by the graphical interface, while the interface@ unit exports a show-message pro-
cedure to be used by the database (to handle errors). The interface@ unit also imports variables that will
be supplied by an platform-specific graphics toolbox.

7.1.2 Invoking Units

A unit is invoked using the invoke-unit form:

(invoke-unit expr variable · · ·)

The value of expr must be a unit. For each of the unit’s imported variables, the invoke-unit expression
must contain an variable. The binding for each variable in the context of the invoke-unit expression will
be imported into the unit. More detailed information about linking is provided in the following section on
compound units.

Invocation proceeds in two stages. First, invocation creates bindings for the unit’s private and exported
variables, and then links the unit’s imported variables to bindings. All bindings are initialized to the undefined
value. Second, invocation evaluates the unit’s private definitions and expressions. The result of the last
expression in the unit is the result of the invoke-unit expression. The unit’s exported variable bindings are
not accessible after the invocation.

Examples

These examples use the definitions from the earlier unit examples in §7.1.1.

The f1@ unit is invoked with no imports:

(invoke-unit f1@) ; displays and returns the current time

Here is one way to invoke the database@ unit:

(invoke-unit database@ display)

This invocation links the imported variable message in database@ to the standard Scheme display pro-
cedure, sets up an empty database, and creates the procedures insert and lookup tied to this particular
database. Since the last expression in the database@ unit is insert, the invoke-unit expression returns the
insert procedure (without binding any top-level variables). The fact that insert and lookup are exported
is irrelevant; exports are only used for linking.

31



7.1. Core Units 7. Units

Invoking the database@ unit directly in the above manner is actually useless. Although a program can insert
information into the database, it cannot extract information since the lookup procedure is not accessible.
The database@ unit becomes useful when it is linked with another unit in a compound-unit expression.

7.1.3 Linking Units and Creating Compound Units

The compound-unit form links several units into one new compound unit. In the process, it matches
imported variables in each sub-unit either with exported variables of other sub-units or with its own imported
variables:

(compound-unit

(import variable · · ·)
(link [tag (sub-unit-expr linkage · · ·)] · · ·)
(export (tag exportage · · ·) · · ·))

linkage is one of:
variable
(tag variable)
(tag variable · · ·)

exportage is one of:
variable
(internal-variable external-variable)

tag is:
identifier

The three parts of a compound-unit expression have the following roles:

• The import clause imports variables into the compound unit. These imported variables are used as
imports to the compound unit’s sub-units.

• The link clause specifies how the compound unit is created from sub-units. A unique tag is associated
with each sub-unit, which is specified using an arbitrary expression. Following the unit expression,
each linkage specifies a variable using the variable form or the (tag variable) form. In the former
case, the variable must occur in the import clause of the compound-unit expression; in the latter case,
the tag must be defined in the same compound-unit expression. The (tag variable · · ·) form is a
shorthand for multiple adjacent clauses of the second form with the same tag .

• The export clause re-exports variables from the compound unit that were originally exported from the
sub-units. The tag part of each export sub-clause specifies the sub-unit from which the re-exported
variable is drawn. The exportages specify the names of variables exported by the sub-unit to be
re-exported.

As in the export clause of the unit form, a re-exported variable can be renamed for external refer-
ences using the (internal-variable external-variable) form. The internal-variable is used as the name
exported by the sub-unit, and external-variable is the name visible outside the compound unit.

The evaluation of a compound-unit expression starts with the evaluation of the link clause’s unit expressions
(in sequence). For each sub-unit, the number of variables it imports must match the number of linkage
specifications that are provided, and each linkage specification is matched to an imported variable by position.
Each sub-unit must also export those variables that are specified by the link and export clauses. If, for
any sub-unit, the number of imported variables does not agree with the number of linkages provided, the
exn:unit exception is raised. If an expected exported variable is missing from a sub-unit for linking to

32



7. Units 7.2. Units with Signatures Overview

another sub-unit, the exn:unit exception is raised. If an expected export variable is missing for re-export,
the exn:unit exception is raised.

The invocation of a compound unit proceeds in two phases to invoke the sub-units. In the first phase, the
compound unit resolves the imported variables of sub-units with the bindings provided for the compound
unit’s imports and new bindings created for sub-unit exports. In the second phase, the internal definitions
and expressions of the sub-units are evaluated sequentially according to the order of the sub-units in the
link clause. The result of invoking a compound unit is the result from the invocation of the last sub-unit.

Examples

These examples use the definitions from the earlier unit examples in §7.1.1.

The following compound-unit expression creates a useless wrapping around the unit bound to f1@:

(define f3@

(compound-unit

(import)

(link [A (f1@)])

(export (A (x A:x)))))

The only difference between f1@ and f3@ is that f1@ exports a variable named x, while f3@ exports a variable
named A:x.

The following example shows how the database@ and interface@ units are linked together with a graphical
toolbox unit Graphics to produce a single, fully-linked compound unit for the interactive phone book
program.

(define program@

(compound-unit

(import)

(link (GRAPHICS (graphics@))

(DATABASE (database@ (INTERFACE show-message)))

(INTERFACE (interface@ (DATABASE insert lookup)

(GRAPHICS make-window make-button))))

(export)))

This phone book program is executed with (invoke-unit program@). If (invoke-unit program@) is eval-
uated a second time, then a new, independent database and window are created.

7.1.4 Unit Utilities

(unit? v) returns #t if v is a unit or #f otherwise.

7.2 Units with Signatures Overview

The unit syntax presented in §7.1 poses a serious notational problem: each variable that is imported or
exported must be separately enumerated in many import, export, and link clauses. Consider the phone
book program example from §7.1.3: a realistic graphics@ unit would contain many more procedures than
make-window and make-button, and it would be unreasonable to enumerate the entire graphics toolbox
in every client module. Future extensions to the graphics library are likely, and while the program must
certainly be re-compiled to take advantage of the changes, the programmer should not be required to change
the program text in every place that the graphics library is used.

33



7.2. Units with Signatures Overview 7. Units

This problem is solved by separating the specification of a unit’s signature (or “interface”) from its im-
plementation. A unit signature is basically a list of variable names. A signature can be used in an import
clause, an export clause, a link clause, or an invocation expression to import or link a set of variables at
once. Signatures clarify the connections between units, prevent mis-orderings in the specification of imported
variables, and provide better error messages when an illegal linkage is specified.

Signatures are used to create units with signatures, a.k.a. signed units. Signatures and signed units are
used together to create signed compound units. As in the core system, a signed compound unit is itself
a signed unit.

Signed units are first-class values, just like their counterparts in the core system. A signature is not a value.
However, signature information is bundled into each signed unit value so that signature-based checks can be
performed at run time (when signed units are linked and invoked).

Along with its signature information, a signed unit includes a primitive unit from the core system that
implements the signed unit. This underlying unit can be extracted for mixed-mode programs using both
signed and unsigned units. More importantly, the semantics of signed units is the same as the semantics for
regular units; the additional syntax only serves to specify signatures and to check signatures for linking.

7.2.1 Importing and Exporting with Signatures

The unit/sig form creates a signed unit in the same way that the unit form creates a unit in the core
system. The only difference between these forms is that signatures are used to specify the imports and
exports of a signed unit.

In the primitive unit form, the import clause only determines the number of variables that will be imported
when the unit is linked; there are no explicitly declared connections between the import variables. In contrast,
a unit/sig form’s import clause does not specify individual variables; instead, it specifies the signatures of
units that will provide its imported variables, and all of the variables in each signature are imported. The
ordered collection of signatures used for importing in a signed unit is the signed unit’s import signature.

Although the collection of variables to be exported from a unit/sig expression is specified by a signature
rather than an immediate sequence of variables,3 variables are exported in a unit/sig form in the same way
as in the unit form. The export signature of a signed unit is the collection of names exported by the unit.

Example:

(define-signature arithmetic^ (add subtract multiply divide power))

(define-signature calculus^ (integrate))

(define-signature graphics^ (add-pixel remove-pixel))

(define-signature gravity^ (go))

(define gravity@

(unit/sig gravity^ (import arithmetic^ calculus^ graphics^)

(define go (lambda (start-pos) ... subtract ... add-pixel ...))))

In this program fragment, the signed unit gravity@ imports a collection of arithmetic procedures, a collection
of calculus procedures, and a collection of graphics procedures. The arithmetic collection will be provided
through a signed unit that matches the arithmetic^ (export) signature, while the graphics collection will
be provided through a signed unit that matches the graphics^ (export) signature. The gravity@ signed
unit itself has the export signature gravity^.

Suppose that the procedures in graphics^ were named add and remove rather than add-pixel and
remove-pixel. In this case, the gravity@ unit cannot import both the arithmetic^ and graphics^ signa-

3Of course, a signature can be specified as an immediate signature.

34



7. Units 7.2. Units with Signatures Overview

tures as above because the name add would be ambiguous in the unit body. To solve this naming problem,
the imports of a signed unit can be distinguished by providing prefix tags:

(define-signature graphics^ (add remove))

(define gravity@

(unit/sig gravity^ (import (a : arithmetic^) (c : calculus^) (g : graphics^))

(define go (lambda (start-pos) ... a:subtract ... g:add ...))))

Details for the syntax of signatures are in §7.3.1. The full unit/sig syntax is described in §7.3.2.

7.2.2 Linking with Signatures

The compound-unit/sig form links signed units into a signed compound unit in the same way that the
compound-unit form links primitive units. In the compound-unit/sig form, signatures are used for import-
ing just as in unit/sig (except that all import signatures must have a tag), but the use of signatures for
linking and exporting is more complex.

Within a compound-unit/sig expression, each unit to be linked is represented by a tag. Each tag is followed
by a signature and an expression. A tag’s expression evaluates (at link-time) to a signed unit for linking. The
export signature of this unit must satisfy the tag’s signature. “Satisfy” does not mean “match exactly”;
satisfaction requires that the unit exports at least the variables specified in the tag’s signature, but the
unit may actually export additional variables. Those additional variables are ignored for linking and are
effectively hidden by the compound unit.

To specify the compound unit’s linkage, an entire unit is provided (via its tag) for each import of each linked
unit. The number of units provided by a linkage must match the number of signatures imported by the
linked unit, and the tag signature for each provided unit must match (exactly) the corresponding imported
signature.

The following example shows the linking of an arithmetic unit, a calculus unit, a graphics unit, and a gravity
modelling unit:

(define-signature arithmetic^ (add subtract multiply divide power))

(define-signature calculus^ (integrate))

(define-signature graphics^ (add-pixel remove-pixel))

(define-signature gravity^ (go))

(define arithmetic@ (unit/sig arithmetic^ (import) ...))

(define calculus@ (unit/sig calculus^ (import arithmetic^) ...))

(define graphics@ (unit/sig graphics^ (import) ...))

(define gravity@ (unit/sig gravity^ (import arithmetic^ calculus^ graphics^) ...))

(define model@

(compound-unit/sig

(import)

(link (ARITHMETIC : arithmetic^ (arithmetic@))

(CALCULUS : calculus^ (calculus@ ARITHMETIC)))

(GRAPHICS : graphics^ (graphics@))

(GRAVITY : gravity^ (gravity@ ARITHMETIC CALCULUS GRAPHICS)))

(export (var (GRAVITY go)))))

In the compound-unit/sig expression for model@, all link-time signature checks succeed since, for exam-
ple, arithmetic@ does indeed implement arithmetic^ and gravity@ does indeed import units with the
arithmetic^, calculus^, and graphics^ signatures.

The export signature of a signed compound unit is implicitly specified by the export clause. In the above
example, the model@ compound unit exports a go variable, so its export signature is the same as gravity^.

35



7.2. Units with Signatures Overview 7. Units

More forms for exporting are described in §7.2.4.

7.2.3 Restricting Signatures

As explained in §7.2.2, the signature checking for a linkage requires that a provided signature exactly matches
the corresponding import signature. At first glance, this requirement appears to be overly stricty; it might
seem that the provided signature need only satisfy the imported signature. The reason for requiring an exact
match at linkages is that a compound-unit/sig expression is expanded into a compound-unit expression.
Thus, the number and order of the variables used for linking must be fully known at compile-time.

The exact-match requirement does not pose any obstacle as long as a unit is linked into only one other unit.
In this case, the signature specified with the unit’s tag can be contrived to match the importing signature.
However, a single unit may need to be linked into different units, each of which may use different importing
signatures. In this case, the tag’s signature must be “bigger” than both of the uses, and a restricting
signature is explicitly provided at each linkage. The tag must satisfy every restricting signature (this is
a syntactic check), and each restricting signature must exactly match the importing signature (this is a
run-time check).

In the example from §7.2.2, both calculus@ and gravity@ import numerical procedures, so both import
the arithmetic^ signature. However, calculus@ does not actually need the power procedure to implement
integrate; therefore, calculus@ could be as effecively implemented in the following way:

(define-signature simple-arithmetic^ (add subtract multiply divide))

(define calculus@ (unit/sig calculus^ (import simple-arithmetic^) ...))

Now, the old compound-unit/sig expression for model@ no longer works. Although the old expression is still
syntactically correct, link-time signature checking will discover that calculus@ expects an import matching
the signature simple-arithmetic^ but it was provided a linkage with the signature arithmetic^. On
the other hand, changing the signature associated with ARITHMETIC to simple-arithmetic^ would cause a
link-time error for the linkage to gravity@, since it imports the arithmetic^ signature.

The solution is to restrict the signature of ARITHMETIC in the linkage for CALCULUS:

(define model@

(compound-unit/sig

(import)

(link (ARITHMETIC : arithmetic^ (arithmetic@))

(CALCULUS : calculus^ (calculus@ (ARITHMETIC : simple-arithmetic^))))

(GRAPHICS : graphics^ (graphics@))

(GRAVITY : gravity^ (gravity@ ARITHMETIC CALCULUS GRAPHICS)))

(export (var (GRAVITY go)))))

A syntactic check will ensure that arithmetic^ satisfies simple-arithmetic^ (i.e., arithmetic^ contains
at least the variables of simple-arithmetic^). Now, all link-time signature checks will succeed, as well.

7.2.4 Embedded Units

Signed compound units can re-export variables from linked units in the same way that core compound units
can re-export variables. The difference in this case is that the collection of variables that are re-exported
determines an export signature for the compound unit. Using certain export forms, such as the open form
instead of the var form (see §7.3.3), makes it easier to export a number of variables at once, but these are
simply shorthand notations.

Signed compound units can also export entire units as well as variables. Such an exported unit is an

36



7. Units 7.3. Units with Signatures

embedded unit of the compound unit. Extending the example from §7.2.3, the entire gravity@ unit can
be exported from model@ using the unit export form:

(define model@

(compound-unit/sig

(import)

(link (ARITHMETIC : arithmetic^ (arithmetic@))

(CALCULUS : calculus^ (calculus@ (ARITHMETIC : simple-arithmetic^))))

(GRAPHICS : graphics^ (graphics@))

(GRAVITY : gravity^ (gravity@ ARITHMETIC GRAPHICS)))

(export (unit GRAVITY))))

The export signature of model@ no longer matches gravity^. When a compound unit exports an embedded
unit, the export signature of the compound unit has a sub-signature that corresponds to the full export
signature of the embedded unit. The following signature, model^, is the export signature for the revised
model@:

(define-signature model^ ((unit GRAVITY : gravity^)))

The signature model^ matches the (implicit) export signature of model@ since it contains a sub-signature
named GRAVITY—matching the tag used to export the gravity@ unit—that matches the export signature
of gravity@.

The export form (unit GRAVITY) does not export any variable other than gravity@’s go, but the “unitness”
of gravity@ is intact. The embedded GRAVITY unit is now available for linking when model@ is linked to
other units.

For example:

(define tester@ (unit/sig () (import gravity^) (go 0)))

(define test-program@

(compound-unit/sig

(import)

(link (MODEL : model^ (model@))

(TESTER : () (tester@ (MODEL GRAVITY))))

(export)))

The embedded GRAVITY unit is linked as an import into the tester@ unit by using the path (MODEL GRAVITY).

7.3 Units with Signatures

7.3.1 Signatures

A signature is either a signature description or a bound signature identifier:

(sig-element · · ·)
signature-identifier

sig-element is one of:
variable
(struct base-identifier (field-identifier · · ·) omission · · ·)
(open signature)
(unit identifier : signature)

37



7.3. Units with Signatures 7. Units

omission is one of:
-selectors

-setters

(- variable)

Together, the element descriptions determine the set of elements that compose the signature:

• The simple variable form adds a variable name to the new signature.

• The struct form expands into the list of variable names generated by a define-struct expression
with the given base-identifier and field-identifiers.

The actual structure type can contain additional fields; if a field identifier is omitted, the corresponding
selector and setter names are not added to the signature. Optional omission specifications can omit
other kinds of names: -selectors omits all field selector variables. -setters omits all field setter
variables, and (- variable) omits a specific generated variable.

• The open form copies all of the elements of another signature into the new signature description.

• The unit form creates a sub-signature within the new signature. A signature that includes a unit

clause corresponds to a signed compound unit that exports an embedded unit. (Embedded units are
described in §7.2.4 and §7.3.3.)

The names of all elements in a signature must be distinct.4 Two signatures match when they contain the
same element names, and when a name in both signatures is either a variable name in both signatures or a
sub-signature name in both signatures such that the sub-signatures match. The order of elements within a
signature is not important. A source signature satisfies a destination signature when the source signature
has all of the elements of the destination signature, but the source signature may have additional elements.

The define-signature form binds a signature to an identifier:

(define-signature signature-identifier signature)

The let-signature form binds a signature to an identifier within a body of expressions:

(let-signature identifier signature body-expr · · ·1)

Internal define-signature expressions are transformed into let-signature expressions.

7.3.1.1 Flattening Signatures

For various purposes, signatures must be flattened into a linear sequence of variables:

• All variable name elements of the signature are included in the flattened signature.

• For each sub-signature element named s, the sub-signature is flattened, and then each variable name
in the flattened sub-signature is prefixed with s: and included in the flattened signature.

7.3.2 Signed Units

The unit/sig form creates a signed unit:

4Element names are compared using the printed form of the name. This is different from any other syntactic form, where
variable names are compared as symbols. This distinction is relevant only when source code is generated within Scheme rather
than read from a text source.

38



7. Units 7.3. Units with Signatures

(unit/sig signature
(import import-element · · ·)
renames
signed-unit-body-expr
· · ·)

import-element is one of:
signature
(identifier : signature)

renames is either empty or:
(rename (internal-variable signature-variable) · · ·)

signed-unit-body-expr is one of:
(include filename)
unit-body-expr

The signature immediately following unit/sig specifies the export signature of the signed unit. This sig-
nature cannot contain sub-signatures. Each element of the signature must have a corresponding variable
definition in one of the unit-body-exprs, modulo the optional rename clause. If the rename clause is present,
it maps internal-variables defined in the unit-body-exprs to signature-variables in the export signature.

The import-elements specify imports for the signed unit. The names bound within the signed-unit-body-exprs
to imported bindings are constructed by flattening the signatures according to the algorithm in §7.3.1.1:

• For each import-element using the signature form, the variables in the flattened signature are bound
in the signed-unit-body-exprs.

• For each import-element using the (identifier : signature) form, the variables in the flattened signa-
ture are prefixed with identifier: and the prefixed variables are bound in the signed-unit-body-exprs.

Each signed-unit-body-expr is either a regular expression or an include form. If a signed-unit-body-expr has
the form (include filename), the content of the file named by filename is textually substituted into the
unit/sig body in the place of the include clause. In particular, a single include clause can be replaced
by any number of expressions from the included file.

7.3.3 Signed Compound Units

The compound-unit/sig form links mulitple signed units into a new signed compound unit:

(compound-unit/sig

(import (tag : signature) · · ·)
(link (tag : signature (expr unit-path · · ·)) · · ·)
(export export-element · · ·))

unit-path is one of:
simple-unit-path
(simple-unit-path : signature)

simple-unit-path is one of:
tag
(tag identifier · · ·)

39



7.3. Units with Signatures 7. Units

export-element is one of:
(var (simple-unit-path variable))
(var (simple-unit-path variable) external-variable)
(open unit-path)
(unit unit-path)
(unit unit-path variable)

tag is:
identifier

The import clause is similar to the import clause of a unit/sig expression, except that all imported
signatures must be given a tag identifier.

The link clause of a compound-unit/sig expression is different from the link clause of a compound-unit

expression in two important aspects:

• Each sub-unit tag is followed by a signature. This signature corresponds to the export signature of the
signed unit that will be associated with the tag.

• The linkage specification consists of references to entire signed units rather than to individual variables
that are exported by units. A referencing unit-path has one of four forms:

– The tag form references an imported unit or another sub-unit.
– The (tag : signature) form references an imported unit or another sub-unit, and then restricts

the effective signature of the referenced unit to signature.
– The (tag identifier · · ·) references an embedded unit within a signed compound unit. The

signature for the tag unit must contain a sub-signature that corresponds to the embedded unit,
where the sub-signature’s name is the initial identifier . Additional identifiers trace a path into
nested sub-signatures to a final embedded unit. The degenerate (tag) form is equivalent to tag .

– The ((tag identifier · · ·) : signature) form is like the (tag identifier · · ·) form except the
effective signature of the referenced unit is restricted to signature.

The export clause determines which variables in the sub-units are re-exported and implicitly determines the
export signature of the new compound unit. A signed compound unit can export both individual variables
and entire signed units. When an entire signed unit is exported, it becomes an embedded unit of the resulting
compound unit.

There are five different forms for specifying exports:

• The (var (unit-path variable)) form exports variable from the unit referenced by unit-path. The
export signature for the signed compound unit includes a variable element.

• The (var (unit-path variable) external-variable) form exports variable from the unit referenced by
unit-path. The export signature for the signed compound unit includes an external-variable element.

• The (open unit-path) form exports variables and embedded units from the referenced unit. The
collection of variables that are actually exported depends on the effective signature of the referenced
unit:

– If unit-path includes a signature restriction, then only elements from the restricting signature are
exported.

– Otherwise, if the referenced unit is an embedded unit, then only the elements from the associated
sub-signature are exported.

– Otherwise, unit-path is just tag ; in this case, only elements from the signature associated with
the tag are exported.

40



7. Units 7.4. Mixing Core and Signed Units

In all cases, the export signature for the signed compound unit includes a copy of each element from
the effective signature.

• The (unit unit-path) form exports the referenced unit as an embedded unit. The export signature for
the signed compound unit includes a sub-signature corresponding to the effective signature from unit-
path. The name of the sub-signature in the compound unit’s export signature depends on unit-path:

– If unit-path refers to a tagged import or a sub-unit, then the tag is used for the sub-signature
name.

– Otherwise, the referenced sub-unit was an embedded unit, and the original name for the associated
sub-signature is re-used for the export signature’s sub-signature.

• The (unit unit-path identifier) form exports an embedded unit like (unit unit-path) form, but iden-
tifier is used for the name of the sub-signature in the compound unit’s export signature.

The collection of names exported by a compound unit must form a legal signature. This means that all
exported names must be distinct.

Run-time checks insure that all link clause exprs evaluate to a signed unit, and that all linkages match
according to the specified signatures:

• If an expr evaluates to anything other than a signed unit, the exn:unit exception is raised.

• If the export signature for a signed unit does not satisfy the signature specified with its tag, the
exn:unit:signature exception is raised.

• If the number of units specified in a linkage does not match the number imported by a linking unit,
the exn:unit exception is raised.

• If the (effective) signature of a provided unit does not match the corresponding import signature, then
the exn:unit exception is raised.

7.3.4 Invoking Signed Units

Signed units are invoked using the invoke-unit/sig form:

(invoke-unit/sig expr invoke-linkage · · ·)

invoke-linkage is one of:
signature
(identifier : signature)

If the invoked unit requires no imports, the invoke-unit/sig form is used in the same way as invoke-unit.
Otherwise, the invoke-linkage signatures must match the import signatures of the signed unit to be invoked.
If the signatures match, then variables in the environment of the invoke-unit/sig expression are used for
immediate linking; the variables used for linking are the ones with names corresponding to the flattened
signatures. The signature flattening algorithm is specified in §7.3.1.1; when the (identifier : signature)
form is used, identifier: is prefixed onto each variable name in the flattened signature and the prefixed name
is used.

7.4 Mixing Core and Signed Units

7.4.1 Extracting a Primitive Unit from a Signed Unit

The procedure unit/sig->unit extracts and returns the primitive unit from a signed unit.

41



7.4. Mixing Core and Signed Units 7. Units

The names exported by the primitive unit correspond to the flattened export signature of the signed unit;
see §7.3.1.1 for the flattening algorithm.

The number of import variables for the primitive unit matches the total number of variables in the flattened
forms of the signed unit’s import signatures. The order of import variables is as follows:

• All of the variables for a single import signature are grouped together, and the relative order of these
groups follows the order of the import signatures.

• Within an import signature:

– variable names are ordered according to string<?;
– all names from sub-signatures follow the variable names;
– names from a signle sub-signature are grouped together and ordered within the sub-signature

group following this algorithm recursively; and
– the sub-signatures are ordered among themselves using string<? on the sub-signature names.

7.4.2 Adding a Signature to Primitive Units

The unit->unit/sig syntactic form wraps a primitive unit with import and export signatures:

(unit->unit/sig expr (signature · · ·) signature)

The last signature is used for the export signature and the other signatures specify the import signatures.
If expr does not evaluate to a unit or the unit does not match the signature, no error is reported until the
primitive linker discovers the problem.

7.4.3 Expanding Signed Unit Expressions

The unit/sig, compound-unit/sig, and invoke-unit/sig forms expand into expressions using
the unit, compound-unit, and invoke-unit forms, respectively. The exapnsion may also use
global-defined-signature rather than inlining a signature that is bound to a global identifier.

A signed unit value is represented by a unit-with-signature structure with the following fields:

• unit — the primitive unit implementing the signed unit’s content

• imports — the import signatures, represented as a list of pairs, where each pair consists of

– a tag symbol, used for error reporting; and
– an “exploded signature”; an exploded signature is a vector of signature elements, where each

element is either
∗ a symbol, representing a variable in the signature; or
∗ a pair consisting of a symbol and an exploded signature, representing a name sub-signature.

• exports — the export signature, represented as an exploded signature

To perform the signature checking needed by compound-unit/sig, MzScheme provides two procedures:

• (verify-signature-match where exact? dest-context dest-sig src-context src-sig) raises an exception
unless the exploded signatures dest-sig and src-sig match. If exact? is #f, then src-sig need only
satisfy dest-sig , otherwise the signatures must match exactly. The where symbol and dest-context and
src-context strings are used for generating an error message string: where is used as the name of the
signalling procedure and dest-context and src-context are used as the respective signature names.

42



7. Units 7.4. Mixing Core and Signed Units

If the match succeeds, void is returned. If the match fails, the exn:unit exception is raised for one of
the following reasons:

– The signatures fail to match because src-sig is missing an element.
– The signatures fail to match because src-sig contains an extra element.
– The signatures fail to match because src-dest and src-sig contain the same element name but for

different element types.

• (verify-linkage-signature-match where tags units export-sigs linking-sigs) performs all of the run-
time signature checking required by a compound-unit/sig or invoke-unit/sig expression. The where
symbol is used for error reporting. The tags argument is a list of tag symbols, and the units argument
is the corresponding list of candidate signed unit values. (The procedure will check whether these
values are actually signed unit values.)

The export-sigs list contains one exploded signature for each tag; these correspond to the tag signatures
provided in the original compound-unit/sig expression. The linking-sigs list contains a list of named
exploded signatures for each tag (where a “named signature” is a pair consisting of a name symbol and
an exploded signature); every tag’s list corresponds to the signatures that were specified or inferred
for the tag’s linkage specification in the original compound-unit/sig expression. The names on the
linking signatures are used for error messages.

If all linking checks succeed, void is returned. If any check fails, the exn:unit exception is raised for
one of the following reasons:

– A value in the units list is not a signed unit.
– The number of import signatures associated with a unit does not agree with the number of linking

signatures specified by the corresponding list in linking-sigs.
– A linking signature does not exactly match the signature expected by an importing unit.

43



8. Exceptions and Control Flow

8.1 Exceptions

MzScheme supports the exception system proposed by Friedman, Haynes, and Dybvig.1 MzScheme’s imple-
mentation extends that proposal by defining the specific exception values that are raised by each primitive
error.

• (raise exn) raises an exception, where exn represents the exception being raised. The exn argument
can be anything; it is passed to the current exception handler.

• (current-exception-handler) returns the current exception handler that is used by raise, and
(current-exception-handler f ) installs the procedure f as the current exception handler. The
current-exception-handler procedure is a parameter; see §9.4.1.9 for more information.

Any procedure that takes one argument can be an exception handler, but it is an error if the exception
handler returns to its caller when invoked by raise. (If an exception handler returns, the current error
display handler and current error escape handler are called directly to report the handler’s mistake.)

The default exception handler prints an error message using the current error display handler (see
error-display-handler in §9.4.1.9) and then escapes by calling the current error escape handler (see
error-escape-handler in §9.4.1.9). If an exception is raised while an exeception handler is executing,
an error message is printed using a primitive error printer and the primitive error escape handler is
invoked.

• (with-handlers ((pred handler) · · ·) expr · · ·1) is a syntactic form that evaluates the expr body,
installing a new exception handler before evaluating the exprs and restoring the handler when a value
is returned (or when control escapes from the expression). The pred and handler expressions are
evaluated in the order that they are specified, before the first expr and before the exception handler is
changed. The exception handler is installed and restored with parameterize (see §9.4).

The new exception handler processes an exception only if one of the pred procedures returns a true
value when applied to the exception, otherwise the original exception handler is invoked (by raising
the exception again). If an exception is handled by one of the handler precedures, the result of the
entire with-handlers expression is the return value of the handler.

When an exception is raised during the evaluation of exprs, each predicate procedure pred is applied to
the exception value; if a predicate returns a true value, the corresponding handler procedure is invoked
with the exception as an argument. The predicates are tried in the order that they are specified.

Before any predicate or handler procedure is invoked, the continuation of the entire with-handlers

expression is restored. The “original” exception handler (the one present before the with-handlers

expression was evaluated) is therefore re-installed before any predicate or handler procedure is invoked.

The following example defines a divide procedure that returns +inf.0 when dividing by zero instead of
signalling an exception (other exceptions raised by / are signalled):

1See http://www.cs.indiana.edu/scheme-repository/doc.proposals.exceptions.html

44



8. Exceptions and Control Flow 8.1. Exceptions

(define div-w-inf

(lambda (n d)

(with-handlers ([exn:application:math:zero?

(lambda (exn) +inf.0)])

(/ n d))))

8.1.1 Primitive Exceptions

Whenever a primitive error occurs in MzScheme, an exception is raised. The value that is passed to the
current exception handler is always an instance of the exn structure type. Every exn structure value has
a message field that is a string, the primitive error message. The default exception handler recognizes
exception values with the exn? predicate and passes the error message to the current error display handler
(see error-display-handler in §9.4.1.9).

Primitive errors do not create immediate instances of the exn structure type. Instead, an instance from a
hierarchy of subtypes of exn is instantiated. The subtype more precisely identifies the error that occurred
and may contain additional information about the error. The table below defines the type hierarchy that is
used by primitive errors and matches each subtype with the primitive errors that instantiate it.

In the table, each bulleted line is a separate structure type. A type is nested under another when it is a
subtype. The full name of the structure type (as used by predicates and selectors in the global environment)
is built by combining the full name of the immediate supertype with “:” and the subtype name.

For example, applying a procedure to the wrong number of arguments raises an exception as an instance
of exn:application:arity. An exception handler can test for this kind of excpetion using the global
exn:application:arity?predicate. Given such an exception, the (incorrect) number of arguments provided
is obtained from the exception with exn:application-value, while exn:application:arity-expected

accesses the actual arity of the procedure.

• exn : not instantiated directly
fields: message — error message (type: string)

continuation-marks — value returned by current-continuation-marks immediately
after the error is detected (type: mark-set)

• user : raised by calling error

• variable : unbound global variable at run-time
fields: id — the unbound variable’s global identifier (type: symbol)

• keyword : attempt to change the binding of a global keyword
• application : not instantiated directly

fields: value — the error-specific inappropriate value (type: value)
• arity : application with the wrong number of arguments

fields: expected — the correct procedure arity as returned by arity (type: arity)
• type : wrong argument type to a procedure, not including divide-by-zero

fields: expected — name of the expected type (type: symbol)
• mismatch : bad argument combination (e.g., out-of-range index for a vector) or platform-specific

integer range error
• divide-by-zero : divide by zero; application-value is always zero
• continuation : attempt to cross a continuation boundary or apply another thread’s

continuation
• else : fall-through in cond or case
• struct : the supertype expression in a struct form returned a value that was not a structure type

value
• object : object-, class-, or interface-specific error
• unit : unit- or unit/sig-specific error
• syntax : syntax error, but not a read error

45



8.2. Errors 8. Exceptions and Control Flow

fields: expr — illegal expression (or #f if unknown) (type: S-expression)
• read : read parsing error

fields: port — port being read (type: input-port)
• eof : unexpected end-of-file

• i/o : not instantiated directly
• port : not instantiated directly

fields: port — port for attempted operation (type: port)
• read : error reading from a port
• write : error writing to a port
• closed : attempt to operate on a closed port
• user : user-defined input port returned a non-character from the character-getting procedure

• filesystem : illegal pathname or error manipulating a filesystem object
fields: pathname — file or directory pathname (type: path)

• tcp : TCP errors
• thread : raised by call-with-custodian

• misc : low-level or MzScheme-specific error
• unsupported : unsupported feature
• user-break : asynchronous thread break
• out-of-memory : out of memory

Primitive procedures that accept a procedure argument with a particular required arity (e.g.,
call-with-input-file, call/cc) check the argument’s arity immediately, raising exn:application:type

if the arity is incorrect.

8.2 Errors

The procedure error raises the exception exn:user (which contains an error string). The error procedure
has three forms:

• (error symbol) creates a message string by concatentaing "error: " with the string form of symbol .

• (error msg-string v · · ·) creates a message string by concatenating msg-string with string versions
of the vs (as produced by the current error value conversion handler; see §9.4.1.9). A space is inserted
before each v .

• (error src-symbol format-string v · · ·) creates a message string equivalent to the string created by:

(format (string-append "∼s: " format-string) src-symbol v · · ·)

In all cases, the constructed message string is passed to make-exn:user and the resulting exception is raised.

8.2.1 Application Type Errors

(raise-type-error name-symbol expected-string v) creates an exn:application:type value and raises
it as an exception. The name-symbol argument is used as the source procedure’s name in the error message.
The expected-string argument is used as a description of the the expected type, and v is the value received
by the procedure that does not have the expected type.

8.2.2 Application Mismatch Errors

(raise-mismatch-error name-symbol message-string v) creates an exn:application:mismatch value and
raises it as an exception. The name-symbol is used as the source procedure’s name in the error message. The

46



8. Exceptions and Control Flow 8.3. Continuations

message-string is the error message. The v argument is the improper argument received by the procedure.
The printed form of v is appended to message-message (using the error value conversion handler; see §9.4.1.9).

8.2.3 Syntax Errors

(raise-syntax-error name-symbol message-string [expr sub-expr ]) creates an exn:syntax value and
raises it as an exception. Macros use this procedure to report macro syntax errors. The name-symbol
argument is used as the source syntactic form’s name in the error message. The message-string is used as
the main body of the error message. The optional expr argument is the erroneous source S-expression. The
optional sub-expr argument is an S-expression within expr that more precisely locates the error.

8.2.4 Inferred Value Names

To improve error reporting, names are inferred at compile-time for certain kinds of values, such as procedures.
For example, evaluating the following expression:

(let ([f (lambda () 0)]) (f 1 2 3))

produces an error message because too many arguments are provided to the procedure. The error message is
able to report “f” as the name of the procedure. In this case, MzScheme decides, at compile-time, to name
as f all procedures created by the let-bound lambda. Names are inferred whenever possible for procedures,
units, classes, and interfaces.

(inferred-name v) returns a symbol for the name inferred for v if v has a name, #f otherwise. The argument
v can be any value. When v is a primitive, inferred-name returns the same name as primitive-name (see
§4.10.2).

8.3 Continuations

MzScheme supports fully re-entrant call-with-current-continuation (or call/cc). The macro let/cc

binds a variable to the continuation in an immediate body of expressions:

(let/cc k expr · · ·1)
⇒
(call/cc (lambda (k) expr · · ·1))

A continuation can only be invoked from the thread (see §9.1) in which it was captured. Multiple return
values can be passed to a continuation (see Chapter 2).

In addition to regular call/cc, MzScheme provides call-with-escape-continuation (or call/ec) and
let/ec. A continuation obtained from call/ec can only be used to escape back to the continuation; i.e., an
escape continuation is only valid when the current continuation is an extension of the escape continuation.
The application of call/ec’s argument is not a tail call.

Escape continuations are provided for two reasons: 1) they are significantly cheaper than full continuations;
and 2) full continuations are not allowed to cross certain boundaries (e.g., error handling) that escape
continuations can safely cross.

The exn:application:continuation exception is raised when a continuation is applied by the wrong thread,
a continuation application would violate a continuation boundary, or an escape continuation is applied outside
of its dynamic scope.

47



8.4. Dynamic Wind 8. Exceptions and Control Flow

8.4 Dynamic Wind

(dynamic-wind pre-thunk value-thunk post-thunk) applies its three thunk arguments in order. The value
of a dynamic-wind expression is the value returned by value-thunk . The pre-thunk procedure is invoked
before calling value-thunk and post-thunk is invoked after value-thunk returns. The special properties of
dynamic-wind are manifest when control jumps into or out of the value-thunk application (either due to an
exception or a continuation invocation): every time control jumps into the value-thunk application, pre-thunk
is invoked, and every time control jumps out of value-thunk , post-thunk is invoked. (No special handling is
performed for jumps into or out of the pre-thunk and post-thunk applications.)

When dynamic-wind calls pre-thunk for normal evaluation of value-thunk , the continuation of the pre-thunk
application calls value-thunk (with dynamic-wind’s special jump handling) and then post-thunk . Similarly,
the continuation of the post-thunk application returns the value of the preceding value-thunk application to
the continuation of the entire dynamic-wind application.

When pre-thunk is called due to a continuation jump, the continuation of pre-thunk

1. calls more deeply nested pre-thunks, then

2. jumps to the destination continuation, then

3. continues with the context of the dynmaic-wind call.

Normally, the third part of this continuation is never reached, due to the jump in the second part. However,
the third part is relevant because it enables jumps to escape continuations that are contained in the context
of the dynamic-wind call. Similarly, when post-thunk is called due to a continuation jump, the continuation
of post-thunk calls less deeply nested post-thunks, them jumps to the destination continuation, then continues
from the dynamic-wind application.

Example:

(let ([v (let/ec out

(dynamic-wind

(lambda () (display "in "))

(lambda ()

(display "pre ")

(display (call/cc out))

#f)

(lambda () (display "out "))))])

(when v (v "post ")))

; ⇒ displays in pre out in post out

(let/ec k0

(let/ec k1

(dynamic-wind

void

(lambda () (k0 ’cancel))

(lambda () (k1 ’cancel-cancelled)))))

; ⇒ ’cancel-cancelled

8.5 Continuation Marks

To evaluate a subexpression, MzScheme creates a continuation for the subexpression that extends the current
continuation. For example, to evaluate expr1 in the expression

48



8. Exceptions and Control Flow 8.5. Continuation Marks

(begin

expr1

expr2)

MzScheme extends the continuation of the begin expression with one continuation frame to create the
continuation for expr1. In contrast, expr2 is in tail position for the begin expression, so its continuation is
the same as the continuation of the begin expression.

A continuation mark is a keyed mark in a continuation frame. A program can install a mark in the first
frame of its current continuation, and it can extract the marks from all of the frames in its current contin-
uation. Continuation marks support debuggers and other program-tracing facilities, because continuation
frames roughly correspond to stack frames in traditional languages. For example, a debugger can annotate
a source program to store continuation marks that relate each expression to its source location; when an
exception occurs, the marks are extracted from the current continuation to produce a “stack trace” for the
exception.

The list of continuation marks for a key k and a continuation C that extends C0 is defined as follows:

• If C ’s first frame contains a mark m for k , then the mark list for C is (cons m l0), where l0 is the
mark list for k in C0.

• If C ’s first frame does not contain a mark keyed by k , then the mark list for C is the mark list for C0.

The mark list for the empty continuation is null for all keys.

The with-continuation-mark form installs a mark on the first frame of the current continuation:

(with-continuation-mark key-expr mark-expr
body-expr)

The key-expr , mark-expr , and body-expr expressions are evaluated in order. After key-expr is evaluated to
obtain a key and mark-expr is evaluated to obtain a mark, the key is mapped to the mark in the current
continuation’s initial frame. If the frame already has a mark for the key, it is replaced. Finally, the body-expr
is evaluated; the continuation for evaluating body-expr is the continuation of the with-continuation-mark

expression (so the result of the body-expr is the result of the with-continuation-mark expression, and
body-expr is in tail position for the with-continuation-mark expression).

The current-continuation-marks procedure extracts the complete set of continuation marks from the
current continuation:

• (current-continuation-marks key-v) returns a newly-created (opaque) value containing the set of
continuation marks for all keys in the current continuation.

The continuation-mark-set->list procedure extracts mark values for a particular key from a continuation
mark set:

• (continuation-mark-set->list mark-set key-v) returns a newly-created list containing the marks
for key-v in mark-set , which is a set of marks returned by current-continuation-marks.

• (continuation-mark-set? v) returns #t if v is a mark set created by current-continuation-marks,
#f otherwise.

Examples:

49



8.6. Breaks 8. Exceptions and Control Flow

(define (extract-current-continuation-marks key)

(continuation-mark-set->list

(current-continuation-marks)

key))

(with-continuation-mark ’key ’mark

(extract-current-continuation-marks ’key)) ; ⇒ ’(mark)

(with-continuation-mark ’key1 ’mark1

(with-continuation-mark ’key2 ’mark2

(list

(extract-current-continuation-marks ’key1)

(extract-current-continuation-marks ’key2)))) ; ⇒ ’((mark1) (mark2))

(with-continuation-mark ’key ’mark1

(with-continuation-mark ’key ’mark2 ; replaces the previous mark
(extract-current-continuation-marks ’key)))) ; ⇒ ’(mark2)

(with-continuation-mark ’key ’mark1

(list ; continuation extended to evaluate the argument
(with-continuation-mark ’key ’mark2

(extract-current-continuation-marks ’key)))) ; ⇒ ’((mark1 mark2))

(let loop ([n 1000])

(if (zero? n)

(extract-current-continuation-marks ’key)

(with-continuation-mark ’key n

(loop (sub1 n))))) ; ⇒ ’(1)

In the final example, the continuation mark is set 1000 times, but extract-current-continuation-marks
returns only one mark value. Because loop is called tail-recursively, the continuation of each call to loop

is always the continuation of the entire expression. Therefore, the with-continuation-mark expression
replaces the existing mark each time rather than adding a new one.

Whenever MzScheme creates an exception record, it fills the continuation-marks field with the value of
(current-continuation-marks), thus providing a snapshot of the continuation marks at the time of the
exception.

When a continuation procedure returned by call-with-current-continuation is invoked, it restores the
captured continuation, and also restores the marks in the continuation’s frames to the marks that were
present when call-with-current-continuation was invoked.

8.6 Breaks

A break is an asynchonous exception, usually triggered by an external source controlled by the user. A
break exception can only occur in a thread while breaks are allowed by the break-enabled parameter (see
§9.4.1.10). When a break is detected, the exn:misc:user-break exception is raised.

A break is triggered when the break-thread procedure is applied to a thread. An exn:misc:user-break is
raised in the destination thread sometime afterwards; if breaking is disabled when break-thread is called,
the break is suspended until breaking is again enabled for the thread.

When break-thread is applied to a thread that is blocked on a nested thread (see call-in-nested-thread),

50



8. Exceptions and Control Flow 8.7. Error Escape Handler

and if breaks are enabled in the blocked thread, the break is implicitly handled by transfering it to the nested
thread.

Breaks are disabled while an exception handler is executing. Note that the handling procedures sup-
plied to with-handlers are not exception handlers, so breaking within such procedures is controlled by
break-enabled.

Breaks are also disabled (indepedent of parameter settings) during the evaluation of the “pre” and “post”
thunks for a dynamic-wind, whether called during the normal dynamic-wind calling sequence or via a
continuation jump.

8.7 Error Escape Handler

Special control flow for exceptions is performed by an error escape handler that is called by the default
exception handler. An error escape handler takes no arguments and must escape from the expression that
raised the exception. The error escape handler is obtained or set using the error-escape-handlerparameter
(see §9.4.1.9).

An error escape handler cannot invoke a full continuation that was created prior to the exception, but it can
invoke an escape continuation (see §8.3).

The error escape handler is normally called directly by an exception handler. To escape from a run-time
error, use raise (see §8.1) or error (see §8.2) instead.

If an exception is raised while the error escape handler is executing, an error message is printed using a
primitive error printer and a primitive error escape handler is invoked.

In the following example, the error escape handler is set so that errors do not escape from a custom read-
eval-print loop:

(let ([orig (error-escape-handler)])

(let/ec exit

(let retry-loop ()

(let/ec escape

(error-escape-handler

(lambda () (escape #f)))

(let loop ()

(let ([e (my-read)])

(if (eof-object? e)

(exit ’done)

(let ([v (my-eval e)])

(my-print v)

(loop))))))

(retry-loop)))

(error-escape-handler orig))

See also read-eval-print-loop in §14.1 for a simpler implementation of this example.

51



9. Threads and Namespaces

9.1 Threads

MzScheme supports multiple threads of control within a program. Threads are implemented for all operating
systems, even when the operating system does not provide primitive thread support.

(thread thunk) invokes the procedure thunk with no arguments in a new thread of control. The thread

procedure returns immediately with a thread descriptor value. When the invocation of thunk returns, the
thread created to invoke thunk terminates.

Example:

(thread (lambda () (sleep 2) (display 7) (newline))) ; ⇒ a thread descriptor
; displays 7 after two seconds pass

Each thread has its own parameter settings (see §9.4), such as the current directory or current excep-
tion handler. A newly-created thread inherits the parameter settings of the creating thread (except the
error-escape-handler parameter, which is initialized to the default error escape handler).

When a thread is created, it is placed into the management of the current custodian (See §9.5). A thread
that has not terminated can be “garbage collected” only if it is unreachable and blocked on an unreachable
semaphore.1

9.1.1 Thread Utilities

(current-thread) returns the thread descriptor for the currently executing thread.

(thread? v) returns #t if v is a thread descriptor, #f otherwise.

(sleep [x ]) causes the current thread to sleep for at least x seconds, where x is a non-negative real number.
The x argument defaults to 0 (allowing other threads to execute when operating system threads are not
used). The value of x can be non-integral to request a sleep duration to any precision, but the precision of
the actual sleep time is unspecified.

(thread-running? thread) returns #t if thread has not terminated, #f otherwise.

(thread-wait thread) blocks execution of the current thread until thread has terminated. Note that
(thread-wait (current-thread)) deadlocks the current thread, but a break can end the deadlock (if
breaking is enabled; see §8.6).

(kill-thread thread) terminates the specified thread immediately. Terminating the main thread exits the
application. If thread is already not running, kill-thread does nothing. Otherwise, if the current custodian
(see §9.5) does not manage thread (and none of its subordinates manages thread), the exn:misc exception

1In MrEd, a handler thread for an eventspace is blocked on an internal semaphore when its event queue is empty. Thus, the
handler thread is collectable when the eventspace is unreachable and contains no visible windows or running timers.

52



9. Threads and Namespaces 9.2. Semaphores

is raised.

All of the MzScheme (and MrEd) primitives are kill-safe; that is, killing a thread never interferes with the
application of primitives in other threads. For example, if a thread is killed while extracting a character
from an input port, the character is either completely consumed or not consumed, and other threads can
safely use the port.

(break-thread thread) registers a break with the specified thread. If breaking is disabled in thread , the
break will be ignored until breaks are re-enabled (see §8.6).

(call-in-nested-thread thunk [custodian]) creates a nested thread managed by custodian to execute
thunk . The current thread blocks until thunk returns, and the result of the call-in-nested-thread call is
the result returned by thunk . The default value of custodian is the current custodian.

The nested thread’s exception handler is initialized to a procedure that jumps to the beginning of the thead
and transfers the exception to the original thread. The handler thus terminates the nested thread and
re-raises the exception in the original thread.

If the thread created by call-in-nested-thread dies before thunk returns, the exn:thread exception is
raised in the original thread.

If a break is queued for the original thread with break-thread, the break is redirected to the nested thread.
If the original thread is killed before thunk returns, a break is queued for the nested thread.

9.2 Semaphores

A semaphore is a value that is used to synchronize MzScheme threads. Each semaphore has an internal
counter; when this counter is zero, the semaphore can block a thread’s execution (through semaphore-wait)
until another thread increments the counter (using semaphore-post). The maximum value for a semaphore’s
internal counter is platform-specific, but always at least 10000. MzScheme’s semaphores have the usual
single-threaded access for reliable synchronization.

• (make-semaphore [init-k ]) creates and returns a new semaphore with the counter initially set to init-
k , which defaults to 0. If init-k is larger than a semaphore’s maximum internal counter value, the
exn:application:mismatch exception is raised.

• (semaphore? v) returns #t if v is a semaphore created by make-semaphore, #f otherwise.

• (semaphore-post sema) increments the semaphore’s internal counter and returns void. If the
semaphore’s internal counter has already reached its maximum value, the exn:misc exception is raised.

• (semaphore-wait sema) blocks until the internal counter for semaphore sema is non-zero. When the
counter is non-zero, it is decremented and semaphore-wait returns void.

• (semaphore-try-wait? sema) is like semaphore-wait, but semaphore-try-wait? never blocks ex-
ecution. If sema’s internal counter is zero, semaphore-try-wait? returns #f immediately without
decrementing the counter. If sema’s counter is positive, it is decremented and #t is returned.

• (semaphore-wait/enable-break sema) is like semaphore-wait, but breaking is enabled (see §8.6)
while waiting on sema. If breaking is disabled when semaphore-wait/enable-break is called, then
either the semaphore’s counter is decremented or the exn:misc:user-break exception is raised, but
not both.

53



9.3. Global Variable Namespaces 9. Threads and Namespaces

9.3 Global Variable Namespaces

MzScheme supports multiple global variable namespaces. A new namespace is created with the
make-namespace procedure, which returns a first-class namespace value. A namespace is used by setting the
current-namespace parameter value (see §9.4.1.6).

The current namespace is used by eval, load, compile, and expand-defmacro.2 Once an expression is
evaled or compiled, the global variable references in the compiled expression are permanently attached to
a particular namespace, so the current namespace at the time that the code is executed is not used as the
namespace for referencing global variables in the expression.

Example:

(define x ’orig) ; define in the original namespace
; The following let expression is compiled in the original
; namespace, so direct references to x see ’orig.

(let ([n (make-namespace)]) ; make new namespace
(parameterize ([current-namespace n])

(eval ’(define x ’new)) ; evals in the new namespace
(display x) ; displays ’orig

(display (eval ’x)))) ; displays ’new

(make-namespace flag-symbol · · ·) creates a new namespace; the flag-symbols are options that determine
the kinds of global names that are initially bound in the new namespace. Any number of flag-symbolss can
be specified, where each flag-symbol is one of the following symbols:

• ’keywords — keywords are enforced in the new namespace
• ’no-keywords — keywords are not enforced in the new namespace
• ’call/cc=call/ec — call/cc captures an escape-only continuation in the new namespace
• ’call/cc!=call/ec — call/cc captures a full continuation in the new namespace
• ’hash-percent-syntax — only syntactic forms prefixed with #% are present in the new namespace
• ’all-syntax — all MzScheme syntactic forms are present in the new namespace
• ’empty — no names are initially bound in the new namespace

Applications embedding MzScheme may extend this list of flags. (MrEd adds the ’mred flag for installing the
built-in MrEd classes and procedures.) If ’empty is provided, all other provided flags are ignored. Otherwise,
if two conflicting flags are provided, the latter flag takes precedence. If any other value or symbol is provided
as a flag-symbol , the exn:application:type exception is raised. The default settings are built into the
executable running MzScheme.

(namespace? v) returns #t if v is a namespace value, #f otherwise.

9.3.1 Global Names

(defined? symbol) returns #t if a global variable is defined with the name symbol in the current namespace,
#f otherwise.

(undefine symbol) causes symbol to be undefined in the current namespace if it was defined previously.

(global-defined-value symbol) returns the value of the global variable named by the symbol in the current
namespace. If symbol is undefined, the exn:variable exception is raised.

2More precisely, the current namespace is used by the evaluation and load handlers, rather than directly by eval and load.

54



9. Threads and Namespaces 9.4. Parameters

(global-defined-value symbol v) sets the value of symbol in the current namespace, defining symbol if it
is not already defined.

(make-global-value-list) returns an association list that pairs each globally-defined symbol with its
current value from the current namespace.

(built-in-name symbol) determines whether symbol is a built-in variable. If the symbol can be used within
a unit as a built-in variable, then built-in-name returns a keyword-form variable symbol that accesses the
built-in binding. Otherwise, #f is returned. See also §4.10.2.

9.3.2 Keywords

Keyword names cannot be redefined or used as local variable names. All built-in keyword names are prefixed
with #%, and a keyword binding is created for all primitive syntactic forms and procedures: for every built-in
procedure or syntactic form x , there is a corresponding keyword #%x that accesses the same syntax or value.

There are no other built-in global keywords. Local keywords—such as public within a class* expression—
are not globally enforced. This means, for example, that the name public may be bound to a value, but
public as the first part of a class* sub-clause will not notice such a binding.

A new keyword is declared with (keyword-name symbol). Once a symbol has been designated as a keyword,
it cannot be bound locally or globally. (If symbol was not already defined, it will be defined as void.)
Keywords declared this way are local to the namespace. Test for keywords in the current namespace with
(keyword-name? symbol).

Once a name is declared as a keyword, it is syntactically disallowed in any binding position. However, it is
possible that a previously-compiled define or set! expression tries to change the value of keyword global
binding, or global-defined-valuemay be used on a keyword binding. In that case, exn:variable:keyword
exception is raised is raised at run-time.

A namespace can be created where the built-in #%-prefixed names are not keywords (see §9.3), but some
built-in syntax and procedures will fail in this namespace if certain #%-prefixed names are re-defined or
shadowed.

9.4 Parameters

A parameter is a thread-specific setting, such a the current output port or the current directory for
resolving relative pathnames. A parameter procedure sets and retrieves the value of a specific parameter.
For example, the current-output-port parameter procedure sets and retrieves a port value that is used
by display when a specific output port is not provided. Applying a parameter procedure without an
argument obtains the current value of a parameter in the current thread, and applying a parameter procedure
to a single argument sets the parameter’s value in the current thread (and returns void). For example,
(current-output-port) returns the current default output port, while (current-output-port p) sets
the default output port to p.

9.4.1 Built-in Parameters

MzScheme’s built-in parameter procedures are listed in the following sections. The make-parameter proce-
dure, described in §9.4.2, creates a new parameter and returns a corresponding parameter procedure.

55



9.4. Parameters 9. Threads and Namespaces

9.4.1.1 Current Directory

• (current-directory [path]) gets or sets a string path that determines the current directory. When
the parameter procedure is called to set the current directory, the path argument is expanded and then
simplified using simplify-path (see §11.2.1); expansion and simplification raise an exception if the
path is ill-formed. Otherwise, if the given path cannot be made the current directory (e.g., because
the path does not exist), the exn:i/o:filesystem exception is raised.

9.4.1.2 Ports

• (current-input-port [input-port ]) gets or sets an input port used by read, read-char, char-ready?,
read-line, read-string, and read-string! when a specific input port is not provided.

• (current-output-port [output-port ]) gets or sets an output port used by display, write, print,
write-char, and printf when a specific output port is not provided.

• (current-error-port [output-port ]) gets or sets an output port used by the default error display
handler.

• (global-port-print-handler [proc]) gets or sets a procedure that takes an arbitrary value and an
output port. This global port print handler is called by the default port print handler (see §11.1.9)
to print values into a port.

9.4.1.3 Parsing

• (read-case-sensitive [on? ]) gets or sets a Boolean value that controls parsing input symbols. When
this parameter’s value is #f, the reader always returns downcased symbols (e.g., hi when the input is
any one of hi, Hi, HI, or hI).

• (read-square-bracket-as-paren [on? ]) gets or sets a Boolean value that controls whether square
brackets (“[” and “]”) are treated as parentheses. See §14.3 for more information.

• (read-curly-brace-as-paren [on? ]) gets or sets a Boolean value that controls whether curly braces
(“{” and “}”) are treated as parentheses. See §14.3 for more information.

• (read-accept-box [on? ]) gets or sets a Boolean value that controls parsing #& input. See §14.3 for
more information.

• (read-accept-compiled [on? ]) gets or sets a Boolean value that controls parsing pre-compiled input.
See §14.3 for more information.

• (read-accept-bar-quote [on? ]) gets or sets a Boolean value that controls parsing and printing a
vertical bar (|) in symbols. See §14.3 and §14.4 for more information.

• (read-accept-graph [on? ]) gets or sets a Boolean value that controls parsing input S-expressions
with sharing. See §14.5 for more information.

9.4.1.4 Printing

• (print-graph [on? ]) gets or sets a Boolean value that controls printing S-expressions with sharing.
See §14.5 for more information.

• (print-struct [on? ]) gets or sets a Boolean value that controls printing structure values. See §14.4
for more information.

• (print-box [on? ]) gets or sets a Boolean value that controls printing box values. See §14.4 for more
information.

56



9. Threads and Namespaces 9.4. Parameters

• (print-vector-length [on? ]) gets or sets a Boolean value that controls printing vectors. See §14.4
for more information.

9.4.1.5 Language

• (compile-allow-cond-fallthrough [on? ]) gets or sets a Boolean value indicating how to compile a
cond or case expression without an else clause. If the value of this parameter is a true value, then
cond or case expressions are compiled so that void is returned if no clause matches. Otherwise, cond
or case expressions are compiled to raise the exn:else exception when no clause matches. Note that
this parameter is used when an expression is compiled , not when it is evaluated .

• (compile-allow-set!-undefined [on? ]) gets or sets a Boolean value indicating how to compile a
set! expression that mutates a global variable. If the value of this parameter is a true value, set!
expressions for global variables are compiled so that the global variable is set even if it was not previously
defined. Otherwise, set! expressions for global variables are compiled to raise the exn:variable

exception if the global variable is not defined at the time the set! is performed. Note that this
parameter is used when an expression is compiled , not when it is evaluated .

9.4.1.6 Read-Eval-Print

• (current-prompt-read [proc]) gets or sets a procedure that takes no arguments, displays a prompt
string, and returns an expression to evaluate. This prompt read handler is called by the read phase
of read-eval-print-loop (see §14.1). The default prompt read handler prints “> ” and returns the
result of (read).

• (current-eval [proc]) gets or sets a procedure that takes an S-expression and returns its value (or
values; see Chapter 2). This evaluation handler is called by eval, the default load handler, and
read-eval-print-loop to evaluate an expression (see §14.1). The default evaluation handler com-
piles and executes the expression in the current namespace (determined by the current-namespace

parameter).

• (current-namespace [namespace]) gets or sets a namespace value (see §9.3) that determines the
global variable namespace used to resolve variable references. The current namespace is used by
the default evaluation handler, the compile procedure, and other built-in procedures that operate on
global variables.

• (current-print [proc]) gets or sets a procedure that takes a value to print. This print handler
is called by read-eval-print-loop (see §14.1) to print the result of an evaluation (and the result is
ignored). The default print handler prints the value to the current output port (determined by the
current-output-port parameter) and then outputs a newline.

9.4.1.7 Loading

• (current-load [proc]) gets or sets a procedure that takes a filename to load and returns the value
(or values; see Chapter 2) of the last expression read from the file. This load handler is called by
load, load-relative, load/use-compiled, and load/cd. The default load handler reads expressions
from the file (with compiled expressions enabled) and passes each expression to the current evaluation
handler. The default load handler also treats a hash mark on the first line of the file as a comment
(see §14.3). The current load directory for loading the file is set before the load handler is called (see
§14.1).

• (current-load-extension [proc]) gets or sets a procedure that takes a filename to load as a dynamic
extension (see §14.7) and returns the extension’s value(s). The default load extension handler loads an
extension using operating system primitives.

57



9.4. Parameters 9. Threads and Namespaces

• (current-load-relative-directory [path]) gets or sets a complete directory pathname or #f. The
current load-relative directory is set by load, load-relative, load/use-compiled, load/cd,
load-extension, and load-relative-extension to the directory of the file being loaded. This pa-
rameter is used by load-relative, load/use-compiled and load-relative-extension (see §14.1).
When a new pathname is provided to the parameter procedure current-load-relative-directory,
it is immediately expanded (see §11.2.1) and the result must be a complete pathname for an existing
directory.

• (use-compiled-file-kinds [kind-symbol ]) gets or sets a symbol, either ’all, ’non-elaboration,
or ’none, indicating whether load/used-compiled (and thus require-library) recognizes compiled
files. If the value of this parameter is ’all, then load/use-compiled recognizes compiled files as
described in §14.1. If the value is ’none, then load/use-compiled ignores compiled files. If the value
is ’non-elaboration, then load/use-compiled recognizes compiled files except for .zo files that start
with ’e followed by a space, which is a special annotation installed by compile-file (see §15.2.4) to
indicate that a file contains elaboration-time expressions.

9.4.1.8 Libraries

• (current-library-collection-paths [path-list ]) gets or sets a list of directory pathnames for library
collections used by require-library. See Chapter 15 for more information.

• (current-require-relative-collection [string-list ]) gets or sets a non-empty list of collection
names (forming a subcollection path) used by require-relative-library, or #f if there is no current
library collection. See Chapter 15 for more information.

9.4.1.9 Exceptions

• (current-exception-handler [proc]) gets or sets a procedure that is invoked to handle an exception.
See §8.1 for more information about exceptions.

• (error-escape-handler [proc]) gets or sets a procedure that takes no arguments and escapes from the
dynamic context of an exception. The default error escape handler escapes to the start of the current
thread, but read-eval-print-loop (see §14.1) also sets the escape handler. To report a run-time
error, use raise (see §8.1) or error (see §8.2) instead of calling the error escape procedure directly. If
an exception is raised while the error escape handler is executing, an error message is printed using a
primitive error printer and the primitive error escape handler is invoked. Unlike all other parameters,
the value of the error-escape-handler parameter in a new thread is not inherited from the creating
thread; instead, the parameter is always initialized to the default error escape handler.

• (error-display-handler [proc]) gets or sets a procedure that takes a string to print as an error mes-
sage. This error display handler is called by the default exception handler. The default error display
handler displays its argument to the current error port (determined by the current-error-port pa-
rameter). To report a run-time error, use raise (see §8.1) or error (see §8.2) instead of calling the
error display procedure directly. If an exception is raised while the error display handler is executing,
an error message is printed using a primitive error printer and the primitive error escape handler is
invoked.

• (error-print-width [k ]) gets or sets an integer greater than 3. This value is used as the maximum
number of characters used to print a Scheme value that is embedded in a primitive error message.

• (error-value->string-handler [proc]) gets or sets a procedure that takes an arbitrary Scheme
value and an integer and returns a string. This error value conversion handler is used to to print
a Scheme value that is embedded in a primitive error message. The integer argument to the handler
specifies the maximum number of characters that should be used to represent the value in the resulting

58



9. Threads and Namespaces 9.4. Parameters

string. The default error value conversion handler writes the value into a string;3 if the printed form
is too long, the printed form is truncated and the last three characters of the return string are set to
“...”.

If the string returned by an error value conversion handler is longer than requested, the string is
destructively “truncated” by setting the first extra position in the string to the null character. If a
non-string is returned, then the string "..." is used. If a primitive error string needs to be generated
before the handler has returned, the default error value conversion handler is used.

9.4.1.10 Breaks

• (break-enabled [enabled? ]) gets or sets a Boolean value that controls whether breaks are allowed.
See §8.6 for more information.

9.4.1.11 Custodians

• (current-custodian [custodian]) gets or sets a custodian (see §9.5) that assumes responsibility for
newly created threads, ports, and TCP listeners.

9.4.1.12 Exiting

• (exit-handler [proc]) gets or sets a procedure that takes a single argument. This exit handler
is called by exit. The default exit handler takes any argument and shuts down MzScheme; if the
argument is a fixnum integer, it is used as the exit code, otherwise the exit code is 0. (When MzScheme
is used within another application, such as MrEd, the default exit handler may be remapped internally.)

9.4.1.13 Random Numbers

• (current-pseudo-random-generator [generator ]) gets or sets a pseudo-random number generator
(see §4.3) used by random and random-seed.

9.4.2 Parameter Utilities

(make-parameter v [guard-proc]) returns a new parameter procedure. The value of the parameter is ini-
tialized to v in all threads. If guard-proc is supplied, it is used as the parameter’s guard procedure. A
guard procedure takes one argument. Whenever the parameter procedure is applied to an argument, the
argument is passed on to the guard procedure. The result returned by the guard procedure is used as the
new parameter value. A guard procedure can raise an exception to reject a change to the parameter’s value.

(parameter? v) returns #t if v is a parameter procedure, #f otherwise.

(parameter-procedure=? a b) returns #t if the parameter procedures a and b always modify the same
parameter, #f otherwise.

The parameterize form evaluates an expression with temporarily values installed for a group of parameters.
The syntax of parameterize is:

(parameterize ((parameter-expr value-expr) · · ·) body-expr · · ·1)

The result of a parameterize expression is the result of the last body-expr . The parameter-exprs determine
the parameters to set, and the value-exprs determine the corresponding values to install before evalutaing

3Using the default port write handler; see §11.1.9.

59



9.5. Custodians 9. Threads and Namespaces

the body-exprs. All of the parameter-exprs are evaluated first, then the value-exprs, and then the parameters
are set.

After the body-exprs are evaluated, each parameter’s setting is restored to its original value in the dynamic
context of the parameterize expression. More generally, the values specified by the value-exprs determine
initial “remembered” values, and whenever control jumps into or out of the body-exprs, the value of each
parameter is swapped with the corresponding “remembered” value.

Examples:

(parameterize ([exit-handler (lambda (x) ’no-exit)])

(exit)) ; ⇒ no-exit

(define p1 (make-parameter 1))

(define p1 (make-parameter 2))

(parameterize ([p1 3]

[p2 (p1)])

(cons (p1) (p2))) ; ⇒ (3 . 1)

(let ([k (let/cc out

(parameterize ([p1 2])

(p1 3)

(cons (let/cc k

(out k))

(p1))))])

(if (procedure? k)

(k (p1))

k)) ; ⇒ (1 . 3)

9.5 Custodians

A custodian manages a collection of threads, file ports, process ports, TCP ports, and TCP listeners.4

Whenever a thread, file port, process port, TCP port, or TCP listener is created, it is placed under the
management of the current custodian (as determined by the current-custodian parameter; see §9.4.1.11).
The only power given to a custodian is the authority to shut down all of its managed values.

The values managed by a custodian are only weakly held. This means that a will (see §12.2) can be executed
for a value that is managed by a custodian.

(make-custodian [custodian]) creates a new custodian that is subordiante to the custodian custodian.
When custodian is directed (via custodian-shutdown-all) to shut down all of its managed values, the new
subordinate custodian is automatically directed to shut down its managed values as well. The default value
for custodian is the current custodian.

(custodian-shutdown-all custodian) kills all running threads, closes all open ports, and closes all active
TCP listeners that are managed by the custodian custodian. If custodian manages the current thread, the
custodian shuts down all other objects before killing the current thread.

(custodian? v) returns #t if v is a custodian value, #f otherwise.

4In MrEd, custodians also manage eventspaces.

60



10. Regular Expressions

MzScheme provides built-in support for regular expression pattern matching on strings, implemented by
Henry Spencer’s package. Regular expressions are specified as strings, using the same pattern language as
the Unix utility egrep. String-based regular expressions can be compiled into a regexp value for repeated
matches.

Regexp ::= Pieces Match Pieces
| Regexp|Regexp Match either Regexp, try left first

Pieces ::= Piece Match Piece
| PiecePiece Match first Piece followed by second Piece

Piece ::= Atom* Match Atom 0 or more times, match longest possible
| Atom+ Match Atom 1 or more times, match longest possible
| Atom? Match Atom 0 or 1 times, match longest possible
| Atom Match Atom exactly once

Atom ::= (Regexp) Match sub-expression Regexp
| [Range] Match any character in Range
| [^Range] Match any character not in Range
| . Match any character
| ^ Match start of string
| $ Match end of string
| Literal Match a single literal character

Literal ::= Any character except (, ), *, +, ?, [, ], ., ^, $, or \
| \Aliteral Match Aliteral

Aliteral ::= Any character
Range ::= ] Range contains ] only

| - Range contains - only
| ]Lrange Range contains ] and everything in Lrange
| -Lrange Range contains - and everything in Lrange
| Lrange- Range contains - and everything in Lrange
| Lrange Range contains everything in Lrange

Lrange ::= Rliteral Range contains a literal character
| Rliteral -Rliteral Range contains ASCII range inclusive
| LrangeLrange Range contains everything in both

Rliteral ::= Any character except ] or -

Figure 10.1: Grammar for regular expressions

The format of a regular expression is specified by the grammar in Figure 10.1. A few subtle points about
the regexp language are worth noting:

• When an opening square bracket (“[”) that starts a range is immediately followed by a closing square
bracket (“]”), then the closing square bracket is part of the range, instead of ending an empty range.

61



10. Regular Expressions

For example, "[]a]" matches any string that contains a lowercase “a” or a closing square bracket. A
dash (“-”) at the start or end of a range is treated specially in the same way.

• When a caret (“ˆ”) or dollar sign (“$”) appears in the middle of a regular expression (not in a range),
the resulting regexp is legal even though it is usually not matchable. For example, "a$b" is unmatchable
because no string can contain the letter “b” after the end of the string. On the other hand, "a$b*"
matches any string that ends with a lowercase “a”, since zero “b”s will match the part of the regexp
after “$”.

• A backslash (“\”) in a regexp pattern specified with a Scheme string literal must be protected with
an additional backslash. For example, the string "\\." describes a pattern that matches any string
containing a period. In this case, the first backslash protects the second to generate a Scheme string
containing two characters; the second backslash (which is the first slash in the actual string value)
protects the period in the regexp pattern.

The regular expression procedures are:

• (regexp string) takes a string representation of a regular expression and compiles it into a regexp
value. Other regular expression procedures accept either a string or a regexp value as the matching
pattern. If a regular expression string is used multiple times, it is faster to compile the string once to
a regexp value and use it for repeated matches instead of using the string each time.

• (regexp? v) returns #t if v is a regexp value created by regexp, #f otherwise.

• (regexp-match pattern string [start end ]) attempts to match pattern (a string or a regexp value) to
a portion of string . The optional start and end arguments select a substring of string for matching
(where the default is the entire string). If the match fails, #f is returned. If the match succeeds, a list
of strings is returned. The first string in this list is the portion of string that matched pattern. If two
portions of string can match pattern, then the earliest and longest match is found.

Additional strings are returned in the list if pattern contains parenthesized subexpressions; matches
for the subexpressions are provided in the order of the opening parentheses in pattern. When sub-
expressions occur in different branches of an “or” (|), a #f is returned for each sub-expression that
was not used in the match. When a single sub-expression is used multiple times in a match (e.g.,
a sub-expression is followed by “*”), then the rightmost match associated with the sub-expression is
returned in the list.

• (regexp-match-positions pattern string [start end ]) is like regexp-match, but instead of returning
a list of strings, a list of number pairs is returned. Each pair of numbers refers to the range of characters
in string that matched the corresponding (sub-)expression. If start is specified, the returned positions
correspond to positions within string , rather than positions within the substring.

• (regexp-replace pattern string insert-string) performs a match using pattern on string and then
returns a string in which the matching portion of string is replaced with insert-string . If pattern
matches no part of string , then string is returned unmodified.

If insert-string contains “&”, then “&” is replaced with the matching portion of string before it is
substituted into string . If insert-string contains “\n” (for some integer n), then it is replaced with the
nth matching sub-expression from string .1 “&” and “\0” are synonymous. If the nth sub-expression
was not used in the match or if n is greater than the number of sub-expressions in pattern, then “\n”
is replaced with the empty string.

A literal “&” or “\” is specified as “\&” or “\\”, respectively. If insert-string contains “\$”, then “\$”
is replaced with the empty string. (This can be used to terminate a number n following a backslash.)
If a “\” is followed by anything other than a digit, “&”, “\”, or “$”, then it is treated as “\0”.

1The backslash is a character in the string, so an extra backslash is required to specify the string as a Scheme constant. For
example, the Scheme constant "\\1" is “\1”.

62



10. Regular Expressions

(regexp-replace* pattern string insert-string) is the same as regexp-replace, except that every
instance of pattern in string is replaced with insert-string . Only non-overlapping instances of pattern
in the original string are replaced, so instances of pattern within inserted strings are not replaced
recursively.

Examples:

(define r (regexp "(-[0-9]*)+"))

(regexp-match r "a-12--345b") ; ⇒ ("-12--345" "-345")

(regexp-match-positions r "a-12--345b") ; ⇒ ((1 . 10) (5 . 10))

(regexp-match "x+" "12345") ; ⇒ #f

(regexp-replace "mi" "mi casa" "su") ; ⇒ "su casa"

(define r2 (regexp "([Mm])i ([a-zA-Z]*)"))

(define insert "\\1y \\2")

(regexp-replace r2 "Mi Casa" insert) ; ⇒ "My Casa"

(regexp-replace r2 "mi cerveza Mi Mi Mi" insert) ; ⇒ "my cerveza Mi Mi Mi"

(regexp-replace* r2 "mi cerveza Mi Mi Mi" insert) ; ⇒ "my cerveza My Mi Mi"

63



11. System Utilities

11.1 Ports

The global variable eof is bound to the end-of-file value. The standard Scheme predicate eof-object?

returns #t only when applied to this value. The predicate port? returns #t only for values for which either
input-port? or output-port? returns #t.

11.1.1 Current Ports

The standard Scheme procedures current-input-port and current-output-port are implemented as pa-
rameters in MzScheme. See §9.4.1.2 for more information.

11.1.2 Opening File Ports

The open-input-file and open-output-file procedures accept an optional flag argument after the file-
name that specifies a mode for the file:

• ’binary — characters are returned from the port exactly as they are read from the file. Binary mode
is the default mode.

• ’text — return and linefeed characters written and read from the file are filtered by the port in a
platform specific manner:

– Unix and BeOS: no filtering occurs.
– Windows reading: a return-linefeed combination from a file is returned by the port as a single

linefeed; no filtering occurs for return characters that are not followed by a linefeed, or for a
linefeed that is not preceded by a return.

– Windows writing: a linefeed written to the port is translated into a return-linefeed combination
in the file; no filtering occurs for returns.

– MacOS reading: a return character read from the file is returned as a linefeed by the port; no
filtering occurs for linefeeds.

– MacOS writing: a return character written to the port is translated into a linefeed in the file;
no filtering occurs for linefeeds.

The open-output-file procedure can also take a flag argument that specifies how to proceed when a file
with the specified name already exists:

• ’error — raise an exception (this is the default)

• ’replace — remove the old file and write a new one

• ’truncate — overwrite the old data

• ’truncate/replace — try ’truncate; if it fails, try ’replace

• ’append — append to the end of the file

64



11. System Utilities 11.1. Ports

Extra flag arguments are passed to open-output-file in any order. Appropriate flag argu-
ments can also be passed as the last argument(s) to call-with-input-file, with-input-from-file,
call-with-output-file, and with-output-to-file. When conflicting flag arguments (e.g., both ’error

and ’replace) are provided to open-output-file, with-output-to-file, or call-with-output-file,
the exn:application:mismatch exception is raised.

When an input or output file port is created, it is placed into the management of the current custodian (see
§9.5).

11.1.3 Pipes

(make-pipe) returns two port values (see Chapter 2): the first port is an input port and the second is an
output port. Data written to the output port is read from the input port. The ports do not need to be
explicitly closed.

11.1.4 String Ports

Scheme input and output can be read from or collected into a string:

• (open-input-string string) creates an input port that reads characters from string .

• (open-output-string) creates an output port that accumulates the output into a string.

• (get-output-string string-output-port) returns the string accumulated in string-output-port .

String input and output ports do not need to be explicitly closed. The file-position procedure, described
in §11.1.5, works specially for string ports.

Example:

(define i (open-input-string "hello world"))

(define o (open-output-string))

(write (read i) o)

(get-output-string o) ; ⇒ "hello"

11.1.5 File Ports

Two special procedures work on file ports:

• (flush-output [output-port ]) forces all buffered data in the given file output port to be physically
written. Buffered data is automatically flushed after each newline. The initial standard output and
error ports are automatically flushed when read1, read-line, read-string, or read-string! are
performed on the initial standard input port. When called on a non-file port, flush-output takes no
action. If output-port is omitted, then the current output port is flushed.

• (file-position port) returns the current read/write position of port , and (file-position port
k) sets the read/write position to k . The latter works only for file and string ports, and raises the
exn:application:mismatch exception for other port kinds. Calling file-positionwithout a position
on a non-file/non-string input port returns the number of characters that have been read from that
port.

1Flushing is performed by the default port read handler (see §11.1.8) rather than by read itself.

65



11.1. Ports 11. System Utilities

When (file-position port k) sets the position k beyond the current size of an output file or string,
the file/string is enlarged to size k and the new region is filled with #\nul. If k is beyond the end of
an input file or string, then reading thereafter returns eof without changing the port’s position.

11.1.6 Custom Ports

The make-input-port and make-output-port procedures create ports with arbitrary control procedures:

• (make-input-port read-char-proc char-ready?-proc close-proc [peek-char-proc]) creates an input
port.

The read-char-proc argument is a procedure that takes no arguments and returns the next input
character from the port. When no more characters are available from the port, read-char-proc returns
eof. (If a non-character and non-eof value is returned, the exn:i/o:port:user exception is raised.)

The char-ready?-proc argument is a procedure that takes no arguments and returns a true value if a
character (or eof) is ready to be read, #f otherwise.

The close-proc argument is a procedure of no arguments to be called when the port is closed.

The peek-char-proc argument is a procedure that takes no arguments and returns the next input
character from the port, but also saves the character for the next read-char-proc or peek-char-proc
call. If peek-char-proc is not provided, the default procedure uses read-char-proc.2 If peek-char-proc
is provided, MzScheme does not check that calling read-char-proc obtains the value returned by a
previous peek-char-proc call.

• (make-output-port write-proc close-proc) creates an output port.

The write-proc argument is a procedure that takes a string and writes it. (The write-proc procedure
can safely store or mutate this string.)

The close-proc argument is a procedure of no arguments; it is called when the port is closed.

Ports created by make-input-port and make-output-port are immediately open for reading or writing.
If the close procedure does not have any side-effects, then the custom port does not need to be explicitly
closed.

11.1.7 Reading and Printing

In addition to the standard reading procedures, MzScheme provides read-line, read-string, and
read-string!:

• (read-line [input-port mode-symbol ]) returns a string containing the next line of characters from
input-port . If input-port is omitted, the current input port is used.

Characters are read from input-port until a line separator or an end-of-file is read. The line separator
is not included in the result string (but it is removed from the port’s stream). If no characters are read
before an end-of-file is encountered, eof is returned.

The mode-symbol argument determines the line separator(s). It must be one of the following symbols:

– ’linefeed — break lines on linefeed characters; this is the default.
– ’return — break lines on return characters.
– ’return-linefeed — break lines on return-linefeed combinations. If a return character is not

followed by a linefeed character, it is included in the result string; similarly, a linefeed that is not
preceded by a return is included in the result string.

2The default peek-char-proc relies on special internal support from peek-char and read-char to implement peeking.

66



11. System Utilities 11.1. Ports

– ’any — break lines on any of a return character, linefeed character, or return-linefeed combination.
If a return character is followed by a linefeed character, the two are treated as a combination.

– ’any-one — break lines on either a return or linefeed character, without recognizing return-
linefeed combinations.

Return and linefeed characters are detected after the conversions that are automatically performed
when reading a file in text mode. For example, reading a file in text mode under Windows automatically
changes return-linefeed combinations to a linefeed. Thus, when a file is opened in text mode, ’linefeed
is usually the appropriate read-line mode.

• (read-string k [input-port ]) returns a string containing the next k characters from input-port . The
default value of input-port is the current input port.

If k is 0, then the empty string is returned. Otherwise, if fewer than k characters are available before
an end-of-file is encountered, then the returned string will contain only those characters before the
end-of-file (i.e., the returned string’s length will be less than k). If no characters are available before
an end-of-file, then eof is returned.

• (read-string! string [input-port start-k end-k ]) reads characters from input-port and puts them into
string starting from index start-k (inclusive) up to end-k (exclusive). The default value of input-port
is the current input port. The default value of start-k is 0. The default value of end-k is the length of
the string . Like substring, the exn:application:mismatch exception is raised if start-k or end-k is
out-of-range for string .

If the difference between start-k and end-k is 0, then 0 is returned and the string is not modified. If
no characters are available before an end-of-file, then eof is returned. Otherwise, the return value is
the number of characters read. If m characters are read and m < end-k − start-k , then string is not
modified at indices start-k + m though end-k .

In addition to the standard printing procedures, MzScheme provides print, which outputs values to a port
by calling the port’s print handler (see §11.1.9):

• (print v [output-port ]) outputs v to output-port . The default value of output-port is the current
output port.

The print procedure is used to print Scheme values in a context where a programmer expects to see a
Scheme value. The rationale for providing print is that display and write both have standard output
conventions, and this standardization restricts the ways that an environment can change the behavior of these
procedures. No output conventions should be assumed for print so that environments are free to modify
the actual output generated by print in any way. Unlike the port display and write handlers, a global port
print handler can be installed through the global-port-print-handler parameter (see §9.4.1.2).

Formatted output is written to a port with fprintf:

• (fprintf output-port format-string v ···) prints formatted output to output-port , where format-string
is a string that is printed; format-string can contain special formatting tags:

– ∼n or ∼% prints a newline
– ∼a or ∼A displays the next argument among the vs
– ∼s or ∼S writes the next argument among the vs
– ∼v or ∼V prints the next argument among the vs
– ∼e or ∼E outputs the next argument among the vs using the current error value conversion

handler (see §9.4.1.9) and current error printing width
– ∼c or ∼C write-chars the next argument in vs; if the next argument is not a character, the

exn:application:mismatch exception is raised

67



11.1. Ports 11. System Utilities

– ∼b or ∼B prints the next argument among the vs in binary; if the next argument is not an exact
number, the exn:application:mismatch exception is raised

– ∼o or ∼O prints the next argument among the vs in octal; if the next argument is not an exact
number, the exn:application:mismatch exception is raised

– ∼x or ∼X prints the next argument among the vs in hexadecimal; if the next argument is not an
exact number, the exn:application:mismatch exception is raised

– ∼∼ prints a tilde (∼)
– ∼w , where w is a whitespace character, skips characters in format-string until a non-whitespace

character is encountered or until a second end-of-line is encountered (whichever happens first).
An end-of-line is either #\return, #\newline, or #\return followed immediately by #\newline

(on all platforms).

The return value is void.

• (printf format-string v · · ·) same as fprintf with the current output port.

• (format format-string v · · ·) same as fprintf with a string output port where the final string is
returned as the result.

When an illegal format string is supplied to one of these procedures, the exn:application:type ex-
ception is raised. When the format string requires more additional arguments than are supplied, the
exn:application:fprintf:mismatch exception is raised. When more additional arguments are supplied
than are used by the format string, the exn:application:mismatch exception is raised.

For example,

(fprintf port "∼a as a string is ∼s.∼n" ’(3 4) "(3 4)")

prints this message to port :3

(3 4) as a string is "(3 4)".

followed by a newline.

11.1.8 Customizing Read

Each input port has its own port read handler. This handler is invoked to read S-expressions from the
port when the standard read procedure is applied to the port. A port read handler takes a single argument:
the port being read. The return value is the value that was read from the port.

• (port-read-handler input-port) returns the current port read handler for input-port .

• (port-read-handler input-port proc) sets the handler for input-port to proc.

The default port read handler reads standard Scheme expressions with MzScheme’s built-in parser (see
§14.3).

11.1.9 Customizing Display, Write, and Print

Each output port has its own port display handler, port write handler, and port print handler.
These handlers are invoked to output S-expressions to the port when the standard display, write or print
procedure is applied to the port. A port display/write/print handler takes a two arguments: the value to be
printed and the destination port. The handler’s return value is ignored.

3Assuming that the current port display and write handlers are the default ones; see §11.1.9 for more information.

68



11. System Utilities 11.2. Filesystem Utilities

• (port-display-handler output-port) returns the current port display handler for output-port .

• (port-display-handler output-port proc) sets the display handler for output-port to proc.

• (port-write-handler output-port) returns the current port write handler for output-port .

• (port-write-handler output-port proc) sets the write handler for output-port to proc.

• (port-print-handler output-port) returns the current port print handler for output-port .

• (port-print-handler output-port proc) sets the print handler for output-port to proc.

The default port display and write handlers print Scheme expressions with MzScheme’s built-in
printer (see §14.4). The default print handler calls the global port print handler (the value of the
global-port-print-handler parameter; see §9.4.1.2); the default global port print handler is the same
as the default write handler.

11.2 Filesystem Utilities

Additional filesystem utilities are in MzLib; see §15.2.8.

11.2.1 Pathnames

File and directory paths are specified as strings. Since the syntax for pathnames can vary across platforms
(e.g., under Unix, directories are separated by “/” while the Mac uses “:”), MzScheme provides tools for
portably constructing and deconstructing pathnames.

Most MzScheme primitives that take pathnames perform an expansion on the pathname before using it.
(Procedures that build pathnames or merely check the form of a pathname do not perform this expansion.)
Under Unix and BeOS, a user directory specification using “∼” is expanded.4 Under MacOS, file and
folder aliases are resolved to real pathnames. Under Windows, multiple slashes are converted to single
slashes (except at the beginning of a shared folder name), and a slash is inserted after the colon in a drive
specification (if it is missing). In a Windows pathname, slash and backslash are always equivalent (and can
be mixed together in the same pathname).

A pathname string cannot contain a null character (#\nul). When a string containing a null character is
provided as a pathname to any procedure except absolute-path?, relative-path?, complete-path?, or
normal-case-path, the exn:i/o:filesystem exception is raised.

The pathname utilites are:

• (build-path base-path sub-path · · ·) creates an pathname given a base pathname and any number of
sub-pathname extensions. If base-path is an absolute pathname, the result is an absolute pathname; if
base is a relative pathname, the result is a relative pathname. Each sub-path must be either a relative
pathname, a directory name, the symbol ’up (indicating the relative parent directory), or the symbol
’same (indicating the relative current directory). Under Windows, if base-path is a drive specification
(with or without a trailing slash) the first sub-path can be an absolute (driveless) path. The last
sub-path can be a filename.

Each sub-path and base-path can optionally end in a directory separator. If the last sub-path ends in
a separator, it is included in the resulting pathname.

4Under Unix and BeOS, expansion does not convert multiple adjacent slashes to a single slash. However, extra slashes in a
pathname are always ignored.

69



11.2. Filesystem Utilities 11. System Utilities

Under MacOS, if a sub-path argument does not begin with a colon, one is added automatically. This
means that sub-path arguments are never interpreted as absolute paths under MacOS. For other plat-
forms, if an absolute path is provided for any sub-path, then the exn:i/o:filesystem exception is
raised. On all platforms, if base-base or sub-path is an illegal path string (e.g., it contains a null
character), the exn:i/o:filesystem exception is raised.

The build-path procedure builds a pathname without checking the validity of the path or accessing
the filesystem.

The following examples assume that the current directory is /home/joeuser for Unix examples and
My Disk:Joe’s Files for MacOS examples.

(define p1 (build-path (current-directory) "src" "scheme"))

; Unix: p1 ⇒ "/home/joeuser/src/scheme"

; MacOS: p1 ⇒ "My Disk:Joe’s Files:src:scheme"

(define p2 (build-path ’up ’up "docs" "MzScheme"))

; Unix: p2 ⇒ "../../docs/MzScheme"

; MacOS: p2 ⇒ ":::docs:MzScheme"

(build-path p2 p1)

; Unix: raises exn:i/o:filesystem:path because p1 is absolute

; MacOS: ⇒ ":::docs:MzScheme:My Disk:Joe’s Files:src:scheme"

(build-path p1 p2)

; Unix: ⇒ "/home/joeuser/src/scheme/../../docs/MzScheme"

; MacOS: ⇒ "My Disk:Joe’s Files:src:scheme:::docs:MzScheme"

• (absolute-path? path) returns #t if path is an absolute pathname, #f otherwise. If path is not a legal
pathname string (e.g., it contains a null character), #f is returned. This procedure does not access the
filesystem.

• (relative-path? path) returns #t if path is a relative pathname, #f otherwise. If path is not a legal
pathname string (e.g., it contains a null character), #f is returned. This procedure does not access the
filesystem.

• (complete-path? path) returns #t if path is a completely determined pathname (not relative to a
directory or drive), #f otherwise. Note that under Windows, an absolute path can omit the drive
specification, in which case the path is niether relative nor complete. If path is not a legal pathname
string (e.g., it contains a null character), #f is returned. This procedure does not access the filesystem.

• (path->complete-path path [base-path]) returns path as a complete path. If path is already a com-
plete path, it is returned as the result. Otherwise, path is resolved with respect to the complete path
base-path. If base-path is omitted, path is resolved with respect to the current directory. If base-path is
provided and it is not a complete path, the exn:i/o:filesystem exception is raised. This procedure
does not access the filesystem.

• (resolve-path path) expands path and returns a pathname that references the same file or directory
as path. Under Unix or BeOS, if path is a soft link to another pathname, then the referenced pathname
is returned (this may be a relative pathname with respect to the directory owningpath) otherwise path
is returned (after expansion).

• (expand-path path) returns the expanded version of path (as described at the beginning of this
section). The filesystem might be accessed, but the source or expanded pathname might be a non-
existant path.

• (simplify-path path) eliminates up-directory (“..” in Unix, BeOS, and Windows) and same-directory
(“.”) indicators in path. If no indicators are in path, then path is returned. Otherwise, a complete
path is returned; if path is relative, it is resolved with respect to the current directory. Up-directory
indicators are dropped when they refer to the parent of a root directory. The filesystem might be

70



11. System Utilities 11.2. Filesystem Utilities

accessed, but the source or expanded pathname might be a non-existant path. If path cannot be
simplified due to a cycle of links, the exn:i/o:filesystem exception is raised (but a successfully
simplified path may still involve a cycle of links if the cycle did not inhibit the simplification).

• (normal-case-path string) returns string with normalized case letters. Under Unix and BeOS, this
procedure always returns the input path. Under Windows and MacOS, the resulting string uses only
lowercase letters. Under Windows, all forward slashes (“/”) are converted to backward slashes (“\”).
This procedure does not access the filesystem or guarantee that the output string is a legal pathname
(i.e., string and the result may contain a null character).

• (split-path path) deconstructs path into a smaller pathname and an immediate directory or file
name. Three values are returned (see Chapter 2):

– base is either
∗ a string pathname,
∗ ’relative if path is an immediate relative directory or filename, or
∗ #f if path is a root directory.

– name is either
∗ a string directory name,
∗ a string file name,
∗ ’up if the last part of path specifies the parent directory of the preceding path (e.g., “..”

under Unix), or
∗ ’same if the last part of path specifies the same directory as the preceding path (e.g., “.”

under Unix).
– must-be-dir? is #t if path explicitly specifies a directory (e.g., with a trailing separator), #f

otherwise. Note that must-be-dir? does not specify whether name is actually a directory or not,
but whether path syntactically specified a directory.

If base is #f, then name cannot be ’up or ’same. All strings returned for base and name are newly
allocated. This procedure does not access the filesystem.

• (find-executable-path program-sub-path related-sub-path) finds an absolute executable pathname
that is synonymous with the executable pathname program-sub-path such that the file or directory
related-sub-path (a relative path string) exists in the same directory. If such a path cannot be found,
#f is returned.

This procedure is used by MzScheme (as a stand-alone executable) to find the standard library collection
directory (see Chapter 15); in this case, program is the name used to start MzScheme and related is
"collects".

If program-sub-path is an absolute path, find-executable-path determines whether related-sub-path
exists in the directory of program-sub-path. If so, program is returned. Otherwise, if program-sub-path
is a link to another path, the destination directory of the link is checked for related-sub-path. Further
links are inspected until related-sub-path is found or the end of the chain of links is reached.

If program-sub-path is a relative path, find-executable-path gets the value of the PATH environment
variable; if this environment variable is defined, find-executable-path tries each colon-separated
path in PATH as a prefix for program-sub-path using the search algorithm described above. If the
environment variable is not defined, program-sub-path is prefixed with the current directory and used
in the search algorithm above. (Under Windows, the current directory is always implicitly the first
item in PATH, so find-executable-path checks the current directory first under Windows.)

The related-sub-path argument is used because, under Unix and BeOS, program-sub-path may involve
to a sequence of soft links; in this case, related-sub-path determines which link in the chain is relevant.

• (find-system-path kind-symbol) returns a machine-specific path for a standard type of path specified
by kind-symbol , which must be one of the following:

71



11.2. Filesystem Utilities 11. System Utilities

– ’home-dir — the current user’s home directory. Under MacOS, this is the preferences directory.
Under Windows, this is the directory specified by the HOMEDRIVE and HOMEPATH environ-
ment variables; if those environment variables are not defined or the directory does not exist, the
directory containing the MzScheme executable is returned, instead.

– ’pref-dir — the standard directory for storing the current user’s preferences. Under Unix,
Windows, and BeOS, this is the user’s home directory.

– ’temp-dir — the standard directory for storing temporary files. Under Unix, Windows, and
BeOS, this is the directory specified by the TMPDIR environment variable, if it is defined.

– ’init-dir — the directory containing the initialization file used by stand-alone MzScheme ap-
plication. It is the same as the current user’s home directory.

– ’init-file— the file loaded at start-up by the stand-alone MzScheme application. The directory
part of the path is the same path as returned for ’init-dir. The file name is platform-specific:
∗ Unix and BeOS: .mzschemerc
∗ Windows and MacOS: mzschemerc.ss

• (path-list-string->path-list string default-path-list) parses a string containing a list of paths,
and returns a list of path strings. Under Unix and BeOS, paths in a path list are separated by a colon
(“:”); under Windows and MacOS, paths are separated by a semi-colon (“;”). Whenever the path list
contains an empty path, the list default-path-list is spliced into the returned list of paths. Parts of
string that do not form a valid path are not included in the returned list. (The content of the list
default-path-list is not inspected.)

11.2.2 Files

The file management utilities are:

• (file-exists? path) returns #t if a file (not a directory) path exists, #f otherwise. Unlike some other
procedures that take a path argument, this procedure never raises the exn:i/o:filesystem exception.

• (link-exists? path) returns #t if a link path exists (Unix, BeOS, and MacOS), #f otherwise. Note
that the predicates file-exists? or directory-exists? work on the final destination of a link or
series of links, while link-exists? only follows links to resolve the base part of path (i.e., everything
except the last name in the path). This procedure never raises the exn:i/o:filesystem exception.

• (delete-file path) deletes the file with pathname path if it exists, returning void if a file was deleted
successfully, otherwise the exn:i/o:filesystem exception is raised. If path is a link, the link is deleted
rather than the destination of the link.

• (rename-file-or-directory old-path new-path) renames the file or directory with pathname old-
path — if it exists — to the pathname new-path. If the file or directory is renamed successfully, void is
returned, otherwise the exn:i/o:filesystem exception is raised. This procedure can be used to move
a file/directory to a different directory (on the same disk) as well as rename a file/directory within a
directory. The pathname new-path cannot refer to an existing file or directory. If old-path is a link,
the link is renamed rather than the destination of the link.

• (file-or-directory-modify-seconds path) returns the file or directory’s last modification date as
platform-specific seconds (see also §11.4).5 If no file or directory path exists, the exn:i/o:filesystem

exception is raised.

• (file-or-directory-permissions path) returns a list containing ’read, ’write, and/or ’execute
for the given file or directory path. If no such file or directory exists, the exn:i/o:filesystem exception
is raised.

5For FAT filesystems under Windows, directories do not have modification dates. Therefore, the creation date is returned
for a directory (but the modification date is returned for a file).

72



11. System Utilities 11.3. Networking

• (file-size path) returns the (logical) size of the specified file. (Under MacOS, this is the sum of the
data fork and resource fork sizes.) If no such file exists, , the exn:i/o:filesystem exception is raised.

• (copy-file src-path dest-path) creates the file dest-path as a copy of src-path. If the file is successfully
copied, void is returned, otherwise the exn:i/o:filesystem exception is raised. If dest-path already
exists, the copy will fail. File permissions are preserved in the copy. Under MacOS, the resource fork
is also preserved in the copy.

11.2.3 Directories

The directory management utilities are:

• (current-directory) returns the current directory and (current-directory path) sets the current
directory to path. This procedure is actually a parameter, as described in §9.4.1.1.

• (current-drive) returns the current drive name under Windows. For other platforms, the
exn:misc:unsupported exception is raised. The current drive is always the drive of the current
directory.

• (directory-exists? path) returns #t if path refers to a directory, #f otherwise. Unlike other proce-
dures that take a path argument, this procedure never raises the exn:i/o:filesystem exception.

• (make-directory path) creates a new directory with the pathname path. If the directory is created
successfully, void is returned, otherwise the exn:i/o:filesystem exception is raised.

• (delete-directory path) deletes an existing directory with the pathname path. If the directory is
created successfully, void is returned, otherwise the exn:i/o:filesystem exception is raised.

• (rename-file-or-directory old new), as described in the previous section, renames directories.

• (file-or-directory-modify-seconds path), as described in the previous section, gets directory
dates.

• (file-or-directory-permissions path), as described in the previous section, gets directory permis-
sions.

• (directory-list [path]) returns a list of all files and directories in the directory specified by path. If
path is omitted, a list of files and directories in the current directory is returned.

• (filesystem-root-list) returns a list of all current root directories.

11.3 Networking

MzScheme provides a minimal collection of TCP-based communication procedures.

• (tcp-listen port-k [max-allow-wait-k ]) creates a “listening” server on the local machine at the spec-
ified port number (where port-k is an exact integer between 1 and 65535). The max-allow-wait-k
argument determines the maximum number of client connections that can be waiting for acceptance.
(When max-allow-wait-k clients are waiting acceptance, no new client connections can be made.) The
default value for max-allow-wait-k argument is 4.

The return value of tcp-listen is a TCP listener value. This value can be used in future calls to
tcp-accept, tcp-accept-ready?, and tcp-close. Each new TCP listener value is placed into the
management of the current custodian (see §9.5).

If the server cannot be started by tcp-listen, the exn:i/o:tcp exception is raised.

73



11.4. Time 11. System Utilities

• (tcp-connect hostname-string [port-k ]) attempts to connect as a client to a listening server. The
hostname-string argument is the server host’s internet address name6 (e.g., "cs.rice.edu"), and port-k
(an exact integer between 1 and 65535) is the port where the server is listening.

Two values (see Chapter 2) are returned by tcp-connect: an input port and an output port. Data can
be received from the server through the input port and sent to the server through the output port. If
the server is a MzScheme process, it can obtain ports to communicate to the client with tcp-accept.
These ports are placed into the management of the current custodian (see §9.5).

The client input and output ports are not independent: closing the output port does not cause the
server to receive an end-of-file. Instead, both ports must be closed before the server receieves an
end-of-file.

If a connection cannot be established by tcp-connect, the exn:i/o:tcp exception is raised.

• (tcp-accept tcp-listener) accepts a client connection for the server associated with tcp-listener . The
tcp-listener argument is a TCP listener value returned by tcp-listen. If no client connection is waiting
on the listening port, the call to tcp-accept will block. (See also tcp-accept-ready?, below.)

Two values (see Chapter 2) are returned by tcp-accept: an input port and an output port. Data
can be received from the client through the input port and sent to the client through the output port.
These ports are placed into the management of the current custodian (see §9.5).

The accepted input and output ports are not independent: closing the output port does not cause
the client’s input port to receive and end-of-file. Instead, both ports must be closed before the client
receieves an end-of-file.

If a connection cannot be accepted by tcp-accept, or if the listener has been closed, the exn:i/o:tcp

exception is raised.

• (tcp-accept-ready? tcp-listener) tests whether an unaccepted client has connected to the server as-
sociated with tcp-listener . The tcp-listener argument is a TCP listener value returned by tcp-listen.
If a client is waiting, the return value is #t, otherwise it is #f. A client is accepted with the tcp-accept
procedure, which returns ports for communicating with the client and removes the client from the list
of unaccepted clients.

If the listener has been closed, the exn:i/o:tcp exception is raised.

• (tcp-close tcp-listener) shuts down the server associated with tcp-listener . The tcp-listener argu-
ment is a TCP listener value returned by tcp-listen. All unaccepted clients receive an end-of-file
from the server; connections to accepted clients are unaffected.

If the listener has already been closed, the exn:i/o:tcp exception is raised.

• (tcp-listener? v) returns #t if v is a TCP listener value created by tcp-listen, #f otherwise.

11.4 Time

11.4.1 Real Time and Date

(current-seconds) returns the current time in seconds. This time is always an exact integer based on a
platform-specific starting date (with a platform-specific minimum and maximum value).

The value of (current-seconds) increases as time passes (increaing by 1 for each second that passes). The
current time in seconds can be compared with a time returned by file-or-directory-modify-seconds

(see §11.2.2).

6The name "localhost" agenerally specifies the local machine.

74



11. System Utilities 11.4. Time

(seconds->date secs-n) takes secs-n, a platform-specific time in seconds (an exact integer) returned by
current-seconds or file-or-directorymodify-seconds, and returns an instance of the date structure
type with the following fields:

• second : 0 to 61 (60 and 61 are for unusual leap-seconds)

• minute : 0 to 59

• hour : 0 to 23

• day : 1 to 31

• month : 1 to 12

• year : e.g., 1996
• week-day : 0 (Sunday) to 6 (Saturday)

• year-day : 0 to 365 (364 in non-leap years)
• dst? : #t (daylight savings time) or #f

The value returned by current-secondsor file-modify-seconds is not portable among platforms. Convert
a time in seconds using seconds->date when portability is needed.

See also §15.2.6 for additional date utilities.

11.4.2 Machine Time

(current-milliseconds) returns the current “time” in fixnum milliseconds. This time is based on a
platform-specific starting date or on the machine’s startup time. Since the result is a fixnum, the value is
only strictly increasing for a limited (though reasonably long) time.

(current-process-milliseconds) returns the amount of processor time that has been consumed by this
MzScheme process so far in fixnum milliseconds. (Under Unix and BeOS, this includes both user and system
time.) The precision of the result is platform-specific, and since the result is a fixnum, the value is only
strictly increasing for a limited (though reasonably long) time.

(current-gc-milliseconds) returns the amount of processor time that has been consumed by MzScheme’s
garbage collection so far in fixnum milliseconds. This time is a portion of the time reported by
(current-process-milliseconds).

11.4.3 Timing Execution

The time-apply procedure collects timing information for a procedure application:

• (time-apply thunk) invokes the procedure thunk with no arguments. Three values are returned: a
list containing the result(s) of applying thunk , the number of milliseconds of CPU time required to
obtain this result, and the number of “real” milliseconds required for the result.

The reliability of the timing numbers depends on the operating system. If multiple MzScheme threads are
running, then the reported time may include work performed by other threads.

The time syntactic form reports timing information directly to the current output port:

• (time expr) times the evaluation of expr , printing timing information to the current output port.
This form also prints the amount of time spent in garbage-collection (already included in the CPU
time). The result of the time expression is the result of expr .

75



11.5. Operating System Processes 11. System Utilities

11.5 Operating System Processes

(system command-string) executes a Unix, Windows, or BeOS shell command synchronously (i.e., the
call to system does not return until the subprocess has ended), or launches a MacOS application by its
creator signature (and returns immediately). The command-string argument is a string (of four characters
for MacOS) containing no null characters. If the command succeeds, the return value is #t, #f otherwise.
Under MacOS, if command-string is not four characters, the exn:application:mismatch exception is raised.

(system* command-string arg-string · · ·) is like system, except that command-string is a filename that
is executed directly (instead of through a shell command or through a MacOS creator signature), and the
arg-strings are the arguments. Under Unix, Windows and BeOS, the executed file is passed the specified
string arguments (which must contain no null characters). Under MacOS, no arguments can be supplied,
otherwise the exn:misc:unsupported exception is raised.

(execute command-string) does not return unless there was an error executing command-string . If it
returns, the result is void. Under Unix, it is like system followed by exit when the command succeeds. For
MacOS, this procedure is system followed by an immediate exit if the target application launches successfully.
(This procedure is not supported for Windows or BeOS, although execute* is supported for Windows and
BeOS.)

(execute* command-string arg-string · · ·) is like execute for Unix and MacOS, except that command-
string is a filename that is executed directly, and the arg-strings are the arguments. Under Unix, when
the current exit handler is MzScheme’s default exit handler, the execution of command-string replaces the
MzScheme process. Under MacOS, no arguments can be supplied, otherwise the exn:misc:unsupported

exception is raised. Under Windows and BeOS, this procedure is like system* except that exit is called
immediately if the specified program launches successfully, otherwise void is returned.

(process command-string) executes a shell command asynchronously under Unix. (This procedure is not
supported for Windows, BeOS, or MacOS, although process* is supported for Windows and BeOS.) If the
subprocess is launched successfully, the result is a list of five values:

• an input port piped from the subprocess’s standard output,
• an output port piped to the subprocess standard input,
• the system process id of the subprocess,
• an input port piped from the subprocess’s standard error,7 and
• a procedure of one argument, either ’status or ’wait: ’status returns the status of the subprocess

as one of ’running, ’done-ok, or ’done-error; ’wait blocks execution in the current thread until
the subprocess has completed.

All three ports returned from process must be explicitly closed with close-input-port and
close-output-port.

(process* command-string arg-string · · ·) is like process under Unix for all of Unix, Windows, and BeOS,
except that command-string is a filename that is executed directly, and the arg-strings are the arguments.
(This procedure is not supported for MacOS.)

The ports returned by process and process* are placed into the management of the current custodian (see
§9.5). The exn:misc:process exception is raised when a low-level error prevents the spawning of a process
or the creation of operating system pipes for process communication.

(send-event receiver-string event-class-string event-id-string [direct-argument-v argument-list ]) sends an
AppleEvent under MacOS. (This procedure is not supported for Unix, Windows, or BeOS.) The receiver-

7The standard error port is placed after the process id for compatibility with other Scheme implementations. For the same
reason, process returns a list instead of multiple values.

76



11. System Utilities 11.6. Operating System Environment Variables

string , event-class-string , and event-id-string arguments specify the signature of the receiving application,
the class of the AppleEvent, and the ID of the AppleEvent. Each of these must be a four-character string,
otherwise the exn:application:mismatch exception is raised. The direct-argument-v value is converted
(see below) and passed as the main argument of the event; if direct-argument-v is void, no main argument
is sent in the event. The argument-list argument is a list of two-element lists containing a typestring and
value; each typestring is used ad the keyword name of an AppleEvent argument for the associated converted
value. Each typestring must be a four-character string, otherwise the exn:application:mismatch exception
is raised. The default values for direct-argument and arguments are void and null, respectively.

The following types of MzScheme values can be converted to AppleEvent values passed to the receiver:

#t or #f ⇒ Boolean
small integer ⇒ Long Integer

inexact real number ⇒ Double
string ⇒ Characters

list of convertable values ⇒ List of converted values
#(file pathname) ⇒ Alias (file exists) or FSSpec (does not exist)

#(record (typestring v) · · ·) ⇒ Record of keyword-tagged values

If other types of values are passed to send-event for conversion, the exn:misc:unsupported exception is
raised.

The send-event procedure does not return until the receiver of the AppleEvent replies. The result of
send-event is the reverse-converted reply value (see below), or the exn:misc exception is raised if there is
an error. If there is no error or return value, send-event returns void.

The following types of AppleEvent values can be reverse-converted into a MzScheme value returned by
send-event:

Boolean ⇒ #t or #f
Signed Integer ⇒ integer

Float, Double, or Extended ⇒ inexact real number
Characters ⇒ string

list of reverse-convertable values ⇒ List of reverse-converted values
Alias or FSSpec ⇒ #(file pathname)

Record of keyword-tagged values ⇒ #(record (typestring v) · · ·)

If the AppleEvent reply contains a value that connot be reverse-converted, the exn:misc exception is raised.

11.6 Operating System Environment Variables

(getenv name-string) gets the value of an operating system environment variable. The name-string argu-
ment cannot contain a null character; if an environment variable named by name-string exists, its value is
returned (as a string); otherwise, #f is returned.

(putenv name-string value-string) sets the value of an operating system environment variable. The name-
string and value-string arguments are strings that cannot contain a null character; the environment variable
named by name-string is set to value-string . The return value is #t if the assignment succeeds, #f otherwise.

Although MacOS does not have operating system environment variables, getenv returns values installed
with putenv (which always succeeds) in the same MzScheme session. When MzScheme is started, an initial
environment is read from an Environment file in the current directory if it exists. An Environment file must
contain a sequence of two-item lists where the name string is the first item in the list and the value string
is the second. For example, an Environment file might contain the following:

77



11.7. Runtime Information 11. System Utilities

("PLTCOLLECTS" ";My Disk:Extra Collections:")

("USER" "joeuser")

11.7 Runtime Information

(system-type)returns a symbol indicating the type of the operating system for a running MzScheme. The
possible values are:

• ’unix

• ’windows

• ’macos

• ’beos

• ’oskit

Future ports of MzScheme will expand this list of system types.

(system-library-subpath) returns a relative directory pathname string. This string can be used to build
pathnames to system-specific files. For example, when MzScheme is running under Solaris on a Sparc
architecture, the subpath is "sparc-solaris", while the subpath for Windows on an Intel architecture is
"win32\\i386".

(version) returns a string indicating the currently executing version of MzScheme.

(banner) returns a string for MzScheme’s start-up banner text (or the banner text for an embedding program,
such as MrEd).

78



12. Memory Management

12.1 Weak Boxes

A weak box is similar to a normal box (see §4.9), but when the automatic memory manager can prove that
the content value of a weak box is only reachable via weak boxes, the content of the weak box is replaced
with #f.

• (make-weak-box v) returns a new weak box that initially contains v .

• (weak-box-value weak-box) returns the value contained in weak-box . If the memory manager has
proven that the previous content value of weak-box was reachable only through weak boxes, then #f is
returned.

• (weak-box? v) returns #t if v is a weak box, #f otherwise.

12.2 Will Executors

A will executor manages a collection of values and associated will procedures. The will procedure for
each value is invoked when the value has been proven unreachable — except through will executors, weak
boxes, and custodians — by the automatic memory manager.

Calling the will-execute or will-try-execute procedure executes a will that is ready in the specified will
executor.

• (make-will-executor) returns a new will executor with no managed values.

• (will-executor? v) returns #t if v is a will executor, #f otherwise.

• (will-register executor v proc) registers the value v with the will procedure proc in the will executor
executor . When v is proven unreachable, then the procedure proc may be called with v as its argument
via will-execute or will-try-execute.

• (will-execute executor) invokes the will procedure for a single “unreachable” value registered with
the executor executable. The value(s) returned by the will procedure is the result of the will-execute
call. If no will is ready for immediate execution, will-execute blocks until one is ready.

• (will-try-execute executor) is like will-execute if a will is ready for immediate execution. Oth-
erwise, #f is returned.

If a value is registered with multiple wills, the wills are executed in the reverse order of registration. Since
executing a will procedure makes the value reachable again, the value must be proven unreachable once again
before another of the wills is executed.

If the content value of a weak box is registered with a will executor, the weak box’s content is not changed
to #f until all wills have been executed for the value and the value has been proven unreachable again.

79



12.3. Garbage Collection 12. Memory Management

12.3 Garbage Collection

(collect-garbage) forces an immediate garbage collection. Since MzScheme uses a “conservative” garbage
collector, some effectively unreachable data may remain uncollected (because the collector cannot prove that
it is unreachable). This procedure provides some control over the timing of collections, but garbage will
obviously be collected even if this procedure is never called.

(current-memory-use) returns an estimate of the number of bytes of memory occupied by reachable data.
(The estimate is calculated without performing an immediate garbage collection; performing a collection
generally decreases the number returned by current-memory-use.)

(dump-memory-stats) dumps information about memory usage to the (low-level) standard output port.

80



13. Macros

A low-level (defmacro-like) macro system is built into MzScheme. Macros defined with this system are not
hygenic. The high-level R5RS macro system is mostly supported by MzLib (see §15.2.23).

13.1 Defining Macros

Global macros are defined with define-macro:

(define-macro name procedure-expr)

When the macro is later “applied,” the (unevaluated) argument S-expressions are passed to the procedure
obtained from procedure-expr . The result is a new S-expression that replaces the macro application expression
in its context. If procedure-expr evaluates to a non-procedure, the exn:misc exception is raised.

For example, the when macro is defined as follows:

(define-macro when

(lambda (test . body)

‘(if ,test (begin ,@body))))

Macros defined with define-macro (at the top-level) are bound in the current namespace. Local macros are
defined with let-macro:

(let-macro name procedure-expr expr · · ·1)

This syntax is similar to define-macro, except that the macro is only effective in the body exprs. The
result of a let-macro expression is the value of the expr body. Note that the environment for procedure-
expr includes only global variables and it is evaluated at expansion time, not at run time. If procedure-expr
evaluates to a non-procedure, the exn:misc exception is raised.

When a define-macro statement appears in a implicit sequence (like an internal definition; see §3.5.5),
it is transformed into a let-macro expression, where the body of the closure following the define-macro

statement becomes the body of the let-macro expression.

(macro? v) returns #t if v is a macro created with define-macro, #f otherwise. Note that macro?

cannot be applied directly to macro identifiers, but macro values can be obtained indirectly with
global-defined-value.

A define-macro expression is treated specially by compile-file (see §15.2.4).

81



13.2. Identifier Macros 13. Macros

13.2 Identifier Macros

An identifier macro is a macro that is not “applied” to syntactic arguments. Instead, an identifier macro
identifier is directly replaced with its value whenever the identifier is in an expression position. Identifier
macros are defined with define-id-macro:

(define-id-macro name value-expr)

The value-expr expression can evaluate to any value. When the identifier name is encountered during
compilation, it is compiled as if the result of value-expr is in the place of name. Like define-macro,
identifier macros defined with define-id-macro (at the top-level) are bound in the current namespace, and
local identifier macros are defined with let-id-macro.

For example, the following expression uses x to automatically unbox the value in b:

(let ([b (box 5)])

(let-id-macro x ‘(unbox b)

(display x) (newline)

(set-box! b 8)

(display x) (newline)))

Each use of x is replaced by (unbox b), so this expression prints 5 and 8 to the current output port. The x

identifier is not a variable; (set! x 8) is illegal, since this expands to (set! (unbox b) 8). The value of
the identifier macro x is the S-expression ’(unbox b). Leaving out the quote in defining x’s value is illegal:

(let ([b (box 5)])

(let-id-macro x (unbox b)

expr))

because the (unbox b) expression is evaluated at compile time and is not in the scope of b. (If b is a global
variable bound to a box when the expression is compiled, then the expression is legal and the global b is
used.)

As with let-macro, the let-id-macro form defines a local idenfifier macro and an internal define-id-macro
expression is transformed into a let-id-macro expression.

(id-macro? v) returns #t if v is an identifier macro created with define-id-macro, #f otherwise. Note
that id-macro? cannot be applied directly to identifier macro identifiers, but identifier macro values can be
obtained indirectly with global-defined-value.

A define-id-macro expression is treated specially by compile-file (see §15.2.4).

13.3 Expansion Time Binding and Evaluation

Expansion time is the time at which macro and identifier macro definition values are evaluated
and macro procedures are invoked. Macros, identifier macros, and primitive syntax are expansion-
time values. General expansion-time values can be defined with the define-expansion-time

and let-expansion-time syntactic forms. Scoped expansion-time bindings can be obtained with
local-expansion-time-value or global-expansion-time-value, and scoping information is available
through local-expansion-time-bound?.

• (define-expansion-time id expr) evaluates expr at run time and binds it as an expansion-time
value to the global variable id . This form is treated specially by compile-file (see §15.2.4).

82



13. Macros 13.4. Primitive Syntax and Expanding Macros

#%lambda #%begin0 #%with-continuation-mark

#%let-values #%case-lambda #%define-macro

#%letrec-values #%struct #%define-id-macro

#%define-values #%class*/names #%define-expansion-time

#%quote #%interface

#%if #%unit

#%begin #%compound-unit

#%set! #%invoke-unit

#%cond†

Figure 13.1: Syntactic forms after expanding with expand-defmacro

• (let-expansion-time id expr body-expr · · ·1) evaluates expr at expansion time and binds an
expansion-time value to id within the body-exprs. The run-time result of a let-expansion-time

expression is the result of evaluating the last body-expr .

As with define-macro, an internal define-expansion-time expression is transformed into a
let-expansion-time expression.

• (local-expansion-time-value symbol) returns the expansion-time binding of symbol in the scope
of the expression currently being expanded. The identifier corresponding to symbol must have been
bound to an expansion-time value by define-expansion-time or let-expansion-time, otherwise the
exn:misc exception is raised. If local-expansion-time-value is invoked at run time, the exn:misc

exception is raised.

• (global-expansion-time-value symbol) is like (local-expansion-time-value symbol), but sym-
bol must be bound in the current namespace (and lexical bindings are ignored).

• (local-expansion-time-bound? symbol) returns #t if the identifier symbol is locally bound, #f oth-
erwise. If local-expansion-time-bound? is invoked at run time, the exn:misc exception is raised.

• (expansion-time-value? v) returns #t if v is a value created with define-expansion-time, #f
otherwise. Note that expansion-time-value? cannot be applied directly to expansion-time identifiers,
but expansion-time values can be obtained indirectly with global-defined-value.

• begin-elaboration-time (begin-elaboration-time body-expr ···1) evaluates each body-expr at ex-
pansion time. Once the body-exprs are evaluated, the entire form is replaced with the S-expression result
of the last body-expr , and macro expansion continues. This form is treated specially by compile-file

(see §15.2.4).

13.4 Primitive Syntax and Expanding Macros

Only the syntactic forms shown in Figure 13.1 will occur in a fully expanded expression. The dagger next
to cond indicates that it will appear only with zero clauses, and only in the compilation mode where the
exn:else exception is raised if no clause matches (see §3.2).

Like macros, primitive syntax names are bound in the global namespace, and primitive syntax values can be
obtained with global-defined-value.

(syntax? v) returns #t if its argument is a primitive syntax value, #f otherwise.

(expand-defmacro s-expr) expands all macros in the S-expression s-expr and returns the new, expanded
S-expression.

83



13.4. Primitive Syntax and Expanding Macros 13. Macros

(expand-defmacro-once s-expr) partially expands macros in the S-expression s-expr and returns the
partially-expanded S-expression.

(local-expand-defmacro s-expr [shadow-list ]) expands s-expr during expansion-time (see §13.3), and
locally-defined macros are used from the context of the expression currently being expanded. (This pro-
cedure is normally used in the implementation of a macro.) If shadow-list is provided, it must be a list of
symbols, which local-expand-defmacro treats as identifiers that shadow syntax bindings the current lexical
environment. If local-expand-body-expression is invoked at run time, the exn:misc exception is raised.

(local-expand-body-expression s-expr [shadow-list ]) expands expands s-expr only far enough to deter-
mine whether it expands to a define-values or begin expression. The result is two values: the (partially
expanded) expression and either ’#%define-values, ’#%begin, or #f (where #f means the expression has
some other form). If local-expand-defmacro is invoked at run time, the exn:misc exception is raised.

84



14. Support Facilities

14.1 Eval and Load

(eval expr) evaluates the S-expression expr in the current namespace.1 (See §9.3 and §9.4.1.6 for more
information about namespaces.)

(load file-path) evaluates each expression in the specified file using eval.2 The return value from load

is the value of the last expression from the loaded file (or void if the file contains no expressions). If
file-path is a relative pathname, then it is resolved to an absolute pathname using the current directory.
Before the first expression of file-path is evaluated, the current load-relative directory (the value of
the current-load-relative-directory parameter; see §9.4.1.7) is set to the absolute pathname of the
directory containing file-path; after the last expression in file-path is evaluated (or when the load is aborted),
the load-relative directory is restored to its pre-load value.

(load-relative file-path) is like load, but when file-path is a relative pathname, it is resolved to an
absolute pathname using the current load-relative directory rather than the current directory. If the
current load-relative directory is #f, then load-relative is the same as load.

(load/use-compiled file-path) is like load-relative, but load/use-compiled also checks for .zo files
(usually produced with compile-file; see §15.2.4) and .so (Unix, BeOS, and MacOS) or .dll (Windows)
files. The check for a compiled file occurs whenever file-path ends with a dotted extension of three characters
or less (e.g., .ss or .scm) and when a compiled subdirectory exists in the same directory as file-path. A .zo
version of the file is loaded if it exists directly in the compiled subdirectory. An .so or .dll version of the
file is loaded if it exists within a native subdirectory of the compiled directory, in a deeper subdirectory as
named by system-library-subpath. A compiled file is loaded only if its modification date is not older than
the date for file-path. If both .zo and .so or .dll files are available, the .so or .dll file is used.

Multiple files can be combined into a single .so or .dll file by creating a special dynamic extension loader.so
or loader.dll. When such a extension is present where a normal .so or .dll would be loaded, then the loader
extension is first loaded. The result returned by loader must be a procedure that accepts a symbol. This
procedure will be called with a symbol matching the base pasrt of file-path (without the directory path part
of the name and without the filename extension); if #f is returned, then load/use-compiled ignores loader
for file-path and continues as normal. Otherwise, the return value is yet another procedure. When this
procedure is applied to no arguments, it should have the same effect as loading file-path.

While a .zo, .so, or .dll file is loaded (or while a thunk returned by loader is invoked), the current
load-relative directory is set to the directory of the original file-path.

(load/cd file-path) is the same as (load file-path), but load/cd sets both the current directory and current
load-relative directory to the directory of file-path before the file’s expressions are evaluated.

(read-eval-print-loop) starts a new read-eval-print loop using the current input, output, and error

1The eval procedure actually calls the current evalutation handler (see §9.4.1.6) with e to evaluate the expression.
2The load procedure actually just sets the current load-relative directory and calls the current load handler (see §9.4.1.7)

with file-path to load the file. The description of load here is actually a description of the default load handler.

85



14.2. Exiting 14. Support Facilities

ports. When read-eval-print-loop starts, it installs a new error escape procedure (see §8.7) that does not
exit the read-eval-print loop. The read-eval-print-loop procedure does not return until eof is read as
an input expression; then it returns void.

The read-eval-print-loop procedure is parameterized by the current prompt read handler, the current
evaluation handler, and the current print handler; a custom read-eval-print loop can be implemented as
in the following example (see also §9.4.1):

(parameterize ([current-prompt-read my-read]

[current-eval my-eval]

[current-print my-print])

(read-eval-print-loop))

14.2 Exiting

(exit [v ]) passes v on to the current exit handler (see exit-handler in §9.4.1.12). The default value for v
is 0. If the exit handler does not escape or terminate the thread, void is returned.

The default exit handler quits MzScheme, using its argument as the exit code if it is a fixnum, 0 otherwise.
The default exit handler in MrEd exits the application on the next event cycle.

14.3 Input Parsing

MzScheme’s input parser follows these non-standard rules:

• Square brackets (“[” and “]”) and curly braces (“{” and “}”) can be used in place of parentheses.
An open square bracket must be closed by a closing square bracket and an open curly brace must be
closed by a closing curly brace. Whether square brackets are treated as parentheses is controlled by
the read-square-bracket-as-paren parameter (see §9.4.1.3). Similarly, the parsing of curly braces
is controlled with the read-curly-brace-as-paren parameter. By default, square brackets are curly
braces are treated as parentheses.

• Vector constants can be unquoted, and a vector size can be specified with a decimal integer between
the # and opening parenthesis. If the specified size is larger than the number of vector elements that
are provided, the last specified element is used to fill the remaing vector slots. For example, #4(1 2)

is equivalent to #(1 2 2 2). If no vector elements are specified, the vector is filled with 0. If a vector
size is provided and it is smaller than the number of elements provided, the exn:read exception is
raised.

• Boxed constants can be created using #&. The S-expression following #& is treated as a quoted constant
and put into the new box. (Spaces following the #& are ignored.) Box reading is controlled with the
read-accept-box Boolean parameter (see §9.4.1.3). Box reading is enabled by default. When box
reading is disabled and #& is provided as input, the exn:read exception is raised.

• The following character constants are recognized:

– #\nul or #\null (ASCII 0)
– #\backspace (ASCII 8)
– #\tab (ASCII 9)
– #\newline or #\linefeed (ASCII 10)
– #\vtab (ASCII 11)
– #\page (ASCII 12)
– #\return (ASCII 13)
– #\space (ASCII 32)

86



14. Support Facilities 14.3. Input Parsing

– #\rubout (ASCII 127)

Whenever #\ is followed by at least two alphabetic characters, characters are read from the input port
until the next non-alphabetic character is returned. If the resulting string of letters does not match
one of the above constants (case-insensitively), the exn:read exception is raised.

Character constants can also be specified through direct ASCII values in octal notation: #\n1n2n3

where n1 is in the range [0, 3] and n2 and n3 are in the range [0, 7]. Whenever #\ is followed by at
least two characters in the range [0, 7], the next character must also be in this range and the resulting
octal number must be in the range 0008 to 3778.

• MzScheme’s identifier and symbol syntax is considerably more liberal than the syntax specified by
R5RS. When input is scanned for tokens, the following characters delimit an identifier:

" , ’ ‘ ( ) [ ] { } #\space #\tab #\return #\newline #\page #\vtab

In addition, an identifier cannot start with a hash mark (“#”) unless the hash mark is immediately
followed by a percent sign (“%”). The only other special characters are backslash (“\”) or quoting
vertical bars (“|”); any other character is used as part of an identifier.

Symbols containing special characters (including delimiters) are expressed using an escaping backslash
(“\”) or quoting vertical bars (“|”):

– A backslash preceding any character includes that character in the symbol literally; double back-
slashes produce a single backslash in the symbol.

– Characters between a pair of vertical bars are included in the symbol literally. Quoting bars can
be used for any part of a symbol, or the whole symbol can be quoted. Backslashes and quoting
bars can be mixed within a symbol, but a backslash is not a special character within a pair of
quoting bars.

An input token constructed in this way is an identifier when it is not a numerical constant (following
the number syntax of R5RS plus the special inexact numbers +inf.0, etc., discussed in §4.3). A token
containing a backslash or vertical bars is never treated as a numerical contant.

Examples:

– (quote a\(b) produces the same symbol as (string->symbol "a(b").
– (quote a\ b), (quote |a b|), and (quote a| |b) all produce the same symbol as

(string->symbol "a b").
– (quote |a||b|) is the same as (quote ab).
– (quote 10) is the number 10, but (quote |10|) produces the same symbol as (string->symbol

"10").

Whether a vertical bar is used as a special or normal symbol character is controlled with the
read-accept-bar-quote Boolean parameter (see §9.4.1.3). Vertical bar quotes are enabled by de-
fault.

• S-expressions with shared stucture are expressed using #n= and #n#, where n is a decimal integer. See
§14.5.

• Expressions of the form #%x are symbols, where x can be a symbol or a number. See §9.3.2.

• Expressions beginning with #‘ are interpreted as compiled MzScheme code. See §14.6.

• Multi-line comments are started with #| and terminated with |#. Comments of this form can be nested
arbitrarily.

• If the first line of a loaded file begins with #!, it is ignored by the default load handler. If an ignored
line ends with a backslash (“\”), then the next line is also ignored.

87



14.4. Output Printing 14. Support Facilities

14.4 Output Printing

MzScheme’s printer follows these non-standard rules:

• A vector can be printed by write and print using the shorthand described in §14.3, where the vector’s
length is printed between the leading # and the opening parenthesis and repeated tail elements are
ommitted. For example, #(1 2 2 2) is printed as #4(1 2). The display procedure does not output
vectors using this shorthand. Shorthand vector printing is controlled with the print-vector-length

Boolean parameter (see §9.4.1.4). Shorthand vector printing is enabled by default.

• Boxes (see §4.9) can be printed with the #& notation (see §14.3). When box printing is disabled, all
boxes are printed as #<box>. Box printing is controlled with the print-box Boolean parameter (see
§9.4.1.4). Box printing is enabled by default.

• Structures (see Chapter 5) can be printed using vector notation. In the vector, the first item is a symbol
of the form struct:s — where s is the name of the structure — and the remaining elements are the
elements of the structure. When structure printing is disabled, structures are printed as #<struct:s>.
Structure printing is controlled with the print-struct Boolean parameter (see §9.4.1.4). Structure
printing is disabled by default.

• Symbols containing spaces or special characters write using escaping backslashes and quoting vertical
bars. Symbols are quoted with vertical bars or a leading backslash when they would otherwise print
the same as a numerical constant. If the value of the read-accept-bar-quote Boolean parameter
is #f (see §9.4.1.3), then backslashes are always used to escape special characters instead of quoting
them with vertical bars, and a vertical bar is not treated as a special character. See §14.3 for more
information about symbol parsing. Symbols display without escaping or quoting special characters.

• Characters with the special names described in §14.3 write using the same name. (Some characters
have multiple names; the #\newline and #\nul names are used instead of #\linefeed and #\null).
All other characters write as #\ followed by the single-byte character value. All characters display

as the single-byte character value.

• S-expressions with shared stucture can be printed using #n= and #n#, where n is a decimal integer.
See §14.5.

14.5 Data Sharing in Input and Output

MzScheme can read and print graphs, S-expressions with shared structure (e.g., a cycle). Graphs are
described by tagging the shared structure once with #n= (using some decimal integer n with no more than
eight digits) and then referencing it later with #n# (using the same number n). For example, the following
S-expression describes the infinite list of ones:

#0=(1 . #0#)

If this graph is entered into MzScheme’s read-eval-print loop, MzScheme’s compiler will loop forever,
trying to compile an infinite expression. In contrast, the following expression defines ones to the infinite list
of ones, using quote to hide the infinite list from the compiler:

(define ones (quote #0=(1 . #0#)))

A tagged structure can be referenced multiple times. Here, v is defined to be a vector containing the same
cons cell in all three slots:

(define v #(#1=(cons 1 2) #1# #1#))

88



14. Support Facilities 14.6. Compilation

A tag #n= must appear to the left of all references #n#, and all references must appear in the same top-level
S-expression as the tag. By default, MzScheme’s printer will display a value without showing the shared
structure:

#((1 . 2) (1 . 2) (1 . 2))

Graph reading and printing are controlled with the read-accept-graph and print-graph Boolean parame-
ters (see §9.4.1.4). Graph reading is enabled by default, and graph printing is disabled by default. However,
when the printer encounters an graph containing a cycle, graph printing is automatically enabled (tem-
porarily). When graph reading is disabled and a graph is provided as input, the exn:read exception is
raised.

If the n in a #n= form or a #n# form contains more than eight digits, the exn:read exception is raised. If
a #n# form is not preceded by a #n= form using the same n, the exn:read exception is raised. If two #n=
forms are in the same expression for the same n, the exn:read exception is raised.

14.6 Compilation

Normally, compilation happens automatically: when an S-expression is evaluated, it is first compiled and
then the compiled code is executed. However, MzScheme can also write and read compiled MzScheme code.
MzScheme can read compiled code somewhat faster than reading S-expression code and compiling it, so
compilation can be used to speed up program loading. The MzLib procedure compile-file (see §15.2.4) is
sufficient for most compilation purposes.

• (compile expr) compiles expr , where expr is any S-expression that can be passed to eval. The
result is a compiled expression Scheme value. This value is passed to eval to evaluate the compiled
expression.

When a compiled expression is written to an output port, the written form starts with #‘. These expressions
are essentially assembly code for the MzScheme interpreter. Never ask MzScheme to evaluate an expression
starting with #‘ unless compile generated the expression. To keep users from accidentally specifying bad
instructions, read will not accept expressions beginning with #‘ unless it is specifically enabled through the
read-accept-compiled Boolean parameter (see §9.4.1.3). When the default load handler is used to load a
file, compiled expression reading is automatically (temporarily) enabled as each expression is read.

14.7 Dynamic Extensions

A dynamically-linked extension library is loaded into MzScheme with (load-extension file-path). The
separate document Inside PLT MzScheme contains information about writing MzScheme extensions. An
extension can only be loaded once during a MzScheme session, although the extension-writer can provide
functionality to handle extra calls to load-extension for a single extension.

As with load, the current load-relative directory (the value of the current-load-relative-directory

parameter; see §9.4.1.7) is set while the extension is loaded. The load-relative-extension procedure is like
load-extension, but it loads an extension with a pathname that is relative to the current load-relative

directory instead of the current directory.

The load-extension procedure actually just dispatches to the current load extension handler (see §9.4.1.7).
The result of calling load-extension is determined by the extension. If the extension cannot be loaded, the
exn:i/o:filesystem exception is raised.

89



14.8. Saving and Restoring Program Images 14. Support Facilities

14.8 Saving and Restoring Program Images

An image is a memory dump from a running MzScheme program that can be later restored (one or more
times) to continue running the program from the point of the dump. Images are only supported for statically-
linked Unix versions of MzScheme (and MrEd). There are a few special restrictions on images:

• All files and TCP connections must be closed when an image is created.

• No dynamic extentions can be loaded before an image is created.

• No operating system subprocesses can be active when an image is created.

(write-image-to-file file-path [cont-proc]) copies the state of the entire MzScheme process3 to file-path,
replacing file-path if it already exists. If images are not supported, the exn:misc:unsupported exception
is raised. If cont-proc is #f, then the MzScheme or MrEd process exits immediately after creating the
image. Otherwise, cont-proc must be a procedure of no arguments, and the return value(s) of the call to
write-image-to-file is (cont-proc). The default value for cont-proc is void.

(read-image-from-file file-path arg-vector) restores the image saved to file-path. Once the image is
restored, execution of the original program continues with the return from write-image-to-file; the return
value in the restored program is the a vector of strings arg-vector . A successful call to read-image-from-file
never returns because the restored program is overlayed over the current program. The vector arg-vector
must contain no more than 20 strings, and the total length of the strings must be no more than 2048
characters.

If an error is encountered while reading or writing an image, the exn:i/o:filesystem exception is raised
or exn:misc exception is raised. Certain errors during read-image-from-file are unrecoverable; in case of
such errors, MzScheme prints an error message and exits immediately.

An image can also be restored by starting the stand-alone version of MzScheme or MrEd with the --restore
flag followed by the image filename. The return value from write-image-to-file in the restored program
is a vector of strings that are the extra arguments provided on the command line after the image filename
(if any).

3The set of environment variables is not saved. When an image is restored, the environment variables of the restoring
program are transfered into the restored program.

90



15. Library Collections and MzLib

A library is a fragment of MzScheme code that can be used in multiple programs. MzScheme provides
an mechanism for grouping libraries into collections that can be distributed and easily added to a local
MzScheme installation. A collection is normally installed into a directory named collects that is in the same
directory as the MzScheme executable.1 Each installed collection is represented as a subdirectory within the
collects directory.

Client programs incorporate a library by using the library name along with the name of the library’s collec-
tion: (require-library library-file-path collection ···) loads a library from library-file-path in the collection
named by the first collection, where both library-file-path and collection are literal strings that will be used
as elements in a pathname. If additional collection strings are provided, they are used to form a path into a
subcollection. If the collection arguments are omitted, the library is loaded from the mzlib collection. The
require-library form returns the result(s) of the last expression in the library file.

The info.ss library in a collection is special by convention. This library is used to provide information about
the collection to mzc (the MzScheme compiler) or MrEd. For more information see PLT mzc: MzScheme
Compiler Manual and PLT MrEd: Graphical Toolbox Manual .

When require-library is used to load a file, the library name and the resulting value(s) are recored in a
table associated with the current namespace. If require-library is evaluated for a library that is already
registered in the current namespace’s load table, then the library is not loaded again; the result(s) recorded
in the load table is returned, instead.

While require-library loads a library file, it sets the current-require-relative-collection pa-
rameter to the path of collection names that specify the library’s subcollection. This path is used by
the require-relative-library form: (require-relative-library library-file-path collection · · ·) re-
quires library-file-path from the collection specified by the current-require-relative-collection pa-
rameter; if extra collections are provided, they are appended to the end of the subcollection path in
current-require-relative-collection for finding library-file-path.

There is usually one standard collects directory, but MzScheme supports any number of directories containing
collections. The search path for collections is determined by the current-library-collection-paths

parameter (see §9.4.1.8). The list of paths in current-library-collection-paths is searched from first
to last to locate a collection when a library is requested. The value of the parameter is initialized by the
stand-alone version of MzScheme as follows:2

(current-library-collection-paths

(path-list-string->path-list

(or (getenv "PLTCOLLECTS") "")

(or (ormap (lambda (p) (and p (directory-exists? p) (list p)))

(list (let ([v (getenv "PLTHOME")]) (and v (build-path v "collects")))

(find-executable-path program "collects")

1In the PLT distribution of MzScheme for Unix and BeOS, the collects directory is in the top-level plt directory, rather than
with the platform-specific binary or with the script in plt/bin.

2MrEd initializes the current-library-collection-paths parameter in the same way.

91



15.1. MzLib Overview 15. Library Collections and MzLib

"/usr/local/lib/plt/collects" ; Unix only

"/boot/apps/plt/collects" ; BeOS only

"c:\\plt\\collects")) ; Windows only

null)))

where program is the name used to start MzScheme (always a complete path for MacOS). See also §11.2.1
for information about path-list-string->path-list and find-executable-path. (collection-path

collection · · ·1) returns the path containing the libraries of collection.

The require-library form loads library files using load/use-compiled. In the table of loaded libraries,
library names are registered using the original suffix even when load/use-compiled loads a compiled version
of a file.

Since require-library’s libraries and collections are specified via string literals, this form supports the
static analysis of programs by MrSpidey, DrScheme’s static debugger. The require-library/proc proce-
dure generalizes require-library to a procedural form, but it is not supported by the static debugger.
Nevertheless, the require-library form normally expands to an application of require-library/proc:

(require-library library collection · · ·)
⇒
(require-library/proc library collection · · ·)

Similarly, require-relative-library/proc is the procedure form of require-relative-library.

MzScheme is distributed with a standard collection of utility libraries with MzLib as the representative
library. The name of this collection is mzlib, so the libraries are distributed in a mzlib subdirectory of the
collects library collection directory. MzLib is desribed in §15.1.

15.1 MzLib Overview

The MzLib utilities and syntax are not built into MzScheme and they are not already present after the
stand-alone version of MzScheme has started.

MzLib is distributed among several smaller libraries, and each smaller library can be separately loaded. The
utilities provided by each library and the other libraries it requires are detailed in the next chapter.

The non-macro parts of MzLib are written using signed units (see §7.2). These libraries can be used through
a unit, or the unit can be invoked and opened to use the utilities as top-level defintions. Non-macro libraries
have five requireable files:

• (require-library "xs.ss") loads the signature of the unit for library x .

• (require-library "xu.ss") loads x as a unit definition, automatically requiring xs.ss and x r.ss.

• (require-library "xr.ss") loads x as a unit value (without adding any top-level definitions); the
xs.ss library must be already loaded.

• (require-library "x.ss") requires xu.ss and copies the unit’s exports into the global environment.

Some libraries contain only macros, and therefore do not have the xu.ss, x r.ss, and xs.ss files.

Applications written in core Scheme will most likely use (require-library "x.ss"), while unit-based appli-
cations will use (require-library "xs.ss") and (require-library-unit/sig "xr.ss") (see §15.2.18).

In all, MzLib contains the following requireable files:

92



15. Library Collections and MzLib 15.2. MzLib Libraries

• awk.ss
• cmdline.ss, cmdlineu.ss, cmdliner.ss, cmdlines.ss
• compat.ss, compatu.ss, compatr.ss, compats.ss
• compile.ss, compileu.ss, compiler.ss, compiles.ss [core]

• core.ss, coreu.ss, corer.ss, cores.ss
• date.ss, dateu.ss, dater.ss, dates.ss
• defstru.ss [core]

• file.ss, fileu.ss, filer.ss, files.ss [core]

• functio.ss, functiou.ss, functior.ss, functios.ss [core]

• inflate.ss, inflateu.ss, inflater.ss, inflates.ss
• macro.ss [core]

• match.ss [core]

• math.ss, mathu.ss, mathr.ss, maths.ss [core]

• mzlib.ss, mzlibu.ss, mzlibr.ss, mzlibs.ss
• pconvert.ss, pconveru.ss, pconverr.ss, pchookr.ss, pconvers.ss
• pretty.ss, prettyu.ss, prettyr.ss, prettys.ss [core]

• refer.ss [core]

• restart.ss, restartu.ss, restartr.ss, restarts.ss
• shared.ss [core]

• spidey.ss [core]

• string.ss, stringu.ss, stringr.ss, strings.ss [core]

• synrule.ss, synrule.ss
• thread.ss, threadu.ss, threadr.ss, threads.ss [core]

• trace.ss
• traceld.ss
• transcr.ss, transcru.ss, transcrs.ss, transcrs.ss

The compatm.ss library contains just the macro portion of compat.ss.

A set of libraries marked with [core] can be required at once by requiring core.ss, coreu.ss, corer.ss, or
cores.ss. The corem.ss library requires only the macro-defining [core] libraries.

The set of all MzLib libraries can be required at once by requiring mzlib.ss, mzlibu.ss, mzlibr.ss, or mzlibs.ss.
The mzlibm.ss library loads the macro-defining MzLib libraries.

For libraries without xu.ss files, coreu.ss and mzlibu.ss require x .ss.

15.1.1 Thanks

Contributors to MzLib include Robby Findler, Shriram Krishnamurthi, Gann Bierner, Dorai Sitaram, and
Kurt Howard (working from Steve Moshier’s Cephes library). Publically available packages have been as-
similated from others, including Andrew Wright (match) and Marc Feeley (original pretty-printing imple-
mentation).

15.2 MzLib Libraries

15.2.1 Awk: awk.ss

Files: awk.ss

This library defines the awk macro from Scsh:

93



15.2. MzLib Libraries 15. Library Collections and MzLib

(awk next-record-expr
(record field-variable · · ·)
counter-variable/optional
((state-variable init-expr) · · ·)
continue-variable/optional

clause · · ·)

counter-variable/optional is either empty or:
variable

continue-variable/optional is either empty or:
variable

clause is one of:
(test body-expr · · ·1)
(test => procedure-expr)
(/ regexp-str / (variable-or-false · · ·1) body-expr · · ·1)
(range exclusive-start-test exclusive-stop-test body-expr · · ·1)
(:range inclusive-start-test exclusive-stop-test body-expr · · ·1)
(range: exclusive-start-test inclusive-stop-test body-expr · · ·1)
(:range: inclusive-start-test inclusive-inclusive-stop-test body-expr · · ·1)
(else body-expr · · ·1)
(after body-expr · · ·1)

test is one of:
integer
regexp-str
expr

variable-or-false is one of:
variable
#f

For detailed information about awk, see Olin Shivers’s Scsh Reference Manual. In addition to awk, the Scsh-
compatible procedures match:start, match:end, match:substring, and regexp-exec are defined. These
match: procedures must be used to extract match information in a regular expression clause when using the
=> form.

15.2.2 Command-line Parsing: cmdline.ss

Files: cmdline.ss, cmdlineu.ss, cmdliner.ss, cmdlines.ss
Signature: mzlib:command-line^

Unit: mzlib:command-line@

(command-line program-name-str argv-expr clause · · ·) syntax

Parses a command line according to the specification in the clauses. The program-name-str string is used as
the program name for reporting errors when the command-line is ill-formed. The argv-expr must evaluate to
a vector of strings, which is typically the value of argv as defined by the MzScheme stand-alone application.

The command-line is disassembled into flags (possibly with flag-specific arguments) followed by (non-flag)
arguments. Command-line strings starting with “-” or “+” are parsed as flags, but arguments to flags

94



15. Library Collections and MzLib 15.2. MzLib Libraries

are never parsed as flags, and integers and decimal numbers that start with “-” or “+” are not treated as
flags. Non-flag arguments in the command-line must appear after all flags and the flags’ arguments. No
command-line string past the first non-flag argument is parsed as a flag. The built-in -- flag signals the end
of command-line flags; any command-line string past the -- flag is parsed as a non-flag argument.

For defining the command line, each clause has one of the following forms:

(multi flag-spec · · ·)
(once-each flag-spec · · ·)
(once-any flag-spec · · ·)
(args arg-formals body-expr · · ·1)
(=> finish-proc-expr arg-help-expr help-proc-expr unknown-proc-expr)

flag-spec is one of:
(flags variable · · ·help-str body-expr · · ·1)
(flags => handler-expr help-expr)

flags is one of:
flag-str
(flag-str · · ·1)

arg-formals is one of:
variable
(variable · · ·)
(variable · · ·1. variable)

A multi, once-each, or once-any clause introduces a set of command-line flag specifications. The clause
tag indicates how many times the flag can appear on the command line:

• multi — Each flag specified in the set can be represented any number of times on the command line;
i.e., the flags in the set are independent and each flag can be used multiple times.

• once-each — Each flag specified in the set can be represented once on the command line; i.e., the
flags in the set are independent, but each flag should be specified at most once. If a flag specification
is represented in the command line more than once, the exn:user exception is raised.

• once-any — Only one flag specified in the set can be represented on the command line; i.e., the flags
in the set are mutually exclusive. If the set is represented in the command line more than once, the
exn:user exception is raised.

A normal flag specification has four parts:

1. flags — a flag string, or a set of flag strings. If a set of flags is provided, all of the flags are equivalent.
Each flag string must be of the form "-x" or "+x" for some character x , or "--x" or "++x" for some
sequence of characters x . An x cannot contain only digits or digits plus a single decimal point, since
simple (signed) numbers are not treated as flags. In addition, the flags "--", "-h", and "--help" are
predefined and cannot be changed.

2. variables — variables that are bound to the flag’s arguments. The number of variables specified here
determines how many arguments can be provided on the command line with the flag, and the names of
these variables will appear in the help message describing the flag. The variables are bound to string
values in the body-exprs for handling the flag.

95



15.2. MzLib Libraries 15. Library Collections and MzLib

3. help-str — a string that describes the flag. This string is used in the help message generated by the
handler for the built-in -h (or --help) flag.

4. body-exprs — expressions that are evaluated when one of the flags appears on the command line. The
flags are parsed left-to-right, and each sequence of body-exprs is evaluated as the corresponding flag is
encountered. When the body-exprs are evaluated, the variables are bound to the arguments provided
for the flag on the command line.

A flag specification using => escapes to a more general method of specifying the handler and help strings. In
this case, the handler procedure and help string list returned by handler-expr and help-expr are embedded
directly in the table for parse-command-line, the procedure used to implement command-line parsing.

An args clause can be specified as the last clause. The variables in arg-formals are bound to the leftover
command-line strings in the same way that variables are bound to the formals of a lambda expression.
Thus, specifying a single variable (without parentheses) collects all of the leftover arguments into a list. The
effective arity of the arg-formals specification determines the number of extra command-line arguments that
the user can provide, and the names of the variables in arg-formals are used in the help string. When the
command-line is parsed, if the number of provided arguments cannot be matched to variables in arg-formals,
the exn:user exception is raised. Otherwise, args clause’s body-exprs are evaluated to handle the leftover
arguments.

Instead of an args clause, the => clause can be used to escape to a more general method of handling the
leftover arguments. In this case, the values of the expressions with => are passed on directly as arguments
to parse-command-line. The help-proc-expr and unknown-proc-expr expresisons are optional.

Example:

(command-line "compile" argv

(once-each

[("-v" "--verbose") "Compile with verbose messages"

(verbose-mode #t)]

[("-p" "--profile") "Compile with profiling"

(profiling-on #t)])

(once-any

[("-o" "--optimize-1") "Compile with optimization level 1"

(optimize-level 1)]

["--optimize-2" "Compile with optimization level 2"

(optimize-level 2)])

(multi

[("-l" "--link-flags") lf ; flag takes one argument

"Add a flag for the linker" "flag"

(link-flags (cons lf (link-flags)))])

(args (filename) ; expects one command-line argument: a filename

filename)) ; return a single filename to compile

(parse-command-line progname argv table finish-proc arg-help [help-proc unknown-proc]) procedure

Parses a command-line using the specification in table. For an overview of command-line parsing, see the
command-line form. The table argument to this procedural form encodes the information in command-line’s
clauses, except for the args clause. Instead, arguments are handled by the finish-proc procedure, and
help information about non-flag arguments is provided in arg-help. In addition, the finish-proc procedure
receives information accumulated while parsing flags. The help-proc and unknown-proc arguments allow
customization that is not possible with command-line.

When there are no more flags, the finish-proc procedure is called with a list of information accumulated for

96



15. Library Collections and MzLib 15.2. MzLib Libraries

command-line flags (see below) and the remaining non-flag arguments from the command-line. The arity
of the finish-proc procedure determines the number of non-flag arguments accepted and required from the
command-line. For example, if finish-proc accepts either two or three arguments, then either one or two
non-flag arguments must be provided on the command-line. The finish-proc procedure can have any arity
(see §4.10.1) except 0 or a list of 0s (i.e., the procedure must at least accept one or more arguments).

The arg-help argument is a list of strings identifying the expected (non-flag) command-line arguments, one
for each argument. (If an arbitrary number of arguments are allowed, the last string in arg-help represents
all of them.)

The help-proc procedure is called with a help string if the -h or --help flag is included on the command line.
If an unknown flag is encountered, the unknown-proc procedure is called just like a flag-handling procedure
(as described below); it must at least accept one argument (the unknown flag), but it may also accept more
arguments. The default help-proc displays the string and exits and the default unknown-proc raises the
exn:user exception.

A table is a list of flag specification sets. Each set is represented as a list of two items: a mode symbol and
a list of flag specifications. A mode symbol is one of ’once-each, ’once-any, or ’multi, with the same
meanings as the corresponding clause tags in command-line. Each specification maps a number of flags to
a single handler procedure. A specification is a list of three items:

1. A list of strings for the flags defined by the spec. See command-line for information about the format
of flag strings.

2. A procedure to handle the flag and its arguments when one of the flags is found on the command line.
The arity of this handler procedure determines the number of arguments consumed by the flag: the
handler procedure is called with a flag string plus the next few arguments from the command line to
match the arity of the handler procedure. The handler procedure must accept at least one argument
to recieve the flag. If the handler accepts arbitrarily many arguments, all of the remaining arguments
are passed to the handler. A handler procedure’s arity must either be a number or an arity-at-least

value (see §4.10.1).

The return value from the handler is added to a list that is eventually passed to finish-proc. If the
handler returns void, no value is added onto this list. For all non-void values returned by handlers, the
order of the values in the list is the same as the order of the arguments on the command-line.

3. A non-empty list of strings used for constructing help information for the spec. The first string in the
list describes the flag, and additional strings name the expected arguments for the flag. The number
of extra help strings provided for a spec must match the number of arguments accepted by the spec’s
handler procedure.

The following example is the same as the example for command-line, translated to the procedural form:

(parse-command-line "compile" argv

‘((once-each

[("-v" "--verbose")

,(lambda (flag) (verbose-mode #t))

("Compile with verbose messages")]

[("-p" "--profile")

,(lambda (flag) (profiling-on #t))

("Compile with profiling")])

(once-any

[("-o" "--optimize-1")

,(lambda (flag) (optimize-level 1))

("Compile with optimization level 1")]

97



15.2. MzLib Libraries 15. Library Collections and MzLib

Compatible MzScheme

=? =

<? <

>? >

<=? <=

>=? >=

1+ add1

1- sub1

#%1+ #%add1

#%1- #%sub1

gentemp gensym

bound? defined?

flush-output-port flush-output

real-time current-milliseconds

Figure 15.1: Compatibility aliases

[("--optimize-2")

,(lambda (flag) (optimize-level 2))

("Compile with optimization level 2")])

(multi

[("-l" "--link-flags")

,(lambda (flag lf) (link-flags (cons lf (link-flags))))

("Add a flag for the linker" "flag")]))

(lambda (flag-accum file) file) ; return a single filename to compile

’("filename")) ; expects one command-line argument: a filename

15.2.3 Compatibility: compat.ss

Files: compat.ss, compatu.ss, compatr.ss, compats.ss
Requires: functios.ss
Opened form requires: functiou.ss
Syntactic forms only: compatm.ss
Signature: mzlib:compat^

Unit: mzlib:compat@, imports mzlib:function^

This library defines a number of procedures and syntactic forms that are commonly provided by other
Scheme implementations. Most of the procedures are aliases for built-in MzScheme procedures, as shown in
Figure 15.1. The remaing procedures and forms are described below.

(atom? v) procedure

Same as (not (pair? v)).

(defmacro name formals body-expr · · ·1) syntax

Expands into an equivalent define-macro expression.

(getprop sym property default) procedure

Gets a property value associated with the symbol sym. The property argument is also a symbol that names

98



15. Library Collections and MzLib 15.2. MzLib Libraries

the property to be found. If the property is not found, default is returned. If the default argument is omitted,
#f is used as the default.

(letmacro name formals macro-body body-expr · · ·1) syntax

Expands into an equivalent let-macro expression.

(new-cafe [eval-handler ]) procedure

Emulates Chez Scheme’s new-cafe.

(putprop sym property value) procedure

Installs a value for property of the symbol sym. See getprop above.

(sort less-than?-proc list) procedure

This is the same as quicksort (see §15.2.9) with the arguments reversed.

15.2.4 Compiling Files: compile.ss

Files: compile.ss, compileu.ss, compiler.ss, compiles.ss
Signature: mzlib:compile^

Unit: mzlib:compile@

(compile-file src dest [flags preprocess]) procedure

Compiles the Scheme file(s) src and saves the compiled code to dest . The src and dest arguments are usually
filenames.3 The src argument can also be an input port or a list of filenames and/or input ports. If a list
of inputs is provided for src, they are compiled to dest as if they were concatenated (in order) in a single
input. The dest argument can also be an output port. If an input or output port is provided, the port is
not closed when compilation is finished. If dest is a filename and the file already exists, the existing file is
truncated (if possible) or replaced.

The flags argument is a list of symbol flags, defaultly null. The possible flags are:

• ’ignore-macro-definitions — disables special handling for define-macro, define-id-macro, and
define-expansion-time forms (and their #% forms; see below).

• ’strip-macro-definitions — performs special handling for define-macro, define-id-macro, and
define-expansion-time (and their #% forms; see below), but no compiled expression is written to the
compiled file.

• ’expand-load — top-level load, load-relative, and load/cd expressions in the source(s) are ex-
panded and compiled directly into dest . Load-expansion is performed recusively within loaded files.

• ’expand-require-library— top-level require-library and #%require-library expressions in the
source(s) are replaced with the source of the library.

• ’ignore-require-library — top-level require-library expressions are not handled specially; the
default handling of require-libarary is described below.

3A MzScheme compiled code file should use the extension .zo, but this convention is not enforced.

99



15.2. MzLib Libraries 15. Library Collections and MzLib

• ’preserve-elaborations — instead of evaluating the expressions within begin-elaboration-time

expressions at macro-expansion-time, the expressions are preserved and evaluated when the compiled
expression is loaded; the result of this run-time evaluation is then itself evaluated to get semantics
similar to the usual begin-elaboration-time semantics. Thus, (begin-elaboration-time expr
· · ·1) becomes (eval (eval (quote (begin expr · · ·1)))). This flag does not affect the expan-
sion of #%begin-elaboration-time forms. The output file starts with ’e followed by a space, an
annotation used by load/use-compiled when the use-compiled-file-kinds parameter is set to
’non-elaboration (see §9.4.1.7).

• ’also-preserve-elaborations — like ’preserve-elaborations, but the expressions in a
begin-elaboration-time form are also eveluated at expansion time.

• ’preserve-constructions — modifies the semantics of begin-construction-time in the same way
that ’preserve-elaborations modifies begin-elaboration-time.

• ’also-preserve-constructions — like ’preserve-constructions, but the expressions in a
begin-construction-time form are also eveluated at expansion time.

• ’only-expand — expands, but does not compile, the expressions from the source(s).

• ’no-warnings — suppresses warnings (written to the current error port) about ill-formed top-level
require-library or load expressions that are recognized but cannot be expanded.

• ’use-current-namespace — does not create a new namespace for compiling the source(s). The use
of a separate namespace is described below.

The preprocess argument is a procedure of two arguments: an S-expression and a namespace (§9.3). The
preprocess procedure is applied to each expression read from the source(s), and the provided namespace is
where expressions are expanded and compiled. The expression returned by preprocess is expanded, compiled,
and written to the output destination. The default preprocess procedure returns its first aargument.

To compile the input expressions, compile-file normally creates a new namespace and copies all of the
top-level bindings from the current namespace into the new namespace (except for the bindings of built-
in-identifiers), without setting any variables as keywords (see §9.3.2). The ’use-current-namespace flag
causes the current namespace to be used for expansion and compilation, instead.

By default, top-level require-library expressions are recognized, and the specified library is loaded
into the compilation namespace. This causes library-based macros to be loaded for compiling the file,
but the require-library expression is still compiled as an invocation of require-library. If the
’expand-require-library flag is specified, compile-file instead replaces the call to require-library

with the compiled contents of the library if the specified library has not yet been included during the call to
compile-file.

All macros used in the source file must either be defined at compile-time, defined using a top-level
define-macro statement in the source file (or in an loaded or require-libraryed file that is expanded),
or defined locally in a let-macro expression. Macros can be defined within the compiled file because
define-macro, define-id-macro, and define-expansion-time forms are treated specially: these forms
are evaluated by compile-file after they are compiled (in the special compilation namespace), so that the
effect of these expressions is visible while compiling the rest of the file. If the ’ignore-macro-definitions

flag is used, then all macros used in the source file must be predefined or defined using let-macro.

100



15. Library Collections and MzLib 15.2. MzLib Libraries

15.2.5 Core: core.ss

Files: core.ss, coreu.ss, corer.ss, cores.ss
Signature: mzlib:core^

Unit: mzlib:core@
Requires: see §15.1

The mzlib:core^ signature is defined by:

(define-signature mzlib:core^

((unit pretty-print : mzlib:pretty-print^)

(unit file : mzlib:file^)

(unit function : mzlib:function^)

(unit string : mzlib:string^)

(unit compile : mzlib:compile^)

(unit math : mzlib:math^)

(unit thread : mzlib:thread^)))

The mzlib:core@ unit implements this signature by linking the [core] library units together.

15.2.6 Dates: date.ss

Files: date.ss, dateu.ss, dater.ss, dates.ss
Requires: functios.ss
Opened form requires: functiou.ss
Signature: mzlib:date^

Unit: mzlib:date@, imports mzlib:function^

See also §11.4.

(date->string date [time? ]) procedure

Converts a date structure value (such as returned by MzScheme’s seconds->date) to a string. The returned
strong contains the time of day only if time? is a true value; the default is #f. See also date-display-format.

(date-display-format [format-symbol ]) procedure

Parameter that determines the date display format, one of ’american, ’chinese, ’german, ’indian, ’irish,
or ’julian. The initial format is ’american.

(find-seconds second minute hour day month year) procedure

Finds the representation of a date in platform-specific seconds. The arguments correspond to the fields of
the date structure. If the platform cannot represent the specified date, an error is signalled, otherwise an
integer is returned.

(date->julian/scalinger date) procedure

Converts a date structure (up to 2099 BCE Gregorian) into a Julian date number. The returned value is
not a strict Julian number, but rather Scalinger’s version, which is off by one for easier calculations.

101



15.2. MzLib Libraries 15. Library Collections and MzLib

(julian/scalinger->string date) procedure

Converts a Julian number (Scalinger’s off-by-one version) into a string.

15.2.7 Structures: defstru.ss

Files: defstru.ss

This library provides define-structureand define-const-structure consistent with the match.ss library
(see §15.2.13). The define-structure and define-const-structure forms expand into define-struct

forms. While define-const-structure and the mutability annotations are supported, immutable fields are
not actually immutable.4

15.2.8 Filesystem: file.ss

Files: file.ss, fileu.ss, filer.ss, files.ss
Requires: string.ss, functio.ss
Opened form requires: stringu.ss, functiou.ss
Signature: mzlib:file^

Unit: mzlib:file@, imports mzlib:string^, mzlib:function^

See also §11.2.

(build-absolute-path base path · · ·) procedure

Like build-path (see §11.2), but base is required to be an absolute pathname. If base is not an absolute
pathname, error is called.

(build-relative-path base path · · ·) procedure

Like build-path (see §11.2), but base is required to be a relative pathname. If base is not a relative
pathname, error is called.

(delete-directory/files path) procedure

Deletes the file or directory specified by path. If path is a directory, then delete-directory/files is first
applied to each file and directory in path before the directory is deleted. If path cannot be deleted, the
exn:user exception is raised, otherwise void is returned.

(explode-path path) procedure

Returns the list of directories that constitute path. The path argument must be normalized (see
normalize-path below).

(file-name-from-path path) procedure

If path is a file pathname, returns just the file name part without the directory path.

4A properly implemented define-const-struct is not inconsistent with define-struct. It simply has not been implemented,
yet.

102



15. Library Collections and MzLib 15.2. MzLib Libraries

(filename-extension path) procedure

Returns a string that is the extension part of the filename in path. If path is (syntactically) a directory, #f
is returned.

(find-library name collection) procedure

Returns the path of the specified library (see Chapter 15), returning #f if the specificed library or collection
cannot be found. The collection argument is optional, defaulting to "mzlib".

(find-relative-path basepath path) procedure

Finds a relative pathname with respect to basepath that names the same file or directory as path. Both
basepath and path must be normalized (see normalize-path below). If path is not a proper subpath of
basepath (i.e., a subpath that is strictly longer), path is returned.

(make-directory* path) procedure

Creates directory specified by path, creating intermediate directories as necessary.

(make-temporary-file [format-string ]) procedure

Creates a new temporary file and returns a pathname string for the file. Instead of merely generating a
fresh file name, the file is actually created; this prevents other threads or processes from picking the same
temporary name. However, the file is not opened for reading or writing when the pathname is returned. The
client program calling make-temporary-file is expected to open the file with the desired access and flags
(probably using the ’truncate flag; see §11.1.2) and to delete it when it is no longer needed.

If format-string is specified, it must be a format string suitable for use with format and one additional string
argument. The default format-string is "mztmp∼a".

(normalize-path path wrt) procedure

Returns a normalized, complete version of path, expanding the path and resolving all soft links. If path is
relative, then the pathname wrt is used as the base path. The wrt argument is optional; if is omitted, then
the current directory is used as the base path.

Letter case is not normalized by normalize-path, so combine normalize-path with normal-case-path to
get strings for path comparison.

An error is signaled by normalize-path if the input path contains an embedded path for a non-existant
directory, or if an infinite cycle of soft-links is detected.

(path-only path) procedure

If path is a filename, the file’s path is returned. If path is syntactically a directory, #f is returned.

15.2.9 Functions: functio.ss

Files: functio.ss, functiou.ss, functior.ss, functios.ss
Signature: mzlib:function^

Unit: mzlib:function@

103



15.2. MzLib Libraries 15. Library Collections and MzLib

The procedures second, third, fourth, fifth, sixth, seventh, and eighth access the corresponding
element from a list.

(assf f l) procedure

Applies f to each element of l (from left to right) until f returns a true value for some element, in which
case that element is returned. If f does not return a true value for any element of l , #f is returned.

(boolean=? bool1 bool2) procedure

Return #t if bool1 and bool2 are both #t or both #f, and returns #f otherwise. If either bool1 or bool2 is
not a Boolean, exn:application:type exception is raised.

(build-list n f ) procedure

Creates a list of n elements by applying f to the integers from 0 to n− 1 in order, where n is a non-negative
integer. The ith element of the resulting list is (f (- i 1)).

(build-string n f ) procedure

Creates a string of length n by applying f to the integers from 0 to n−1 in order, where n is a non-negative
integer and f returns a character for the n invocations. The ith character of the resulting string is (f (- i
1)).

(build-vector n f ) procedure

Creates a vector of n elements by applying f to the integers from 0 to n−1 in order, where n is a non-negative
integer. The ith element of the resulting vector is (f (- i 1)).

(compose f g) procedure

Returns a procedure that takes x and returns (call-with-values (lambda () (g x)) f).

(cons? v) procedure

Returns #t if v is a value created with cons, #f otherwise.

empty empty list

The empty list.

(empty? v) procedure

Returns #t if v is the empty list, #f otherwise.

(filter f l) procedure

Applies f to each element in l (from left to right) and returns a new list that is the same as l , but omitting
all the elements for which f returned #f.

104



15. Library Collections and MzLib 15.2. MzLib Libraries

(first l) procedure

Returns the first element of the list l . (The first procedure is a synonym for car.)

(foldl f init l · · ·1) procedure

Like map, foldl applies a procedure f to the elements of one or more lists. While map combines the return
values into a list, foldl combines the return values in an abitrary way that is determined by f .

If foldl is called with n lists, the f procedure takes n+1 arguments. The extra value is the combined return
values so far. The f procedure is initially invoked with the first item of each list; the final argument is init .
In subsequent invocations of f , the last argument is the return value from the previous invocation of f . The
input lists are traversed from left to right, and the result of the whole foldl application is the result of the
last application of f . (If the lists are empty, the result is init .)

For example, reverse can be defined in terms of foldl:

(define reverse

(lambda (l)

(foldl cons ’() l)))

(foldr f init l · · ·1) procedure

Like foldl, but the lists are traversed from right to left.

For example, a restricted map (that works only on single-argument procedures) can be defined in terms of
foldr:

(define simple-map

(lambda (f list)

(foldr (lambda (v l) (cons (f v) l)) ’() list)))

(identity v) procedure

Returns v .

(ignore-errors thunk) procedure

Invokes thunk and returns the result. If an error occurs during the application of thunk , no error is reported
and void is returned.

(last-pair list) procedure

Returns the last pair in list , raising an error if list is not a pair (but list does not have to be a proper list).

(loop-until start done? next f ) procedure

Repeatedly invokes the f procedure until the done? procedure returns #t. The procedure is best described
by its implementation:

(define loop-until

(lambda (start done? next f)

105



15.2. MzLib Libraries 15. Library Collections and MzLib

(let loop ([i start])

(unless (done? i)

(f i)

(loop (next i))))))

(memf f l) procedure

Applies f to each element of l (from left to right) until f returns a true value for some element, in which
case the tail of l starting with that element is returned. If f does not return a true value for any element of
l , #f is returned.

(quicksort list less-than?) procedure

Sorts list using the comparison procedure less-than? . This implementation is not stable (i.e., if two elements
in the input are “equal,” their relative positions in the output may be reversed).

(remove item list [equal? ]) procedure

Returns list without the first instance of item, where an instance is found by comparing item to the list items
using equal? . The default value for equal? is equal?. When equal? is invoked, item is the first argument.

(remove* items list [equal? ]) procedure

Like remove, except that the first argument is a list of items to remove, instead of a single item.

(remq item list) procedure

Calls remove with eq? as the comparison procedure.

(remq* items list) procedure

Calls remove* with eq? as the comparison procedure.

(remv item list) procedure

Calls remove with eqv? as the comparison procedure.

(remv* items list) procedure

Calls remove* with eqv? as the comparison procedure.

(rest l) procedure

Returns a list that contains all but the first element of the non-empty list l . (The rest procedure is a
synonym for cdr.)

106



15. Library Collections and MzLib 15.2. MzLib Libraries

15.2.10 Inflating Compressed Data: inflate.ss

Files: inflate.ss, inflateu.ss, inflater.ss, inflates.ss
Signature: mzlib:inflate^

Unit: mzlib:inflate@

(gunzip file [output-name-filter ]) procedure

Extracts data that was compressed using the GNU gzip utility, writing the uncompressed data directly to
a file. The file argument is the name of the file containing compressed data. The default output file name is
the original name of the compressed file as stored in file. If a file by this name exists, it will be overwritten.
If no original name is stored in the source file, "unzipped" is used as the default output file name.

The output-name-filter procedure is applied to two arguments — the default destination file name and a
Boolean that is #t if this name was read from file — before the destination file is created. The return
value of the file is used as the actual destination file name (opened with the ’truncate flag). The default
output-name-filter procedure returns its first argument.

The return value is void. If the compressed data is corrupted, the exn:user exception is raised.

(gunzip-through-ports in out) procedure

Reads the port in for compressed data that was created using the GNU gzip utility, writing the uncompressed
data to the port out .

The return value is void. If the compressed data is corrupted, the exn:user exception is raised.

(inflate in out) procedure

Reads pkzip-format “deflated” data from the port in and writes the uncompressed (“inflated”) data to the
port out . The data in a file created by gzip uses this format (preceded with some header information).

The return value is void. If the compressed data is corrupted, the exn:user exception is raised.

15.2.11 Invoking with Exports to a Namespace: invoke.ss

Files: invoke.ss

(define-values/invoke-unit (export-id · · ·) unit-expr [prefix import-id · · ·]) syntax

Similar to invoke-unit. However, instead of returning the value of the unit’s initialization expression,
define-values/invoke-unit expands to a define-values expression that binds each identifier export-id
to the value of the corresponding variable exported by the unit. At run time, if the unit does not export all
of the export-ids, the exn:unit exception is raised.

If prefix is specified, it must be either #f or an identifier. If it is an indentifier, the names defined by the
expansion of define-values/invoke-unit are prefixed with prefix:.

Example:

(define x 3)

(define y 2)

107



15.2. MzLib Libraries 15. Library Collections and MzLib

(define-values/invoke-unit (c)

(unit (import a b)

(export c)

(define c (- a b)))

ex

x y)

ex:c ; ⇒ 1

(define-values/invoke-unit/sig (signature · · ·) unit/sig-expr [prefix invoke-linkage · · ·]) syntax

The signed-unit version of define-values/invoke-unit. The names defined by the expansion of
define-values/invoke-unit/sig are determined by flattening the signature specified before unit-expr ,
then adding the prefix (if any). See §7.3.1.1 for more information about signature flattening.

Each invoke-linkage is either signature or (identifier : signature), as in invoke-unit/sig.

(global-define-values/invoke-unit (export-id · · ·) unit-expr [prefix import-id · · ·]) syntax

Like define-values/invoke-unit, but the expansion is a sequence of calls to global-defined-value

instead of a define-values expression. Thus, when it is evaluated, a global-define-values/invoke-unit

expression binds top-level variables in the current namespace.

(global-define-values/invoke-unit/sig (signature ···) unit/sig-expr [prefix invoke-linkage ···]) syntax

The signed-unit version of global-define-values/invoke-unit. See also define-values/invoke-unit/sig.

15.2.12 Macros: macro.ss

Files: macro.ss

(class-asi superclass clauses · · ·) syntax

Like class, but the initialization arguments are automatically passed on to the superclass initialization
procedure.

(class*-asi superclass interfaces clauses · · ·) syntax

Like class*, but the initialization arguments are automatically passed on to the superclass initialization
procedure.

(evcase key-expr (value-expr body-expr · · ·) · · ·1) syntax

The evcase form is similar to case, except that expressions are provided in each clause instead of a sequence
of data. After key-expr is evaluated, each value-expr is evaluated until a value is found that is eqv? to the
key value; when a matching value is found, the corresponding body-exprs are evaluated and the value(s) for
the last is the result of the entire evcase expression.

A value-expr can be the special identifier else. This identifier is recognized as in case (see §3.2).

108



15. Library Collections and MzLib 15.2. MzLib Libraries

(let+ clause body-expr · · ·1) syntax

A new binding construct that specifies scoping on a per-binding basis instead of a per-expression basis. It
helps eliminate rightward-drift in programs. It looks a lot like let, except each clause has an additional
keyword tag before the binding variables.

Each clause has one of the following forms:

• (val variable expr) binds variable non-recursively to expr .

• (rec variable expr) binds variable recursively to expr .

• (vals (variable expr) · · ·) the variables are bound to the exprs. The environment of the exprs is
the environment active before this clause.

• (recs (variable expr) · · ·) the variables are bound to the exprs. The environment of the exprs
includes all of the variables.

• ( expr · · ·) evaluates the exprs without binding any variables.

The clauses bind left-to-right. Each variable above can either be an identifier or (values variable · · ·). In
the latter case, multiple values returned by the corresponding expression are bound to the mulitple variables.

Examples:

(let+ ([val (values x y) (values 1 2)])

(list x y)) ; => (1 2)

(let ([x 1])

(let+ ([val x 3]

[val y x])

y)) ; => 3

(local (definition · · ·) body-expr · · ·1) syntax

This is a binding form similar to letrec, except that each definition is a define-values, define, or
define-struct expression (before macro-expansion). The body-exprs are evaluated in the lexical scope of
these definitions.

(nand expr · · ·) syntax

Returns (not (and expr · · ·)).

(nor expr · · ·) syntax

Returns (not (or expr · · ·)).

(opt-lambda formals body-expr · · ·1) syntax

The opt-lambda form is like lambda, except that default values are assigned to arguments (C++-style). De-
fault values are defined in the formals list by replacing each variable by [variable default-value-expression].
If an variable has a default value expression, then all (non-aggregate) variables after it must have default
value expressions. A final aggregate variable can be used as in lambda, but it cannot be given a default
value. Each default value expression is evaluated only if it is needed. The environment of each default value
expression includes the preceding arguments.

109



15.2. MzLib Libraries 15. Library Collections and MzLib

For example:

(define f

(opt-lambda (a [b (add1 a)] . c)

...))

Here, f is a procedure which takes at least one argument. If a second argument is specified, it is the value of
b, otherwise b is (add1 a). If more than two arguments are specified, then the extra arguments are placed
in a new list that is the value of c.

(recur name bindings body-expr · · ·1) syntax

This is equivalent to a named let: (let name bindings body-expr · · ·1).

(send* obj msg · · ·) syntax

Calls multiple methods of obj (in the specified order). Each msg should have the form:

(name params ...)

where name is the method name. For example:

(send* edit (begin-edit-sequence)

(insert "Hello")

(insert #\newline)

(end-edit-sequence))

is the same as

(let ([e edit])

(send e begin-edit-sequence)

(send e insert "Hello")

(send e insert #\newline)

(send e end-edit-sequence))

(signature->symbols name) syntax

Expands to the “exploded” version (see §7.4.3) of the signature currently bound to name (where name is an
unevaluated identifier). The expansion-time value of name (see §13.3) must have the shape of an exploded
signature.

15.2.13 Match: match.ss

Files: match.ss

This is the pattern matching system by Andrew Wright and Bruce Duba. See Pattern Matching for Scheme
for details. The following syntactic forms are defined by the match.ss library:

• match

• match-lambda

• match-lambda*

110



15. Library Collections and MzLib 15.2. MzLib Libraries

• match-let

• match-let*

• match-letrec

• match-define

All forms of match can be used with define-struct values, as well as define-structure and
define-const-structure values (see §15.2.7).

The default match:error procedure raises the exn:misc:match exception, which extends exn:misc with
value field (for the non-matching value).

15.2.14 Math: math.ss

Files: math.ss, mathu.ss, mathr.ss, maths.ss
Signature: mzlib:math^

Unit: mzlib:math@

(conjugate z) procedure

Returns the complex conjugate of z .

(cosh z) procedure

Returns the hyperbolic cosine of z .

e number

Approximation of Euler’s number, equivalent to (exp 1.0).

pi number

Approximation of π, equivalent to (atan 0.0 -1.0).

(sinh z) procedure

Returns the hyperbolic sine of z .

(sgn n) procedure

Returns 1 if n is positive, -1 if n is negative, 0 otherwise.

15.2.15 MzLib: mzlib.ss

Files: mzlib.ss, mzlibu.ss, mzlibr.ss, mzlibs.ss
Signature: mzlib^

Unit: mzlib@
Requires: see §15.1

The mzlib^ signature is defined by:

111



15.2. MzLib Libraries 15. Library Collections and MzLib

(define-signature mzlib^

((open mzlib:core^)

(unit compat : mzlib:compat^)

(unit print-convert : mzlib:print-convert^)

(unit date : mzlib:date^)

(unit inflate : mzlib:inflate^)

(unit command-line : mzlib:command-line^)

(unit restart : mzlib:restart^)))

The mzlib@ unit implements this signature by linking the mzlib:core@ unit together with the non-[core]

standard library units.

15.2.16 Converted Printing: pconver.ss

Files: pconver.ss, pconveru.ss, pconverr.ss, pconvers.ss
Requires: strings.ss, functios.ss
Opened form requires: stringu.ss, functiou.ss
Signature: mzlib:print-convert^

Unit: mzlib:print-convert@, imports mzlib:string^, mzlib:function^

This library defines routines for printing Scheme values as evaluatable S-expressions rather than readable
S-expressions. The print-convert procedure does not print values; rather, it converts a Scheme value into
another Scheme value such that the new value pretty-prints as a Scheme expression that evaluates to the
original value. For example, (pretty-print (print-convert ‘(9 ,(box 5) #(6 7))) prints the literal
expression (list 9 (box 5) (vector 6 7)) to the current output port.

To install print converting into the read-eval-print loop, require pconver.ss and call the procedure
install-converting-printer.

In addition to print-convert, this library provides print-convert, build-share, get-shared, and
print-convert-expr. The last three are used to convert sub-expressions of a larger expression (poten-
tially with shared structure).

(abbreviate-cons-as-list [abbreviate? ]) procedure

Parameter that controls how lists are represented with constructor-style conversion. If the parameter’s value
is #t, lists are represented using list. Otherwise, lists are represented using cons. The initial value of the
parameter is #t.

(build-share v) procedure

Takes a value and computes sharing information used for reprsenting the value as an expression. The return
value is an opaque structure that can be passed back into get-shared or print-convert-expr.

(constructor-style-printing [use-constructors? ]) procedure

Parameter that controls how values are represented after conversion. If this parameter is #t, then constructors
are used, e.g., pair containing 1 and 2 is represented as (cons 1 2). Otherwise, quasiquote-style syntax is
used, e.g. the pair containing 1 and 2 is represented as ‘(1 . 2). The initial value of the parameter is #f.

See also quasi-read-style-printing.

112



15. Library Collections and MzLib 15.2. MzLib Libraries

(current-build-share-hook [hook ]) procedure

Parameter that sets a procedure used by print-convert and build-share to assemble sharing information.
The procedure hook takes three arguments: a value v , a procedure basic-share, and a procedure sub-share;
the return value is ignored. The basic-share procedure takes v and performs the built-in sharing analysis,
while the sub-share procedure takes a component of v ands analyzes it. These procedures return void; sharing
information is accumulated as values are passed to basic-share and sub-share.

A current-build-share-hook procedure usually works together with a current-print-convert-hook pro-
cedure.

(current-build-share-name-hook [hook ]) procedure

Parameter that sets a procedure used by print-convert and build-share to generate a new name for a
shared value. The hook procedure takes a single value and returns a symbol for the value’s name. If hook
returns #f, a name is generated using the form “-n-” (where n is an integer).

(current-print-convert-hook [hook ]) procedure

Parameter that sets a procedure used by print-convert and print-convert-expr to convert values. The
procedure hook takes three arguments — a value v , a procedure basic-convert , and a procedure sub-convert
— and returns the converted representation of v . The basic-convert procedure takes v and returns the
default conversion, while the sub-convert procedure takes a component of v and returns its conversion.

A current-print-convert-hook procedure usually works together with a current-build-share-hook pro-
cedure.

(current-read-eval-convert-print-prompt [str ]) procedure

Parameter that sets the prompt used by install-converting-printer. The initial value is "|- ".

(empty-list-name [symbol ]) procedure

Parameter that controls how the empty list is represented for constructor-style conversions. The initial value
is ’null.

(get-shared share-info [cycles-only? ]) procedure

The shared-info value must be a result from build-share. The procedure returns a list matching variables
to shared values within the value passed to build-share. For example,

(get-shared (build-share (shared ([a (cons 1 b)][b (cons 2 a)]) a)))

might return the list

((-1- (cons 1 -2-)) (-2- (cons 2 -1-)))

The default value for cycles-only? is #f; if it is not #f, get-shared returns only information about cycles.

(install-converting-printer) procedure

Sets the current print handler to print values using print-convert. The current read handler is also set to
use the prompt returned by current-read-eval-convert-print-prompt.

113



15.2. MzLib Libraries 15. Library Collections and MzLib

(print-convert v [cycles-only? ]) procedure

Converts the value v . If cycles-only? is not #f, then only circular objects are included in the output. The
default value of cycles-only? is the value of (show-sharing).

(print-convert-expr share-info v unroll-once?) procedure

Converts the value v using sharing information share-info previously returned by build-share for a value
containing v . If the most recent call to get-shared with share-info requested information only for cycles,
then print-convert-expr will only display sharing among values for cycles, rather than showing all value
sharing.

The unroll-once? argument is used if v is a shared value in share-info. In this case, if unroll-once? is
#f, then the return value will be a shared-value identifier; otherwise, the returned value shows the internal
structure of v (using shared value identifiers within v ’s immediate structure as appropriate).

(quasi-read-style-printing [on? ]) procedure

Parameter that controls how vectors and boxes are represented after conversion when the value of
constructor-style-printing is #f. If quasi-read-style-printing is set to #f, then boxes and vec-
tors are unquoted and represented using constuctors. For example, the list of a box containing the number
1 and a vector containing the number 1 is represented as ‘(,(box 1) ,(vector 1)). If the parameter is
#t, then #& and #() are used, e.g., ‘(#&1 #(1)). The initial value of the parameter is #t.

(show-sharing [show? ]) procedure

Parameter that determines whether sub-value sharing is conserved (and shown) in the converted output by
default. The initial value is #t.

15.2.17 Pretty Printing: pretty.ss

Files: pretty.ss, prettyu.ss, prettyr.ss, prettys.ss
Signature: mzlib:pretty-print^

Unit: mzlib:pretty-print@

(pretty-display v [port ]) procedure

Same as pretty-print, but v is printed like display instead of like write.

(pretty-print v [port ]) procedure

Pretty-prints the value v using the same printed form as write. If port is provided, v is printed into port ;
otherwise, v is printed to the current output port.

In addition to the parameters defined by the pretty library, pretty-print conforms to the print-graph,
print-struct, and print-vector-length parameters.

(pretty-print-columns [width]) procedure

Parameter that sets the default width for pretty printing to width and returns void. If no width argument
is provided, the current value is returned instead.

114



15. Library Collections and MzLib 15.2. MzLib Libraries

If the display width is ’infinity, then pretty-printed output is never broken into lines, and a newline is not
added to the end of the output.

(pretty-print-depth [depth]) procedure

Parameter that sets the default depth for recursive pretty printing to depth and returns void. If no depth
argument is provided, the current value is returned instead. A depth of 0 indicates that only simple values
are printed; Scheme values within other values (e.g. the elements of a list) are replaced with “...”.

(pretty-print-display-string-handler [f ]) procedure

Parameter that sets the procedure for displaying final strings to a port to output pretty-printed values. The
default handler is the default port display handler (see §11.1.9).

(pretty-print-handler v) procedure

Pretty-prints v if v is not void or prints nothing otherwise. Pass this procedure to current-print to install
the pretty printer into the read-eval-print loop.

(pretty-print-print-hook [hook ]) procedure

Parameter that sets the print hook for pretty-printing to hook . If hook is not provided, the current hook is
returned.

The print hook is applied to a value for printing when the sizing hook (see pretty-print-size-hook)
returns an integer size for the value.

The print hook receives three arguments. The first argument is the value to print. The second argument is a
Boolean: #t for printing like display and #f for printing like write. The third argument is the destination
port.

(pretty-print-print-line [liner ]) procedure

Parameter that sets a procedure for printing the newline separator between lines of a pretty-printed value.
The liner procedure is called with four arguments: a new line number, an output port, the old line’s length,
and the number of destination columns. The return value from liner is the number of extra characters it
printed at the beginning of the new line.

The liner procedure is called before any characters are printed with 0 as the line number and 0 as the old
line length; liner is called after the last character for a value is printed with #f as the line number and with
the length of the last line. Whenever the pretty-printer starts a new line, liner is called with the new line’s
number (where the first new line is numbered 1) and the just-finished line’s length. The destination columns
argument to liner is always the total width of the destination printing area, or ’infinity if pretty-printed
values are not broken into lines.

The default liner procedure prints a newline whenever the line number is not 0 and the column count is not
’infinity, always returning 0. A custom liner procedure can be used to print extra text before each line
of pretty-printed output; the number of characters printed before each line should be returned by liner so
that the next line break can be chosen correctly.

(pretty-print-show-inexactness [explicit? ]) procedure

Parameter that determines how inexact numbers are printed. If the parameter’s value is #t, then inexact

115



15.2. MzLib Libraries 15. Library Collections and MzLib

numbers are always printed with a leading #i. The initial value is #f.

(pretty-print-post-print-hook [hook ]) procedure

Parameter that sets a procedure to be called just after an object is printed. The hook receives two arguments:
the object and the output port.

(pretty-print-pre-print-hook [hook ]) procedure

Parameter that sets a procedure to be called just before an object is printed. The hook receives two
arguments: the object and the output port.

(pretty-print-size-hook [hook ]) procedure

Parameter that sets the sizing hook for pretty-printing to hook . If hook is not provided, the current hook is
returned.

The sizing hook is applied to each value to be printed. If the hook returns #f, then printing is handled
internally by the pretty-printer. Otherwise, the value should be an integer specifying the length of the printed
value in characters; the print hook will be called to actually print the value (see pretty-print-print-hook).

The sizing hook receives three arguments. The first argument is the value to print. The second argument is a
Boolean: #t for printing like display and #f for printing like write. The third argument is the destination
port. The sizing hook may be applied to a single value mulitple times during pretty-printing.

15.2.18 Requiring Libraries and Files: refer.ss

Files: refer.ss
Requires: spidey.ss

This library provides syntatic forms that are needed to perform multi-file analysis with MrSpidey, DrScheme’s
static debugger.

(begin-construction-time expr) syntax

Like begin-elaboration-time, this macro expands to the result of evaluating expr . This form is treated
specially by compile-file (see §15.2.4).

(reference-file filename) syntax

Loads filename with load/use-compiled. The difference between reference-file and load/use-compiled

is that reference-file is a syntactic form where filename must be a syntactic string constant. Also, when
reference-file is used in a program analyzed by MrSpidey, the referenced file is syntactically included for
analysis purposes.

(require-library-unit filename collection · · ·) syntax

Like require-unit, but require-library/proc is used instead of load/use-compiled. This form is not
useful in MzLib since all MzLib libraries use signed units.

116



15. Library Collections and MzLib 15.2. MzLib Libraries

(require-library-unit/sig filename collection · · ·) syntax

Like require-unit/sig, but require-library/proc is used instead of load/use-compiled.

(require-relative-library-unit filename collection · · ·) syntax

Like require-unit, but require-relative-library/proc is used instead of load/use-compiled.

(require-relative-library-unit/sig filename collection · · ·) syntax

Like require-unit/sig, but require-relative-library/proc is used instead of load/use-compiled.

(require-unit filename) syntax

Loads filename with load/use-compiled and checks that the result is a unit value; otherwise, the exn:unit

exception is raised. The result of loading the file is the result of the require-unit expression. The filename
must be a syntactic string constant.

MrSpidey expects filename to contain a single expression. MrSpidey will only accept the program if the the
expression in filename is closed except for MzScheme built-in names. MrSpidey must also be able to deduce
that the value of the expression is a unit.

(require-unit/sig filename) syntax

Like require-unit, except that the value returned by load/use-compiledmust be a sighed unit; otherwise,
the exn:unit exception is raised.

MrSpidey will accept this form only when it is able to deduce that the value of the expression in filename is
a signed unit.

15.2.19 Restarting MzScheme with Arguments: restart.ss

Files: restart.ss, restartu.ss, restartr.ss, restarts.ss
Requires: cmdlines.ss
Opened form requires: cmdlineu.ss
Signature: mzlib:restart^

Unit: mzlib:restart@, imports mzlib:command-line^

(restart-mzscheme init-argv adjust-flag-table argv init-namespace) procedure

Simulates starting the stand-alone version of MzScheme with the vector of command-line strings argv .
The init-argv , adjust-flag-table, and init-namespace arguments are used to modify the default settings for
command-line flags, adjust the parsing of command-line flags, and customize the initial namespace, respec-
tively.

The vector of strings init-argv is read first with the standard MzScheme command-line parsing. Flags that
load files or evaluate expressions (e.g., -f and -e) are ignored, but flags that set MzScheme’s modes (e.g.,
-g or -m) effectively set the default mode before argv is parsed.

Before argv is parsed, the procedure adjust-flag-table is called with a command-line flag table as accepted
by parse-command-line (see §15.2.2). The return value must also be a table of command-line flags, and
this table is used to parse argv . The intent is to allow adjust-flag-table to add or remove flags from the

117



15.2. MzLib Libraries 15. Library Collections and MzLib

standard set.

After argv is parsed, a new thread and a namespace are created for the “restarted” MzScheme. (The new
namespace is installed as the current namespace in the new thread.) In the new thread, restarting performes
the following actions:

• The init-namespace procedure is called wih no arguments. The return value is ignored.

• Expressions and files specified by argv are evaluated and loaded.

• The read-eval-print-loop procedure is called.

When read-eval-print-loop returns, restart-mzscheme returns void.

15.2.20 Sharing: shared.ss

Files: shared.ss
Requires: functio.ss

(shared (shared-binding · · ·) body-expr · · ·1) syntax

Binds variables with shared structure according to sharded-bindings and then evaluates the body-exprs,
returning the result of the last expression.

The shared form is similar to letrec. Each shared-binding has the form:

(variable value-expr)

The variables are bound to the result of value-exprs in the same way as for a letrec expression, except for
value-exprs with the following special forms:

• (cons car-expr cdr-expr)
• (list element-expr · · ·)
• (box box-expr)
• (vector element-expr · · ·)

For each of these special forms, the cons cell, list, box, or vector is allocated, but the content expressions
are not evaluated until all of the bindings have values; then the content expressions are evaluated and the
values inserted into the appropriate locations. In this way, values with shared structure (even cycles) can be
constructed.

Examples:

(shared ([a (cons 1 a)]) a) ; => infinite list of 1s

(shared ([a (cons 1 b)]

[b (cons 2 a)])

a) ; => (1 2 1 2 1 2 · · ·)
(shared ([a (vector b b b)]

[b (box 1)])

(set-box! (vector-ref a 0) 2)

a) ; => #(#&2 #&2 #&2)

118



15. Library Collections and MzLib 15.2. MzLib Libraries

15.2.21 MrSpidey: spidey.ss

Files: spidey.ss

This library defines dummy macros for compatibility with MrSpidey annotations (see PLT MrSpidey: Static
Debugger Manual). The following macros are defined:

• : — expands to the first expression
• polymorphic — expands to the first expression
• define-constructor — expands to (#%void)

• define-type — expands to (#%void)

• mrspidey:control — expands to (#%void)

15.2.22 Strings: string.ss

Files: string.ss, stringu.ss, stringr.ss, strings.ss
Signature: mzlib:string^

Unit: mzlib:string@

(eval-string str [err-display err-result ]) procedure

Reads and evaluates S-expressions from the string str , returning a result for each expression. Note that if
str contains only whitespace and comments, zero values are returned, while if str contains two expressions,
two values are returned.

If err-display is not #f (the default), then errors are caught and err-display is used as the error display
handler. If err-result is specified, it must be a thunk that returns a value to be returned when an error is
caught; otherwise, #f is returned when an error is caught.

(expr->string expr) procedure

Prints expr into a string and returns the string.

newline-string string

A string containing a single newline character.

(read-from-string str [err-display err-result ]) procedure

Reads the first S-expression from the string str and returns it. The err-display and err-result are as in
eval-str.

(read-from-string-all str [err-display err-result ]) procedure

Reads all S-expressions from the string str and returns them in a list. The err-display and err-result are as
in eval-str.

(regexp-match-exact? regexp str) procedure

This procedure is like MzScheme’s built-in regexp-match, but the result is always #t or #f; #t is only

119



15.2. MzLib Libraries 15. Library Collections and MzLib

returned when the entire string str matches regexp.

(string-lowercase! str) procedure

Destructively changes str to contain only lowercase characters.

(string-uppercase! str) procedure

Destructively changes str to contain only uppercase characters.

15.2.23 Syntax Rules: synrule.ss

Files: synrule.ss

This library provides define-syntax, implementing the syntax-rules high-level macro system from R5RS.
This implementation of syntax rules can only be used withthe following syntactic forms: quote if begin

set! define lambda letrec let let* do case cond. If any other form is used in the macro definition or
macro application, the results are unpredictable.

Macros definitions using define-syntax are translated into equivalent define-macro expressions; however,
the translated macros contain the following free variables (the macro defintions contain these expressions,
not the expansions of applied macros):

• -:sr:tag-generic

• -:sr:hyg-flatten

• -:sr:matches-pattern?

• -:sr:get-bindings

• -:sr:expand-pattern

These variables are defined by the synrule.ss library as keywords.

This library was contributed by Shriram Krishnamurthi, working from Dorai Sitaram’s implementation.

15.2.24 Threads: thread.ss

Files: thread.ss, threadu.ss, threadr.ss, threads.ss
Signature: mzlib:thread^

Unit: mzlib:thread@

(consumer-thread f [init ]) procedure

Returns two values: a thread descriptor for a new thread, and a procedure with the same arity as f .5 When
the returned procedure is applied, its arguments are queued to be passed on to f , and void is immediately
returned. The thread created by comsumer-thread dequeues arguments and applies f to them, removing a
new set of arguments from the queue only when the previous application of f has completed; if f escapes
from a normal return (via an exception or a continuation), the f -applying thread terminates.

5The returned procedure actually accepts any number of arguments, but immediately raises exn:application:arity if f
cannot accept the provided number of arguments.

120



15. Library Collections and MzLib 15.2. MzLib Libraries

The init argument is a procdure of no arguments; if it is provided, init is called in the new thread immediately
after the thread is created.

(dynamic-disable-break thunk) procedure

Invokes thunk and returns the result. During the application of thunk , breaks are disabled.

(dynamic-enable-break thunk) procedure

Invokes thunk and returns the result. During the application of thunk , breaks are enabled.

(make-single-threader) procedure

Returns a new procedure that takes any thunk and applies it. When this procedure is applied to any
collection of thunks by any collection of threads, the thunks are applied sequentially across all threads.

(merge-input a b) procedure

Accepts two input ports and returns a new input port. The new port merges the data from two original
ports, so data can be read from the new port whenever it is available from either original port. The data from
the original ports are interleaved. When EOF has been read from an original port, it no longer contributes
characters to the new port. After EOF has been read from both original ports, the new port returns EOF.
Closing the merged port does not close the original ports.

(semaphore-wait-multiple semaphore-list [timeout allow-break? ]) procedure

Waits on all of the semaphores in semaphore-list in parallel until a semaphore-wait succeeds for one of the
semaphores. The result is the semaphore for which semaphore-wait succeeded, and the internal counts for
the other semaphores remains unchanged.6

If a non-negative number timeout is supplied, semaphore-wait-mulitple will return #f after (at
least) timeout seconds if no semaphores become available. The default timeout is #f, in which case
semaphore-wait-mulitple never returns #f.

The allow-break? argument indicates whether to enable breaks while waiting on the semaphores. If user
breaks are enabled on entry to semaphore-wait-mulitple, then semaphore-wait-mulitple can be broken
as well. Like semaphore-wait/enable-break, will either return a value or raise an exception without
changing the status of any semaphores.7 However, in this case it is possible for a break to occur after
semaphore-wait-mulitple returns a value but before that value is returned to a calling context. Therefore,
the only way to gurantee that a successful semaphore-wait is not lost is to disable breaks around the waiting
context and pass a true value for allow-break? . The default value is #f.

(with-semaphore s thunk) procedure

Calls semaphore-wait on s, then invokes thunk with no arguments, and then calls semaphore-post on s.
The return value is the result of calling thunk .

6The internals counts of some semaphores may be temporarily decremented if multiple semaphores become available at once.
7But the internal counts of some semaphores cold be temporarily changed.

121



15.2. MzLib Libraries 15. Library Collections and MzLib

15.2.25 Tracing: trace.ss

Files: trace.ss
Requires: prettyu.ss

This library mimics the tracing facility available in Chez SchemeTM.

Tracing does not respect tail calls; i.e., tracing a procedure that ends with a tail call checks the call so that
it executes (and prints) as a non-tail call. Untracing a procedure restores its tail call behavior. Only one
procedure can be traced for any single name across all namespaces.

(trace name · · ·) syntax

This form takes a sequence of global variables names; each name must be defined as as procedure in the
current namespace when the trace expression is evaluated. Each name provided to trace is then redefined to
a new procedure. This new procedure traces procedure-calls and procedure-returns by printing the arguments
and results of the call. If multiple values are returned, each value is displayed starting on a separate line.

When traced procedures invoke each other, this is shown by printing a nesting prefix. If the nesting depth
grows to ten and beyond, a number is printed to show the actual nesting depth.

The trace macro can be used on a name that is already traced in the current namespace. In this case,
assuming that the name has not been redefined, trace has no effect. If the name has been redefined, then a
new trace is installed. If trace is used on the same name in two different eventspaces, then the first installed
trace will remain intact but it will no longer be recognized by the trace and untrace forms.

The value of a trace expression is the list of names specified for tracing.

(untrace name · · ·) syntax

This form undoes the effects of the trace form for each name, but only if the current definition of name is
the one previously installed by trace. If the current definition for name is not the procedure installed by
trace, then the definition is not changed.

The value of an untrace expression is the list of names restored to their untraced definitions.

15.2.26 Tracing Loads: traceld.ss

Files: traceld.ss, traceldr.ss

This library does not define any procedures or syntax. Instead, trace.ss is loaded (or the signed unit returned
by tracer.ss is invoked) for its side-effects. The trace library installs a new load handler and load extension
handler to print information about the files that are loaded. These handlers chain to the current handlers to
perform the actual loads. Trace output is printed to the port that is the current error port when the library
is loaded.

Before a file is loaded, the tracer prints the file name and “time” (as reported by the procedure
current-process-milliseconds) when the load starts. Trace information for nested loads is printed with
indentation. After the file is loaded, the file name is printed with the “time” that the load completed.

If a loader extension is loaded (see §14.1), the tracer wraps the returned loader procedure to print informa-
tion about libraries requested from the loader. When a library is found in the loader, the thunk procedure
that extracts the library is wrapped to print the start and end times of the extraction.

122



15. Library Collections and MzLib 15.2. MzLib Libraries

15.2.27 Transcripts: transcr.ss

Files: transcr.ss
Signature: mzlib:transcript^

Unit: mzlib:transcript@

MzScheme’s built-in transcript-on and transcript-off always raise exn:misc:unsupported. The tran-
scr.ss library provides working versions of transcript-on and transcript-off.

123



16. Running MzScheme

The stand-alone version of MzScheme accepts a number of command-line flags. Under MacOS, a user can
specify command-line flags by holding down the Command key while starting MzScheme, which provides
a dialog for entering the command line. Dragging files onto the MzScheme icon in MacOS is equivalent to
providing each file’s name on the command line preceded by -f, so each file is loaded after MzScheme starts.
When files are dragged onto MzScheme with the Command key pressed, the command line specified in the
dialog is appended to the implicit command-line for loading the files.

MzScheme accepts the following flags:

• Startup file and expression flags:

* -e expr : Evaluates expr after MzScheme starts.
* -f file : Loads file after MzScheme starts.
* -d file : Uses load/cd to load file after MzScheme starts.
* -F : Loads each remaining argument as a file after MzScheme starts.
* -D : Loads each remaining argument as a file using load/cd after MzScheme starts.
* -l file : Loads the MzLib library file after MzScheme starts.
* -L file collect : Loads the library file in the collection collect after MzScheme starts.
* -r file or --script file : Use this flag for MzScheme-based scripts. It mutes the startup banner

printout, suppresses the read-eval-print loop, and loads file after MzScheme starts. No argument
after file is treated as a flag. The -r or --script flag is a shorthand for -fmv-.

* -i file or --script-cd file : Same as -r file or --script file, except that the current directory
is changed to file’s directory before it is loaded. The -i or --script-cd flag is a shorthand for
-dmv-.

* -w or --awk : Loads the awk.ss library after MzScheme starts.

• Initialization flags:

* -x or --no-lib-path : Suppresses the initialization of current-library-collection-paths (as
described in Chapter 15).

* -q or --no-init-file : Suppresses loading the user’s initialization file, as described below.

• Language setting flags:

* -g or --case-sens : Creates an initial namespace where identifiers and symbols are case-sensitive.
* -c or --esc-cont : Creates an initial namespace where call-with-current-continuation and
call/cc capture escape continuations (like call/ec) instead of full continuations.

* -s or --set-undef : Creates an initial namespace where set! will sucessfully mutate an undefined
global variable (implicitly defining it).

* -a or --no-auto-else : Creates an initial namespace where falling through all of the clauses in
a cond or case expression raises the exn:else exception.

* -n or --no-key : Creates an initial namespace where keywords are not enforced.
* -y or --hash-percent-syntax : Creates an initial namespace that includes only the #% syntactic

forms.

• Miscellaneous flags:

124



16. Running MzScheme

* -- : No argument following this flag is used as a flag.
* -m or --mute-banner : Suppresses the startup banner text.
* -v or --version : Suppresses the read-eval-print loop.
* -h or --help : Shows information about MzScheme’s command-line flags and then exits; ignoring

other flags.
* -p or --persistent : Catches the SIGDANGER (low page space) signal and ignores it (AIX

only).
* -Rfile or --restore file : Restores a saved image (see §14.8). Extra arguments after file are

returned as a vector of strings to the continuation of the write-image-to-file call that created
the image.

Extra arguments following the last flag are put into the Scheme global variable argv as a vector of strings.
The name used to start MzScheme is put into the global variable program as a string.

Multiple single-letter flags (the ones preceded by a single dash) can be collapsed into a single flag by con-
catenating the letters, as long as the the first flag is not --. The arguments for each flag are placed after
the collapsed flags (in the order of the flags). For example,

-vfme file expr

and

-v -f file -m -e expr

are equivalent.

The current-library-collection-paths parameter is initialized (as described in Chapter 15) before any
expression or file is evaluated or loaded, unless the -x or --no-lib-path flag is specified.

Unless the -q or --no-init-file flag is specified, a user initialization file is loaded after
current-library-collection-paths parameter is initialized and before any other expression or file is
evaluated or loaded. The path to the user initialization file is obtained from MzScheme’s find-system-path
procedure using ’init-file.

Expressions and files are evaluated and loaded in order that they are provided on the command line. The
thread that loads the files and evaluates the expression is the main thread. When the main thread
terminates (or is killed), the MzScheme process exits.

After the command-line files and expressions are loaded and evaluated, the main thread calls
read-eval-print-loop, unless the -v, --version, -r, --script, -i, --script-cd flag is specified.

125



Index

+inf.0, 11
+nan.0, 11
--, 125
--awk, 124
--case-sens, 124
--esc-cont, 124
--hash-percent-syntax, 124
--help, 125
--mute-banner, 125
--no-auto-else, 124
--no-init-file, 124
--no-key, 124
--no-lib-path, 124
--persistent, 125
--restore, 90, 125
--script, 124
--script-cd, 124
--set-undef, 124
--version, 125
-:sr:expand-pattern, 120
-:sr:get-bindings, 120
-:sr:hyg-flatten, 120
-:sr:matches-pattern?, 120
-:sr:tag-generic, 120
-D, 124
-F, 124
-L, 124
-R, 125
-a, 124
-c, 124
-d, 124
-e, 124
-f, 124
-g, 124
-h, 125
-i, 124
-inf.0, 11
-l, 124
-m, 125
-n, 124
-nan.0, 11
-p, 125
-q, 124
-r, 124
-s, 124
-v, 125
-w, 124
-x, 124
-y, 124

.mzschemerc, 72

.zo, 99
:, 119
=>, 5
[ ], 56
#!, 87
#/, 87, 88
#/backspace, 86
#/linefeed, 86, 88
#/newline, 68, 86–88
#/nul, 12, 66, 69, 86, 88
#/null, 86, 88
#/page, 86, 87
#/return, 68, 86, 87
#/rubout, 87
#/space, 86, 87
#/tab, 86, 87
#/vtab, 86, 87
#/n1n2n3, 87
#<undefined>, 10
#<void>, 10
#%, 87
#%begin-elaboration-time, 100
#&, 86
#‘, 87
#n=, 87, 88
#n#, 87, 88
{ }, 56
\, 87

abbreviate-cons-as-list, 112
absolute-path?, 70
add1, 11
’all, 58
’all-syntax, 54
’also-preserve-constructions, 100
’also-preserve-elaborations, 100
’american, 101
and, 6
andmap, 10
’any, 67
’any-one, 67
’append, 64
append!, 13
AppleEvents, 76
argv, 125
arithmetic-shift, 11
arity, 13, 14, 45
arity-at-least-value, 14

126



INDEX

arity-at-least?, 14
assf, 104
assoc, 13
assq, 13
assv, 13
atom?, 98
awk, 93
awk.ss, 93

banner, 78
begin, 6, 8
begin-construction-time, 100, 116
begin-elaboration-time, 83, 100
begin0, 6
’beos, 78
bignum, 11
’binary, 64
bitwise operators, 11
bitwise-and, 11
bitwise-ior, 11
bitwise-not, 11
bitwise-xor, 11
boolean=?, 104
box, 13
box?, 13
boxes, 13, 56, 86

printing, 56, 88
break-enabled, 59
break-thread, 53
breaks, see threads, breaking
build-absolute-path, 102
build-list, 104
build-path, 69, 102
build-relative-path, 102
build-share, 112
build-string, 104
build-vector, 104
built-in-name, 55

call-in-nested-thread, 53
call-with-current-continuation, 47, 124
call-with-custodian, 46
call-with-escape-continuation, 47
call-with-input-file, 65
call-with-output-file, 65
call-with-values, 4
call/cc, 47, 124
’call/cc!=call/ec, 54
’call/cc=call/ec, 54
call/ec, 47
case, 5, 45, 57
case sensitivity, 56
case-lambda, 9
char->integer, 12

char-ci=?, 12
char=?, 12
characters, 12, 86

printing, 88
’chinese, 101
class, 23
class*, 23
class*-asi, 108
class*/names, 22
class-asi, 108
class?, 28
classes, 19

creating, 22
cmdline.ss, 94
collect-garbage, 80
collection-path, 92
collections, 91
command-line, 94
comments, 87
communication, 53
communications, 73
compat.ss, 93, 98
compatm.ss, 93
compile, 89
compile-allow-cond-fallthrough, 57
compile-allow-set!-undefined, 57
compile-file, 81–83, 99, 116
compile.ss, 99
compiled code, 56
compiling, 89
complete-path?, 70
complex, 11
compose, 104
compound-unit, 32
compound-unit/sig, 35, 39
cond, 5, 45, 57
conjugate, 111
cons?, 104
constructor-style-printing, 112
consumer-thread, 120
continuation-mark-set->list, 49
continuation-mark-set?, 49
continuations, 47

escape, 47
control flow, 47
copy-file, 73
core.ss, 93, 101
corer.ss, 93
cores.ss, 93
coreu.ss, 93
cosh, 111
curly braces, 56
current namespace, 57

127



INDEX

current-build-share-hook, 113
current-build-share-name-hook, 113
current-continuation-marks, 45, 49
current-custodian, 59, 60
current-directory, 56, 73
current-drive, 73
current-error-port, 56
current-eval, 57
current-exception-handler, 44, 58
current-gc-milliseconds, 75
current-input-port, 56, 64
current-library-collection-paths, 58, 91,

124, 125
current-load, 57
current-load-extension, 57
current-load-relative-directory, 58, 85, 89
current-memory-use, 80
current-milliseconds, 12, 75
current-namespace, 57
current-output-port, 56, 64
current-print, 57
current-print-convert-hook, 113
current-process-milliseconds, 75
current-prompt-read, 57
current-pseudo-random-generator, 12, 59
current-read-eval-convert-print-prompt, 113
current-require-relative-collection, 58
current-seconds, 74, 75
current-thread, 52
custodian-shutdown-all, 60
custodian?, 60
custodians, 59, 60
cycles, 89

date, 74, 101
date, 75
date->julian/scalinger, 101
date->string, 101
date-day, 75
date-display-format, 101
date-dst?, 75
date-hour, 75
date-minute, 75
date-month, 75
date-second, 75
date-week-day, 75
date-year, 75
date-year-day, 75
date.ss, 101
define, 6

internal, 8
define-const-structure, 102
define-constructor, 119
define-expansion-time, 82, 100

define-id-macro, 82, 100
define-macro, 81, 100
define-signature, 38
define-struct, 16, 17
define-structure, 102
define-syntax, 120
define-type, 119
define-values, 6
define-values/invoke-unit, 107
define-values/invoke-unit/sig, 108
defined?, 54
defmacro, 81, 98
defstru.ss, 102
delay, 14
delete-directory, 73
delete-directory/files, 102
delete-file, 72
derived class, 19
directories

contents, 73
creating, 73
current, 56, 73
dates, 73
deleting, 73
moving, 73
of currently loading file, 57, 85, 89
pathnames, see pathnames
permissions, 73
renaming, 73
root, 73
testing, 73

directory-exists?, 73
directory-list, 73
’done-error, 76
’done-ok, 76
dump-memory-stats, 80
dynamic-disable-break, 121
dynamic-enable-break, 121
dynamic-wind, 48

e, 111
effective signature, 40
eighth, 104
else, 5
’empty, 54
empty, 104
empty-list-name, 113
empty?, 104
eof, 64, 66
eof-object?, 64
eq?, 18
equal?, 13, 18
eqv?, 11, 18
’error, 64

128



INDEX

error, 45, 46
error display handler, 58
error escape handlers, 51, 52
error value conversion handler, 58
error-display-handler, 58
error-escape-handler, 51, 58
error-print-width, 58
error-value->string-handler, 58
errors, 45, 46, 58

mismatch, 46
syntax, 47
type, 46

eval, 57, 85
eval-string, 119
evaluation handler, 57
evaluation order, 5
evcase, 108
even?, 11
exception handlers, 52
exceptions, 44, 58

primitive, 45
’execute, 72
execute, 76
execute*, 76
exit, 59, 86
exit handler, 59
exit-handler, 59
exiting, 59
exn, 45
exn:application:arity, 4, 24
exn:application:continuation, 47
exn:application:fprintf:mismatch, 68
exn:application:mismatch, 11, 13, 15, 18, 46,

53, 65, 67, 68, 76, 77
exn:application:type, 12, 26, 46, 54, 68, 104
exn:else, 5, 57, 83, 124
exn:i/o:filesystem, 56, 69–73, 89, 90
exn:i/o:port:user, 66
exn:i/o:tcp, 73, 74
exn:misc, 52, 53, 77, 81, 83, 84, 90
exn:misc:match, 111
exn:misc:process, 76
exn:misc:unsupported, 73, 76, 77, 90, 123
exn:misc:user-break, 50
exn:object, 22, 24–28
exn:read, 86, 87, 89
exn:struct, 17
exn:syntax, 47
exn:thread, 53
exn:unit, 32, 33, 41, 43, 107, 117
exn:unit:signature, 41
exn:user, 46, 95–97, 102, 107
exn:variable, 54

exn:variable:keyword, 55
exn?, 45
expand-defmacro, 83
expand-defmacro-once, 83
’expand-load, 99
expand-path, 70
’expand-require-library, 99
expansion time, 82
expansion-time-value?, 83
explode-path, 102
export, 29, 32
export signature, 34
expr->string, 119
expressions

shared structure, 88

fields, 16
fifth, 104
file-exists?, 72
file-modify-seconds, 75
file-name-from-path, 102
file-or-directory-modify-seconds, 72, 73
file-or-directory-permissions, 72, 73
file-or-directorymodify-seconds, 75
file-position, 65
file-size, 73
file.ss, 102
filename-extension, 103
files, 65

copying, 73
dates, 72
deleting, 72
loading, 85
moving, 72
pathnames, see pathnames
permissions, 72
renaming, 72
sizes, 73
testing, 72

filesystem-root-list, 73
filter, 104
finalization, see will executors
find-executable-path, 71
find-library, 103
find-relative-path, 103
find-seconds, 101
find-system-path, 71, 125
first, 105
fixnum, 11
flonum, 11
fluid-let, 8
flush-output, 65
foldl, 105
foldr, 105

129



INDEX

force, 14
format, 68
fourth, 104
fprintf, 67
fraction, 11
functio.ss, 103

gensym, 12
’german, 101
get-output-string, 65
get-shared, 113
getenv, 77
getprop, 98
global port print handler, 56
global variables, 54
global-define-values/invoke-unit, 108
global-define-values/invoke-unit/sig, 108
global-defined-value, 54, 81–83
global-expansion-time-value, 83
global-port-print-handler, 56, 67, 69
graphs, 87, 88

printing, 88
guardians, see will executors
gunzip, 107
gunzip-through-ports, 107

hash tables, 15
’hash-percent-syntax, 54
hash-table-for-each, 15
hash-table-get, 15
hash-table-map, 15
hash-table-put!, 15
hash-table-remove!, 15
hash-table?, 15
’home-dir, 72
HOMEDRIVE, 72
HOMEPATH, 72

id-macro?, 82
identity, 105
ignore-errors, 105
’ignore-macro-definitions, 99
’ignore-require-library, 99
implementation?, 28
import, 29, 32
import signature, 34
include, 39
’indian, 101
inferred-name, 47
infinity, 11
’infinity, 115
inflate, 107
inflate.ss, 107
info.ss, 91

inherit, 25
inheritance, 19
’init-dir, 72
’init-file, 72
install-converting-printer, 113
instance variables

accessing, 27
integer->char, 12
interface, 22
interface-extension?, 28
interface?, 28
invoke-unit, 31
invoke-unit/sig, 41
invoke.ss, 107
’irish, 101
is-a?, 28
ivar, 27
ivar-in-class?, 28
ivar-in-interface?, 28
ivar/proc, 27

’julian, 101
julian/scalinger->string, 102

keyword-name, 55
keyword-name?, 55
keywords, 55
’keywords, 54
kill-thread, 52

last-pair, 105
let, 7
let*, 7
let*-values, 7
let+, 109
let-expansion-time, 82
let-id-macro, 82
let-macro, 81
let-struct, 16, 17
let-values, 3, 7
let/cc, 47
let/ec, 47
letmacro, 99
letrec, 7
letrec-values, 7, 10
libraries, 91
’linefeed, 66
link, 32
link-exists?, 72
links

testing, 72
list, 13
list*, 13
list-ref, 13

130



INDEX

list-tail, 13
load, 57, 58, 85, 87, 99
load handler, 57
load-extension, 57, 58, 89
load-relative, 57, 58, 85, 99
load-relative-extension, 58, 89
load/cd, 57, 85, 99
load/use-compiled, 57, 58, 85, 92
load/used-compiled, 58
local, 109
local-expand-body-expression, 84
local-expand-defmacro, 84
local-expansion-time-bound?, 83
local-expansion-time-value, 83
logical operators, see bitwise operators
loop-until, 105

’macos, 78
macro.ss, 108
macro?, 81
macros, 81, 100

expanding, 83
identifier, 82
syntax-rules, 120

make-custodian, 60
make-directory, 73
make-directory*, 103
make-generic, 28
make-generic/proc, 27
make-generic/prof, 27
make-global-value-list, 55
make-hash-table, 15
make-hash-table-weak, 15
make-input-port, 66
make-namespace, 54
make-object, 24, 26
make-output-port, 66
make-parameter, 59
make-pipe, 65
make-promise, 14
make-pseudo-random-generator, 12
make-semaphore, 53
make-single-threader, 121
make-temporary-file, 103
make-weak-box, 79
make-will-executor, 79
match, 110
match-define, 111
match-lambda, 110
match-lambda*, 110
match-let, 111
match-let*, 111
match-letrec, 111
match.ss, 110

match:end, 94
match:start, 94
match:substring, 94
math.ss, 111
member, 13
memf, 106
memq, 13
memv, 13
merge-input, 121
’mred, 54
MrSpidey, 116, 119
mrspidey:control, 119
’multi, 97
multi, 95
multiple return values, 3
MzLib library, 92
mzlib.ss, 93, 111
mzlib:command-line@, 94
mzlib:command-line^, 94
mzlib:compat@, 98
mzlib:compat^, 98
mzlib:compile@, 99
mzlib:compile^, 99
mzlib:core@, 101
mzlib:core^, 101
mzlib:date@, 101
mzlib:date^, 101
mzlib:file@, 102
mzlib:file^, 102
mzlib:function@, 103
mzlib:function^, 103
mzlib:inflate@, 107
mzlib:inflate^, 107
mzlib:math@, 111
mzlib:math^, 111
mzlib:pretty-print@, 114
mzlib:pretty-print^, 114
mzlib:print-convert@, 112
mzlib:print-convert^, 112
mzlib:restart@, 117
mzlib:restart^, 117
mzlib:string@, 119
mzlib:string^, 119
mzlib:thread@, 120
mzlib:thread^, 120
mzlib:transcript@, 123
mzlib:transcript^, 123
mzlib@, 111
mzlibm.ss, 93
mzlibr.ss, 93
mzlibs.ss, 93
mzlibu.ss, 93
mzlib^, 111

131



INDEX

MzScheme
stand-alone, 1, 124

mzschemerc.ss, 72

namespace?, 54
namespaces, 54
nand, 109
networking, 73
new-cafe, 99
newline-string, 119
’no-keywords, 54
’no-warnings, 100
’non-elaboration, 58, 100
’none, 58
nor, 109
normal-case-path, 71
normalize-path, 103
not-a-number, 11
null, 13
number->string, 11
numbers, 11

object-class, 28
object?, 28
object%, 22
objects, 19

creating, 26
odd?, 11
’once-any, 97
once-any, 95
’once-each, 97
once-each, 95
’only-expand, 100
open-input-file, 64
open-input-string, 65
open-output-file, 64
open-output-string, 65
opt-lambda, 109
or, 6
ormap, 10
’oskit, 78
override, 25
overriding, 19

parameter, 55
parameter procedure, 55
parameter-procedure=?, 59
parameter?, 59
parameterize, 59
parameters, 55

built-in, 55
parse-command-line, 96
parsing, 56
PATH, 71

path->complete-path, 70
path-list-string->path-list, 72
path-only, 103
pathnames, 69

expansion, 69
pattern matching, 61
pconver.ss, 112
pi, 111
platform, 71, 78
polymorphic, 119
port display handler, 68
port print handler, 68
port read handler, 68
port write handler, 68
port-display-handler, 69
port-print-handler, 69
port-read-handler, 68
port-write-handler, 69
port?, 64
ports, 52, 56, 64

custom, 66
file, 65
flushing, 65
string, 65

’pref-dir, 72
’preserve-constructions, 100
’preserve-elaborations, 100
pretty-display, 114
pretty-print, 114
pretty-print-columns, 114
pretty-print-depth, 115
pretty-print-display-string-handler, 115
pretty-print-handler, 115
pretty-print-post-print-hook, 116
pretty-print-pre-print-hook, 116
pretty-print-print-hook, 115
pretty-print-print-line, 115
pretty-print-show-inexactness, 115
pretty-print-size-hook, 116
pretty.ss, 114
primitive procedure, 14
primitive-closure?, 14
primitive-name, 14
primitive-result-arity, 14
primitive?, 14
print, 67
print handler, 57
print-box, 56, 88
print-convert, 114
print-convert-expr, 114
print-graph, 56, 89
print-struct, 56, 88
print-vector-length, 57, 88

132



INDEX

printf, 68
private, 25
procedure-arity-includes?, 14
procedure?, 9
process, 76
process*, 76
processes, 76
program, 125
promise?, 14
promises, 14
prompt read handler, 57
pseudo-random-generator?, 12
public, 25
putenv, 77
putprop, 99

quasi-read-style-printing, 114
quasiquote, 6
quicksort, 106

raise, 44
raise-mismatch-error, 46
raise-syntax-error, 47
raise-type-error, 46
random, 12, 59
random numbers, 59
random-seed, 12, 59
’read, 72
read, 45
read-accept-bar-quote, 56, 87, 88
read-accept-box, 56, 86
read-accept-compiled, 56, 89
read-accept-graph, 56, 89
read-case-sensitive, 56
read-curly-brace-as-paren, 56, 86
read-eval-print loop, 57

read-eval-print loop
customized, 85

read-eval-print loop, 85
read-eval-print-loop, 85, 86, 125
read-from-string, 119
read-from-string-all, 119
read-image-from-file, 90
read-line, 66
read-square-bracket-as-paren, 56, 86
read-string, 67
read-string!, 67
recur, 110
refer.ss, 116
reference-file, 116
regexp, 62
regexp-exec, 94
regexp-match, 62, 119
regexp-match-exact?, 119

regexp-match-positions, 62
regexp-replace, 62
regexp-replace*, 62
regexp?, 62
regular expressions, 61
’relative, 71
relative-path?, 70
remove, 106
remove*, 106
remq, 106
remq*, 106
remv, 106
remv*, 106
rename, 25
rename-file-or-directory, 72, 73
’replace, 64
require-library, 58, 91, 92, 99
require-library-unit, 116
require-library-unit/sig, 117
require-library/proc, 92
require-relative-library, 91, 92
require-relative-library-unit, 117
require-relative-library-unit/sig, 117
require-relative-library/proc, 92
require-unit, 117
require-unit/sig, 117
resolve-path, 70
rest, 106
restart-mzscheme, 117
restart.ss, 117
’return, 66
’return-linefeed, 66
reverse!, 13
’running, 76

’same, 69, 71
second, 104
seconds->date, 74, 101
self (for objects), see this

semaphore-post, 53
semaphore-try-wait?, 53
semaphore-wait, 53
semaphore-wait-multiple, 121
semaphore-wait/enable-break, 53
semaphore?, 53
semaphores, 53
send, 27
send*, 110
send-event, 76
sequence, 24
set!, 8, 27, 29, 124
set!-values, 8
set-box!, 13
seventh, 104

133



INDEX

sgn, 111
shared, 118
shared.ss, 118
show-sharing, 114
signature, 34
signature->symbols, 110
signatures, 33, 37
signed compound units, 34
signed units, 34
simple-return-primitive?, 14
simplify-path, 70
sinh, 111
sixth, 104
sleep, 52
sort, 99
spidey.ss, 119
split-path, 71
square brackets, 56
’status, 76
string->number, 11
string->symbol, 12
string->uninterned-symbol, 12
string-ci=?, 12
string-lowercase!, 120
string-uppercase!, 120
string.ss, 119
string=?, 12
strings

as ports, 65
pattern matching, 61
reading to and writing from, 65

’strip-macro-definitions, 99
struct, 16, 45
struct->vector, 18
struct-constructor-procedure?, 18
struct-getter-procedure?, 18
struct-length, 18
struct-predicate-procedure?, 18
struct-ref, 18
struct-setter-procedure?, 18
struct-type?, 18
struct?, 18
structs

printing, 56
structure subtypes, 17
structure type descriptors, 16
structure types, 16

predicates, 18
structures, 16

printing, 88
sub1, 11
subclass?, 28
subprocesses, 76

super-init, 23
superclass, 19
superclass initialization, see super-init

symbols, 87
generating, 12
printing, 88

synrule.ss, 120
syntax-rules, 120
syntax?, 83
system, 76
system*, 76
system-library-subpath, 78
system-type, 78

tail calls, 47
tcp-accept, 74
tcp-accept-ready?, 74
tcp-close, 74
tcp-connect, 74
tcp-listen, 73
tcp-listener?, 74
TCP/IP, 73
’temp-dir, 72
’text, 64
third, 104
this, 23
thread, 52
thread descriptor, 52
thread-running?, 52
thread-wait, 52
thread.ss, 120
thread?, 52
threads, 52

breaking, 50, 53
communication, 53
killing, 52
nesting, 53
run state, 52
synchronization, 53

time, 74
machine, 75

time, 75
time-apply, 75
TMPDIR, 72
trace, 122
trace.ss, 122
traceld.ss, 122
transcr.ss, 123
transcript-off, 123
transcript-on, 123
’truncate, 64, 103
’truncate/replace, 64

unbox, 13

134



INDEX

undefine, 54
undefined values, 10
uninterned symbol, 12
unit, 29
unit->unit/sig, 42
unit-with-signature-exports, 42
unit-with-signature-imports, 42
unit-with-signature-unit, 42
unit-with-signature?, 42
unit/sig, 34, 38
unit/sig->unit, 41
unit?, 33
units, 29

compound, 32
creating, 29
invoking, 31
signatures, 33

units with signatures, 34
’unix, 78
unless, 5
untrace, 122
’up, 69, 71
use-compiled-file-kinds, 58
’use-current-namespace, 100

values, 4
vectors, 86

printing, 56, 88
verify-linkage-signature-match, 43
verify-signature-match, 42
version, 78
vertical bar, 56
void, 10
void?, 10

’wait, 76
weak boxes, 79
weak-box-value, 79
weak-box?, 79
when, 5
will executors, 79
will-execute, 79
will-executor?, 79
will-register, 79
will-try-execute, 79
’windows, 78
with-continuation-mark, 49
with-handlers, 44
with-input-from-file, 65
with-output-to-file, 65
with-semaphore, 121
’write, 72
write-image-to-file, 90, 125

135


