
PLT mzc: MzScheme Compiler Manual

Matthew Flatt
mflatt@rice.edu

Sebastian Good
four@rice.edu

PLT
scheme@cs.rice.edu

Rice University

Version 100alpha3
June 1999

Department of Computer Science – MS 132
Rice University

6100 Main Street
Houston, Texas 77005-1892

Copyright notice

Copyright c©1998-99 PLT, Rice University

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

Contents

1 About mzc 1

1.1 mzc Is... 1

1.1.1 Byte Code Compilation . 1

1.1.2 Native Code Compilation . 1

1.2 mzc Is Not... 2

1.3 Running mzc . 2

1.4 Macros and Signatures in mzc . 2

1.5 Native Code Optimization from mzc . 3

2 Compiling Individual Files with mzc 5

2.1 Prefixing Compilation with Macro and Signature Definitions 5

2.2 Autodetecting Compiled Files for Loading . 6

2.3 Compiling Multiple Files to a Single Native Code Library . 6

3 Compiling Collections with mzc 8

3.1 Macro and Elaboration-Time Libraries . 9

4 Building a Stand-alone Native Code Executable 10

Index 12

i

CONTENTS CONTENTS

ii

1. About mzc

1.1 mzc Is...

The mzc compiler takes MzScheme (or MrEd) source code and produces either platform-independent byte
code compiled files (.zo files) or platform-specific native code libraries (.so or .dll files) to be loaded into
MzScheme (or MrEd).

mzc works on either individual files or on collections. (A collection is a group of files that conform to
MzScheme’s library collection system; see §15 in PLT MzScheme: Language Manual).

As a convenience for programmers writing low-level MzScheme extensions, mzc can compile and link plain
C files that use MzScheme’s escheme.h header. This facility is described in Inside PLT MzScheme.

1.1.1 Byte Code Compilation

A byte code file typically uses the file extension .zo. The file starts with a regular Scheme expression to test
MzScheme’s version, followed by #‘ and the bytecode data.

Byte code files are loaded into MzScheme in the same way as regular Scheme source files (i.e., with load).
The #‘ marker causes MzScheme’s reader to load byte codes instead of normal Scheme expressions.

Byte code programs produced by mzc run exactly the same as source code compiled by MzScheme directly
(assuming the same set of macros, signatures, and syntax are avilable at compile-time and load-time). In
other words, byte code compilation does not optimize the code any more than MzScheme’s normal evaluator.
However, a byte code file can be loaded into MzScheme much faster than a source code file.

1.1.2 Native Code Compilation

A native code file is a platform-specific shared library. Under Windows, native code files typically use the
extension .dll. Under Unix and MacOS, native code files typically use the extension .so.

Native code files are loaded into MzScheme with the load-extension procedure (see §14.7 in PLT MzScheme:
Language Manual).

The native code compiler attempts to optimize a source program so that it runs faster than the source code
or byte code version of the program. See §1.5 for information on obtaining the best possible performance
from mzc-compiled programs.

Native code compilation produces C source code in an intermediate stage; your system must provide an
external C compiler to produce native code. The mzc compiler cannot produce native code directly from
Scheme code.

• Under Unix, gcc is used as the C compiler if it can be found in any of the directories listed in the
PATH environment variable. If gcc is not found, cc is used if it can be found.

1

1.2. mzc Is Not... 1. About mzc

• Under Windows, cl.exe, Microsoft Visual C, is used as the C compiler if it can be found in any of the
directories listed in the PATH environment variable. If cl.exe is not found, gcc.exe is used if it can be
found.

• Under MacOS, Metrowerks CodeWarrior is used as the C compiler if it can be found.

Except for MacOS, the C compiler and compiler flags used by mzc can be adjusted via command line flags.

1.2 mzc Is Not...

mzc does not produce stand-alone executables from Scheme source code. The compiler’s output must always
be loaded into MzScheme (or MrEd or DrScheme). See also §4.

mzc does not translate Scheme code into similar C code. Native code compilation produces C code that
relies on MzScheme to provide run-time support, which includes memory management, closure creation,
procedure application, and primitive operations.

1.3 Running mzc

Under Unix and Windows, run mzc from a shell, passing in flags and arguments on the command line.

Under MacOS, double-click on the mzc launcher application with the Command key pressed, then provide
arguments in the command line dialog that appears. (Close the MzScheme application first if it is already
running, since mzc is itself a MzScheme-based application.) If the Command key is not pressed while mzc is
started, the command-line dialog will not appear. If a file is dragged onto the mzc icon, then the command-
line will contain the file’s path; this is useful for compiling a Scheme file directly to an extension. If a file
is dragged onto the mzc icon, additional command-line argument can be provided by holding down the
Command key, but the arguments will go after the file name, which is almost never useful (since the order
of command-line arguments is important).

In this manual, each example command line is shown as follows:

mzc --extension --prefix macros.ss file.ss

To run this example under Unix or Windows, type the command line into a shell (replacing mzc with the
path to mzc on your system, if necessary). Under MacOS, launch mzc with the Command key pressed, and
enter everything after mzc into the dialog that appears.

Simple on-line help is available for mzc’s command-line arguments by running mzc with the -h or --help

flag.

1.4 Macros and Signatures in mzc

When mzc compiles a Scheme file, macros and signatures are expanded away. Macro and signature definitions
in a source file are evaluated (so the macros and signatures can be used later in the source file), but the
definitions are not preserved, so loading the compiled file will not redefine the macros or signatures.

Elaboration-time expressions (i.e., begin-elaboration-time and begin-construction-time expressions)
are also evaluated by compilation; the S-expression result of an elaboration-time expression is compiled in
place of the elaboration-time expression.

2

1. About mzc 1.5. Native Code Optimization from mzc

1.5 Native Code Optimization from mzc

Compiling a program to native code with mzc can provide significant speedups compared to interpreting
byte codes (or running the program directly from source code) for certain kinds of programs. The speedup
from native code compilation is typically due to two optimizations:

• Loop Optimization — When mzc statically detects a tail-recursive loop, it compiles the Scheme
loop to a C loop that has no interpreter overhead. For example, given the program

(letrec ([odd (lambda (x)

(if (zero? x)

#f

(even (sub1 x))))]

[even (lambda (x)

(if (zero? x)

�(odd (sub1 x))))])

(odd 40000))

mzc can detect the odd–even loop and produce native code that runs twice as fast as byte code
interpretation. In contrast, given a similar program using top-level definitions,

(define (odd x) ...)

(define (even x) ...)

the compiler cannot assume an odd–even loop, because the global variables odd and even can be
redefined at any time. Note that defined variables in a unit module are lexically scoped like letrec

variables, and unit definitions therefore permit loop optimizations.1

• Primitive Inlining — When mzc encounters the application of certain primitives, it inlines the
primitive procedure. However, the compiler must be certain that a variable reference will resolve
to a primitive procedure when the code is loaded into MzScheme. In the preceding example, the
compiler cannot inline the application of sub1 because the global variable sub1 might be redefined. To
encourage the inlining of primitives—which produces native code that runs 30 times faster than byte
code interpretation for the preceding example—the programmer has three options:

– Use #% keywords — If sub1 is replaced in the preceding example by #%sub1, add1 is replaced
by #%add1, and zero? is replaced by #%zero?, then the compiler inlines each of the primitives.

– Use the --prim flag — The --prim flag alters the semantics of the langugage for compilation
such that every reference to a global variable that is built into MzScheme is converted to its
keyword form. Thus, specifying the --prim flag causes mzc to automatically convert sub1 to
#%sub1, etc.

– Use units (MzScheme modules) — If the original example is encapsulated in a unit, then
each primitive name, such as sub1, is guranteed to access the primitive procedure (assuming that
the name is not lexically bound). The “unitized” version of the preceding program follows:

(define oe-unit

(unit (import) (export) ; import nothing, export nothing

(letrec ([odd (lambda (x)

(if (zero? x)

#f

(even (sub1 x))))]

1The compiler cannot always prove that unit definitions have been evaluated before the corresponding variable is used in an
expression. Use the -v or --verbose flag to check whether mzc reports a “last known unit binding” warning when compiling
a unit expression, which indicates that definitions after a particular line in the source file might be referenced before they are
defined.

3

1.5. Native Code Optimization from mzc 1. About mzc

[even (lambda (x)

(if (zero? x)

�(odd (sub1 x))))])

(odd 40000))))

(invoke-unit oe-unit) ; run the program

Programs that permit these optimizations also to encourage a host of other optimizations, such as procedure
inlining (for programmer-defined procedures) and static closure detection. In general, unit-based programs
provide the most opportunities for optimization.

Native code compilation rarely produces significant speedup for programs that are not loop-intensive, pro-
grams that are heavily object-oriented, programs that are allocation-intensive, or programs that exploit
built-in procedures (e.g., list operations, regular expression matching, or file manipulations) to perform most
of the program’s work.

4

2. Compiling Individual Files with mzc

To compile an individual file with mzc, provide the file name as the command line argument to mzc. To
compile to byte code, use the -z or --zo flag; to compile to native code, use the -e or --extension flag. If
no compilation mode flag is specified, --extension is assumed.

The input file must have a file extension that designates it as a Scheme file, either .ss or .scm. The output
file will have the same base name and same directory (by default) as the input file, but with an extension
appropriate to the type of the output file (either .zo, .dll, or .so).

Example:

mzc --extension file.ss

Under Windows, the above command reads file.ss from the current directory and produces file.dll in the
current directory.

Multiple Scheme files can be specified for compilation at once. A separate compiled file is produced for each
Scheme file. By default, each compiled file is placed in the directory containing the corresponding input file.
When multiple files are compiled at once, macros defined in a file are visible in the files that are compiled
afterwards.

2.1 Prefixing Compilation with Macro and Signature Definitions

A load or require-library expression in a source file is compiled—but not evaluated!—as the source file is
compiled. Even if the load or require-library expression loads macro or signature definitions, these will
not be loaded as the file is compiled. To fix this problem for macro- and signature-defining files and libraries,
wrap each load or require-library expression with (begin-elaboration-time ...), which directs the
compiler to evaluate the wrapped expression at compilation time.

For example, suppose that x.ss contains the following Scheme code:

(require-library "macro.ss")

(define f (opt-lambda () 10))

If x.ss is loaded directly into MzScheme, f is defined as expected. But if x.ss is compiled to x.so using mzc,
and then x.so is loaded into MzScheme, the result is an “expected procedure, given #<macro>” exception.
The problem is that macro.ss, which defines tha opt-lambda macro, is not loaded until run-time, when
x.so is loaded. As a result, the (opt-lambda () 10) expression is compiled as a procedure application.
To correct the problem, we wrap the require-library expression with begin-elaboration-time, which
instructs mzc to load the library at compile-time:

(begin-elaboration-time (require-library "macro.ss"))

(define f (opt-lambda () 10))

5

2.2. Autodetecting Compiled Files for Loading 2. Compiling Individual Files with mzc

mzc’s -p or --prefix flag takes a file and loads it at elaboration time before compiling the source files
specified on the command line. This is useful for installing a set of macros or signatures that the source files
expect to be present already.

2.2 Autodetecting Compiled Files for Loading

When MzScheme’s load/use-compiled, load-relative, or require-library procedure is used to load a
file, MzScheme automatically detects an alternate byte code and/or native code compiled file that resides
near the requested file. Byte code files are found in a compiled subdirectory in the directory of the requested
file. Native code files are found in (build-path dir "compiled" "native" (system-library-subpath))

where dir is the directory of the requested file. A byte code or native code file is used in place of the rquested
file only if its modification date is later than the requested file. If both byte code and native code files are
found, the native code file is loaded.

Example:

mzc --extension --destination compiled native i386-linux file.ss

Under Linux, the above command compiles file.ss in the current directory and produces
compiled/native/i386-linux/file.so. Evaluating (load/use-compiled "file.ss") in MzScheme will then
load compiled/native/i386-linux/file.so instead of file.ss. If file.ss is changed without recreating file.so,
then load/use-compiled loads file.ss, because file.so is out-of-date.

2.3 Compiling Multiple Files to a Single Native Code Library

When the -o or --object flag is provided to mzc, .kp and .o/.obj files are produced instead of a loadable
library. The .o/.obj files contain the native code for a single source file. The .kp files contain information
used for global optimizations.

Multiple .kp and .o/.obj files are linked into a single library using mzc with the -l or --link-extension

flag. All of the .kp and .o/.obj files to be linked together are provided on the command line to mzc. The
output library is always named loader.so or loader.dll.

Example:

mzc --object file1.ss
mzc --object file2.ss
mzc --link-extension file1.kp file1.o file2.kp file2.o

Under Unix, the above commands produce a loader.so library that encapsulates both file1.ss and file2.ss.

Loading loader into MzScheme is not quite the same as loading all of the Source files that are encapsulated
by loader. The return value from (load-extension " loader.so") is a procedure that takes a symbol or
#t. If a symbol is provided and it is the same as the base name of a source file (i.e., the name without a
path or file extension) encapsulated by loader, then a thunk is returned. Applying this thunk has the same
effect as loading the corresponding source file. If a symbol is not recognized by the loader procedure, #f
is returned instead of a thunk. If #t is provided, a thunk is returned that “loads” all of the files (using the
order of the .o/.obj files provided to mzc) and returns the result from loading the last one.

The loader procedure can be called any number of times to obtain thunks, and each thunk can be applied
any number of times (where each application has the same effect as loading the source file again). Evaluating
(load-extension " loader.so") multiple times returns an equivalent loader procedure each time.

6

2. Compiling Individual Files with mzc 2.3. Compiling Multiple Files to a Single Native Code Library

Given the loader.so constructed by the example commands above, the following Scheme expressions have
the same effect as loading file1.ss and file2.ss:

(((load-extension " loader.so") ’file1))

(((load-extension " loader.so") ’file2))

or, equivalently:

(((load-extension " loader.so") #t))

The special loader convention is recognized by MzScheme’s load/use-compiled, load-relative, and
require-library procedures. MzScheme automatically detects loader.so or loader.dll in the same di-
rectory as individual native code files (see §2.2). If both an individual native code file and a loader are
available, the loader file is used.

7

3. Compiling Collections with mzc

A collection is a group of files that conform to MzScheme’s library collection system; see §15 in PLT
MzScheme: Language Manual for details.

The --collection-zo and --collection-extension flags direct mzc to compile a whole collection.
The --collection-zo flag produces individual .zo files for each library in the collection. The
--collection-extension flag produces a single loader library for the collection.

The (sub-)collection to compile is specified on the command line for mzc. The specified collection must
contain an info.ss library that provides information about how to compile the collection. The result of
loading the info.ss library must be a procedure that takes two arguments: a symbol and a failure thunk.
The symbol specifies a requested field, i.e., the kind of information is requested. If the requested information
is available, then the info.ss procedure returns that information; otherwise, it must call the failure thunk.

For example, the following procedure is in the info.ss library of the help collection:

(lambda (request failure-thunk)

(case request

[(name) "Help"]

[(compile-prefix) ‘(begin

(require-library "sig.ss" "mred")

(require-library "sig.ss" "help"))]

[(compile-omit-files) (list "sig.ss" "manuals.ss")]

[(compile-elaboration-zos) (list "sig.ss")]

[(mred-launcher-libraries) (list "help.ss")]

[(mred-launcher-names) (list "Help Desk")]

[else (failure-thunk)]))

This example info.ss procedure provides information for six fields: ’name, ’compile-prefix, etc.

The info.ss system is standardized by convention. A collection’s info.ss file can be used by several clients
(including mzc, Setup PLT, and Help Desk), each requesting a different set of fields.

To compile a collection, mzc extracts info.ss information for the following fields:

• ’name — the name of the collection as a string.

• ’compile-prefix — an S-expression to use as the elaboration-time prefix expression for compiling
all files in the collection. This information is optional (i.e., the failure thunk can be called when this
symbol is provided to the info.ss procedure), but it is recommended beacuse it indicates to external
tools that the collection can be compiled. (Use ’(void) if no prefix is needed.)

• ’compile-omit-files — a list of library filenames (without paths); all Scheme files in the collection
are compiled except for the files in this list. If a library contains elaboration time expressions (e.g.,
macros or signatures) that are not local to the file, then the library file should be included in this list.
This information is optional.

8

3. Compiling Collections with mzc 3.1. Macro and Elaboration-Time Libraries

• ’compile-zo-omit-files — a list of library filenames that should not be compiled to byte code (but
possibly to native code). This information is optional.

• ’compile-extension-omit-files — a list of library filenames that should not be compiled to native
code (but possibly to byte code). This information is optional.

• ’compile-subcollections— a list of sub-collection sub-paths, where each sub-path is a list of strings;
each full sub-collection path is formed by appending the sub-path to the path of the collection being
compiled. Each sub-collection is compiled in the same way as the current collection, using the info.ss
library of the sub-collection. This information is optional.

When compiling a collection to byte code files, mzc automatically creates a compiled directory in the
collection directory and puts .zo files there.

When compiling a collection to native code, mzc automatically created a compiled directory in the collection
directory, a native directory in that compiled directory, and a platform-specific directory in native using
the directory name returned by system-library-subpath. Intermediate .c and .kp files are kept in native.
The platform-specific directory gets intermediate .o/.obj files and the final loader.so or loader.dll.

To compile a collection, mzc compiles only the library files that have changed since the last compilation.
This form of dependency-checking is usually too weak. For example, when a signature file changes, mzc does
not automatically recompile all files that rely on the signatures. In this case, delete the compiled directory
when a macro or signature file changes to ensure that the collection is compiled correctly.

3.1 Macro and Elaboration-Time Libraries

Libraries that define macros or signatures cannot be compiled to native code. These libraries can be “com-
piled” to byte code by listing them in a special info.ss field:

• ’compile-elaboration-zos — a list of library filenames (without paths); the library files in this
list are compiled with macros, signatures, and elaboration expressions both evaluated and preserved
in the .zo file. (There is one exeception: expressions using #%begin-elaboration-time instead of
begin-elaboration-time are not preserved.)

The files in the list are compiled from left to right, all in the same namespace. If a file does not need
to be compiled, it is nevertheless loaded before subsequent files in the list are compiled, so macros and
signatures defined by the file are available for later files.

• ’compile-elaboration-zos-prefix— an S-expression to use as an elaboration-time prefix expression
for compiling the files returned for ’compile-elaboration-zos.

9

4. Building a Stand-alone Native Code Executable

Since native code produced by mzc relies on MzScheme to provide all run-time support, there is no way
to use mzc to obtain small stand-alone native code executables. However, the source code to MzScheme is
available, so it is possible to produce a large stand-alone executable that contains an embedded copy of the
MzScheme (or MrEd) run-time engine. This process requires using a C compiler and linker directly.

To build an executable with an embedded MzScheme engine:

• Download the source code from http://www.cs.rice.edu/CS/PLT/packages/mzscheme and compile
MzScheme.

• Recompile MzScheme’s main.c with the preprocessor symbol STANDALONE WITH EMBEDDED EXTENSION

defined. Under Unix, the Makefile distributed with MzScheme provides a target ee-main that performs
this step.

The preprocessor symbol causes MzScheme’s startup code to skip command line parsing, the user’s
initialization file, and the read-eval-print loop. Instead, the C function scheme initialize is
called, which is the entry point into mzc-compiled Scheme code. After compiling main.c with
STANDALONE WITH EMBEDDED EXTENSION defined, MzScheme will not link by itself; it must be linked
with objects produced by mzc.

• Compile each Scheme source file in the program with mzc’s -o or --object flag and the --embedded

flag, producing a set of .kp files and object (.o or .obj) files.

• After each Scheme file is compiled, run mzc with the -g or --glue-extension and the --embedded

flag, providing all of the .kp files and object files on the command line. (Put the object files in the
order that they should be “loaded.”) The -g or --link-glue step produces a new object file, loader.o
or loader.obj.

Each of the Scheme source files in the program must have a different base name (i.e., the file name
without its directory path or extension), otherwise loader cannot distinguish them. The files need not
reside in the same directory.

• Link all of the mzc-created object files with the MzScheme implementation (having compiled main.c
with STANDALONE WITH EMBEDDED EXTENSION defined) to produce a stand-alone executable.

Under Unix, the Makefile distributed with MzScheme provides a target ee-app that performs the final
linking step. To use the target, call mzmake with a definition for the makefile macro EEAPP to the
output file name, and a definition for the makefile macro EEOBJECTS to to the list of mzc-created
object files. (The example below demonstrates how to define makefile variables on the command line.)

For example, under Unix, to create a standalone executable MyApp that is equivalent to

mzscheme -mv -f file1.ss -f file2.ss

unpack the MzScheme source code and perform the following steps:

10

4. Building a Stand-alone Native Code Executable

cd plt/src/mzscheme
./mzmake
./mzmake ee-main
mzc --object --embedded file1.ss
mzc --object --embedded file2.ss
mzc --glue-extension --embedded file1.kp file1.o file2.kp file2.o
./mzmake EEAPP=MyApp EEOBJECTS=”file1.o file2.o loader.o”

To produce an executable that embeds the MrEd engine, the procedure is essentially the same. MrEd is
compiled somewhat differently from MzScheme (e.g., there’s no mzmake), and MrEd’s main file is mred.cxx
instead of main.c. See the compilation notes in the MrEd source code distribution for more information.

11

Index

--collection-extension, 8
--collection-zo, 8
--embedded, 10
--extension, 5
--glue-extension, 10
--help, 2
--link-extension, 6
--link-glue, 10
--object, 6, 10
--prefix, 6
--prim, 3
--zo, 5
-e, 5
-g, 10
-h, 2
-l, 6
-o, 6, 10
-p, 6
-z, 5
.dll, 1
.scm, 5
.so, 1
.ss, 5
.zo, 1
loader.dll, 6
loader.so, 6

begin-construction-time, 2
begin-elaboration-time, 2
byte code, 1

C compiler, 1
command line flags, 2
compiling

collections, 8
files, 5
multiple files, 6

help, 2

info.ss, 8

loading compiled files, 1, 6

macros, 2, 5
mzc, 1

native code, 1

running mzc, 2

scheme initialize, 10
signatures, 2, 5
stand-alone executables, 2, 10
STANDALONE WITH EMBEDDED EXTENSION, 10

12

