
PLT Miscellaneous Libraries: Reference Manual

PLT
scheme@cs.rice.edu

Version 103
August 2000

Rice University

Copyright notice

Copyright c©1998-99 PLT, Rice University

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

Send us your Web links

If you use any parts or all of the DrScheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize
the fact on some Web page, we would like to link to that page. Please drop us a line at scheme@cs.rice.edu.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Contents

1 Miscellaneous Libraries 1

2 Viewport Graphics 2

2.1 Basic Commands . 2

2.2 Position Operations . 3

2.3 Color Operations . 3

2.4 Draw, Clear and Flip Operations . 4

2.4.1 Viewports . 4

2.4.2 Pixels . 4

2.4.3 Lines . 4

2.4.4 Rectangles . 5

2.4.5 Ellipses . 5

2.4.6 Polygons . 6

2.4.7 Strings . 6

2.4.8 Pixmaps . 6

2.5 Miscellaneous Operations . 7

2.6 An Example . 7

2.7 A More Complicated Example . 7

2.8 Protecting Graphics Operations . 8

2.9 Mouse Operations . 8

2.10 Keyboard Operations . 9

3 Turtles 10

Index 13

i

CONTENTS CONTENTS

ii

1. Miscellaneous Libraries

This manual documents miscellaneous libraries distributed with DrScheme.

1

2. Viewport Graphics

The viewport graphics library is a relatively simple toolbox of graphics commands. The library is not very
powerful; it is intended as a simplified alternative to MrEd’s full graphical toolbox.

The graphics library originated as SIXlib, a library of X Windows commands available within Chez Scheme
at Rice University. The functionality of that library has been reproduced (with backward compatibility) in
this version.

To use the viewport graphics library, load it via require-library:

(require-library "graphics.ss" "graphics")

To use a unitized version of the graphics library (see units, §7 in PLT MzScheme: Language Manual for
more information on units), load the signatures with:

(require-library "graphicss.ss" "graphics")

The result of this expression:

(require-library "graphicr.ss" "graphics")

is a unit that imports mzlib:file^ and mred^. See mzlib’s libraries and collections, §15 in PLT MzScheme:
Language Manual for more information about units matching mzlib:file^ and the mred manual) for infor-
mation on mred^.

Also, this expression:

(require-library "graphicspr.ss" "graphics")

2.1 Basic Commands

• (open-graphics)
Initializes the library’s graphics routines. It must be called before any other graphics operations.

• (close-graphics)
Closes all of the windows and until open-graphics is called again, no graphics routines will work.

• (open-viewport name horiz vert)
Takes a string name and integers horiz and vert and creates a new window called name. The window
is horiz pixels wide and vert pixels high. For backward compatibility, a single posn value (see below)
can be submitted in the place of horiz and vert . open-viewport returns a viewport descriptor.

• (open-pixmap name horiz vert)
Like open-viewport, but the resulting viewport is not displayed on the screen. Offscreen pixmaps

2

2. Viewport Graphics 2.2. Position Operations

are useful for executing a sequence of drawing commands and displaying them all at once with
copy-viewport.

• (close-viewport viewport)
Takes a viewport descriptor. It removes the viewport from the screen and makes subsequent operations
dealing with the viewport illegal.

2.2 Position Operations

A position is a pixel location within a viewport. The upper-left corner is pixel (0, 0) and the orientation of
the position coordinates within a viewport is as follows:

(0, 0) � ✲ increasing x

❄
increasing y

• (make-posn x y)
Takes two integers and returns a position with the specified x and y coordinates.

• (posn-x p), (posn-y p)
Return the x and y coordinates, respectively, of a position.

• (posn? v)
Reports whether v is a position.

• ((get-pixel viewport) p)
Returns the color of the pixel at position p in viewport ; 0 denotes white and 1 denotes not white.

• ((get-color-pixel viewport) p)
Returns an RGB value for color of the pixel at position p in viewport .

• ((test-pixel viewport) color)
Returns the color that will actually be used if color is used to draw.

2.3 Color Operations

A color can be represented in three ways: as a color index (an integer in 0 to 299, inclusive), as a color name
string, or as a rgb value. All drawing functions which take a color argument accept colors in any form. An
rgb value is assigned to an index with change-color.

• (make-rgb red green blue)
Takes three values in the range 0 (dark) to 1 (bright) and returns an rgb (a color).

• (rgb-red color)
(rgb-blue color)
(rgb-green color)
Return the red, green, and blue components, respectively, of a color.

• (rgb? v)
Reports whether v is a color.

• (change-color index rgb)
Changes the color at index in the color table to the color specified in rgb. Only the first twenty-one
indices are initialized; a color index should not be used until it has been initialized.

3

2.4. Draw, Clear and Flip Operations 2. Viewport Graphics

• (default-display-is-color?)
Returns #t if the default display screen for viewports is in color or #f otherwise.

2.4 Draw, Clear and Flip Operations

These are the basic graphics operations for drawing to a viewport. Each function takes a viewport as its
argument and returns a function operating within that viewport. Further arguments, if any, are curried.
For example, (draw-line viewport) returns a function, that can then be applied to the proper arguments
to draw a line in the viewport corresponding to viewport descriptor viewport . An example follows.

Where “draw-” commands make pixels black, “clear-” commands make them white.

Where “draw-” commands make pixels black, a “flip-” commands cause them to change.

2.4.1 Viewports

• ((draw-viewport viewport) color)
Takes a viewport descriptor. It returns a function that colors the entire contents of viewport . The
optional color argument defaults to black.

• ((clear-viewport viewport))
Takes a viewport descriptor. It returns a function that whitens the entire contents of viewport .

• ((flip-viewport viewport))
Takes a viewport descriptor. It returns a function that flips the contents of viewport .

• (copy-viewport source-viewport destination-viewport)
Takes two viewport descriptors. It copies the source-viewport into the destination-viewport .

2.4.2 Pixels

• ((draw-pixel viewport) p color)
Takes a viewport descriptor. It returns a function that draws a pixel in viewport at the specified
position. The optional color argument defaults to black.

• ((clear-pixel viewport) p)
Takes a viewport descriptor. It returns a function that clears a pixel in viewport at the specified
position.

• ((flip-pixel viewport) p)
Takes a viewport descriptor. It returns a function that flips a pixel in viewport at the specified position.

2.4.3 Lines

• ((draw-line viewport) p1 p2 color)
Takes a viewport descriptor. It returns a function that draws a line in the viewport connecting positions
p1 and p2 . The optional color argument defaults to black.

• ((clear-line viewport) p1 p2)
Takes a viewport descriptor. It returns a function that clears a line in viewport connecting positions
p1 and p2 .

• ((flip-line viewport) p1 p2)
Takes a viewport descriptor. It returns a function that flips a line in viewport connecting positions p1
and p2 .

4

2. Viewport Graphics 2.4. Draw, Clear and Flip Operations

2.4.4 Rectangles

• ((draw-rectangle viewport) posn width height color)
Takes a viewport descriptor. It returns a function that draws a rectangle border in the viewport with
the top-left of the rectangle at the position posn and with sides width across and height tall. The
optional color argument defaults to black.

• ((clear-rectangle viewport) posn width height)
Takes a viewport descriptor. It returns a function that clears a rectangle border in the viewport with
the top-left of the rectangle at the position posn and with sides width across and height tall. The
optional color argument defaults to black.

• ((flip-rectangle viewport) posn width height color)
Takes a viewport descriptor. It returns a function that flips a rectangle border in the viewport with the
top-left of the rectangle at the position posn and with sides width across and height tall. The optional
color argument defaults to black.

• ((draw-solid-rectangle viewport) posn width height color)
Takes a viewport descriptor. It returns a function that paints a solid rectangle in the viewport with the
top-left of the rectangle at the position posn and with sides width across and height tall. The optional
color argument defaults to black.

• ((clear-solid-rectangle viewport) posn width height)
Takes a viewport descriptor. It returns a function that erases a solid rectangle in the viewport with the
top-left of the rectangle at the position posn and with sides width across and height tall. The optional
color argument defaults to black.

• ((flip-solid-rectangle viewport) posn width height color)
Takes a viewport descriptor. It returns a function that flips a solid rectangle in the viewport with the
top-left of the rectangle at the position posn and with sides width across and height tall. The optional
color argument defaults to black.

2.4.5 Ellipses

• ((draw-ellipse viewport) posn width height color)
Takes a viewport descriptor. It returns a function that draws an ellipse border in the viewport . The
posn, width, and height arguments are as in draw-rectangle; the ellipse is inscribed within the specified
rectangle. The optional color argument defaults to black.

• ((clear-ellipse viewport) posn width height)
Takes a viewport descriptor. It returns a function that clears an ellipse border in the viewport . The
posn, width, and height arguments are as in clear-rectangle; the ellipse is inscribed within the
specified rectangle. The optional color argument defaults to black.

• ((flip-ellipse viewport) posn width height color)
Takes a viewport descriptor. It returns a function that flips an ellipse border in the viewport . The posn,
width, and height arguments are as in flip-rectangle; the ellipse is inscribed within the specified
rectangle. The optional color argument defaults to black.

• ((draw-solid-ellipse viewport) posn width height color)
Takes a viewport descriptor. It returns a function that paints a solid ellipse in the viewport . The posn,
width, and height arguments are as in draw-rectangle; the ellipse is inscribed within the specified
rectangle. The optional color argument defaults to black.

• ((clear-solid-ellipse viewport) posn width height)
Takes a viewport descriptor. It returns a function that erases a solid ellipse in the viewport . The

5

2.4. Draw, Clear and Flip Operations 2. Viewport Graphics

posn, width, and height arguments are as in clear-rectangle; the ellispse is be inscribed within the
specified rectangle. The optional color argument defaults to black.

• ((flip-solid-ellipse viewport) posn width height color)
Takes a viewport descriptor. It returns a function that flips a solid ellipse in the viewport . The posn,
width, and height arguments are as in flip-rectangle; the ellipse is be inscribed within the specified
rectangle. The optional color argument defaults to black.

2.4.6 Polygons

• ((draw-polygon viewport) posn-list posn color)
Takes a viewport descriptor. It returns a function that draws a polygon border in the viewport using
posn-list for the polygon vertices and posn as an offset for the polygon. The optional color argument
defaults to black.

• ((clear-polygon viewport) posn-list posn)
Takes a viewport descriptor. It returns a function that erases a polygon border in the viewport using
posn-list for the polygon vertices and posn as an offset for the polygon.

• ((flip-polygon viewport) posn-list posn)
Takes a viewport descriptor. It returns a function that flips a polygon border in the viewport using
posn-list for the polygon vertices and posn as an offset for the polygon.

• ((draw-solid-polygon viewport) posn-list posn color)
Takes a viewport descriptor. It returns a function that paints a solid polygon in the viewport using
posn-list for the polygon vertices and posn as an offset for the polygon. The optional color argument
defaults to black.

• ((clear-solid-polygon viewport) posn-list posn)
Takes a viewport descriptor. It returns a function that erases a solid polygon in the viewport using
posn-list for the polygon vertices and posn as an offset for the polygon.

• ((flip-solid-polygon viewport) posn-list posn)
Takes a viewport descriptor. It returns a function that flips a solid polygon in the viewport using
posn-list for the polygon vertices and posn as an offset for the polygon.

2.4.7 Strings

• ((draw-string viewport) p string color)
Takes a viewport descriptor. It returns a function that draws a string at a specified location in the
viewport . The lower left of the string begins at p. The optional color argument defaults to black.

• ((clear-string viewport) p string)
Takes a viewport descriptor. It returns a function that clears a string at a specified location in viewport .
The lower left of the string begins at p.

• ((flip-string viewport) p string)
Takes a viewport descriptor. It returns a function that flips a string at a specified location in viewport .
The lower left of the string begins at p.

2.4.8 Pixmaps

• (((draw-pixmap-posn filename type) viewport) posn color)

Draws a pixmap into viewport with its upper left corner at position posn. type is a symbol, one of
’gif, ’xbm, ’xpm, ’bmp, ’pict or ’unknown, and defaults to ’unknown. If type is ’unknown then the

6

2. Viewport Graphics 2.5. Miscellaneous Operations

content of the file is examined to determine the type. All formats are supported on all platforms except
’pict which is only supported under MacOS.

The argument color is only used when the pixmap is black and white. In that case, the color is used
instead of black in the drawn image.

• ((draw-pixmap viewport) filename p color)
Draws a pixmap into viewport w with its upper left corner at position p. If color is not #f it is passed
to set-viewport-pen with the viewport. It defaults to #f.

2.5 Miscellaneous Operations

• ((get-string-size viewport) string)
Takes a viewport descriptor. It returns a function that returns the size of a string as a list of two
numbers: the width and height.

• (viewport->snip viewport)
Takes a viewport descriptor. It returns an object that can be inserted into an editor buffer to display
the current image in the viewport. (Subsequent drawing to the viewport does not affect the snip’s
image.)

2.6 An Example
; nothing appears to happen, but the library is initialized...

> (open-graphics)

; viewport appears
> (define w (open-viewport "practice" 300 300))

; line appears
> ((draw-line w) (make-posn 30 30) (make-posn 100 100))

; viewport disappears
> (close-viewport w)

; again, nothing appears to happen
; unclosed viewports (if any) would disappear

> (close-graphics)

2.7 A More Complicated Example

The use of multiple viewports, viewport descriptors, drawing operations for multiple viewports is as easy as
the use of a single viewport:
> (open-graphics)
> (let* (; w1 and w2 are viewport descriptors for different windows

[w1 (open-viewport "viewport 1" 300 300)]
[w2 (open-viewport "viewport 2" 200 500)]

; d1 and d2 are functions that draw lines in different viewports
[d1 (draw-line w1)]
[d2 (draw-line w2)])

; draws a line in viewport labeled "viewport 1"

7

2.8. Protecting Graphics Operations 2. Viewport Graphics

(d1 (make-posn 100 5) (make-posn 5 100))

; draws a line in viewport labeled "viewport 2"
(d2 (make-posn 100 100) (make-posn 101 400)))

; we no longer have access to viewports 1 and 2,
; since their descriptors did not escape the let.

> (close-graphics) ; removes the viewports

2.8 Protecting Graphics Operations

To guarantee the proper closing of viewports in cases of errors, especially when a program manages several
viewports simultaneously, a programmer should use dynamic-wind:
> (let ([w (open-viewport "hello" 100 100)])

(dynamic-wind
; what we want to happen first: nothing
void

; the main program (errors constrained to this piece)
(lambda () (draw-pixel 13)) ; an error

; what we would like to happen, whether the main program finishes
; normally or not
(lambda () (close-viewport w))))

2.9 Mouse Operations

The graphics library contains functions that determine where the mouse is, if there are any clicks, etc. The
functions get-mouse-click and ready-mouse-click first return a “mouse-click descriptor,” and then other
functions take the descriptor and return the mouse’s position, which button was pushed, etc. Mouse clicks
are buffered and returned in the same order in which they occurred. Thus, the descriptors returned by
get-mouse-click and ready-mouse-click may be from clicks that occurred long before these functions
were called.

• (get-mouse-click viewport)
Takes a viewport descriptor and returns a mouse click descriptor. It returns the next mouse click in
the viewport , waiting for a click if necessary.

• (ready-mouse-click viewport)
Takes a viewport descriptor and returns either a mouse click descriptor, or else #f if none is available.
Unlike the previous function, ready-mouse-click returns immediately.

• (ready-mouse-release viewport)
Takes a viewport descriptor and returns either a click descriptor from a mouse-release (button-up)
event, or else #f if none is available.

• (query-mouse-posn viewport)
Takes a viewport descriptor and returns either the position of the mouse cursor within the viewport ,
or else #f if the cursor is currently outside the viewport .

• (mouse-click-posn mouse-click)
Takes a mouse click descriptor and returns the position of the pixel where the click occurred.

8

2. Viewport Graphics 2.10. Keyboard Operations

• (left-mouse-click? mouse-click)
Takes a mouse click descriptor and returns #t if the click occurred with the left mouse button, or else
#f.

• (middle-mouse-click? mouse-click)
Similar to left-mouse-click?.

• (right-mouse-click? mouse-click)
Similar to left-mouse-click?.

• (viewport-flush-input viewport)
As noted above, mouse clicks are buffered. viewport-flush-input takes a viewport descriptor and
empties the input buffer of mouse and keyboard events. This action is useful in some real-time appli-
cations.

2.10 Keyboard Operations

The graphics library contains functions that report key presses from the keyboard. The functions
get-key-press and ready-key-press return a “key-press descriptor,” and then key-value takes the de-
scriptor and returns a character or symbol (usually a character) representing the key that was pressed. Key
presses are buffered and returned in the same order in which they occurred. Thus, the descriptors returned
by get-key-press and ready-key-press may be from presses that occurred long before these functions
were called.

• (get-key-press viewport)
Takes a viewport descriptor and returns a key press descriptor. It returns the next key press in the
viewport , waiting for a click if necessary.

• (ready-key-press viewport)
Takes a viewport descriptor and returns either a key press descriptor, or else #f if none is available.
Unlike the previous function, ready-key-press returns immediately.

• (key-value key-press)
Takes a key press descriptor and returns a character or special symbol for the key that was pressed.
For example, the Enter key generates #\return, and the up-arrow key generates ’up. For a complete
list of possible return values, see PLT MrEd: Graphical Toolbox Manual .

• (viewport-flush-input viewport)
As noted above, key presses are buffered. viewport-flush-input takes a viewport descriptor and
empties the input buffer of mouse and keyboard events. This action is useful in some real-time appli-
cations.

9

3. Turtles

The turtles library is built into DrScheme’s Advanced language. In the MrEd language, load turtles with
(require-library "turtle.ss" "graphics").

The following are the turtle functions:

• (turtles b) shows and hides the turtles window based on the boolean b. The parameter b is optional;
if it is left out, it toggles the state of the turtles.

• (move n) moves the turtle n pixels.

• (draw n) moves the turtle n pixels and draws a line on that path.

• (erase n) moves the turtle n pixels and erases along that path.

• (move-offset h v), (draw-offset h v), (erase-offset h v) are just like move, draw and erase,
except they take a horizontal and vertical offset from the turtle’s current position.

• (turn theta) turns the turtle theta degrees counter-clockwise.

• (turn/radians theta) turns the turtle theta radians counter-clockwise.

• (clear) erases the turtles window.

• (save-turtle-bitmap filename filetype) saves the window to a bitmap file. The supported file
types are:

– ’xbm — save an X bitmap file
– ’xpm — save an XPM bitmap file
– ’pict — save a PICT bitmap file (MacOS)

Turtles also defines these syntactic forms:

• (split E) spawns a new turtle where the turtle is currently located. In order to distinguish the two
turtles, only the new one evaluates the expression E. For example, if you start with a fresh turtle-
window and type:

(split (turn/radians (/ pi 2)))

you will have two turtles, pointing at right angles to each other. To see that, try this:
(draw 100)

You will see two lines. Now, if you evaluate those two expression again, you will have four turtles, etc

• (split* E ...) is similar to (split E ...), except it creates as many turtles as there are expressions
and each turtles does one of the expression. For example, to create two turtles, one pointing at π/2
and one at π/3, evaluate this:

(split* (turn/radians (/ pi 3)) (turn/radians (/ pi 2)))

10

3. Turtles

• (tprompt E...) provides a way to limit the splitting of the turtles. Before the expression E is run,
the state of the turtles (how many, their positions and headings) is ”checkpointed,” then E is evaluated
and the state of the turtles is restored, but all drawing that may have occurred during execution of E
remains.

For example, if you do this:
(tprompt (draw 100))

the turtle will move forward 100 pixels, draw a line there and then be immediately put back in it’s
original position. Also, if you do this:

(tprompt (split (turn/radians (/ pi 2))))

the turtle will split into two turtles, one will turn 90 degrees and then the turtles will be put back into
their original state – as if the split never took place.

The fern functions below demonstrate more advanced use of tprompt.

In the file “turex.ss” in the “graphics” library of your PLT distribution, you will find these functions and
values defined, as example turtle programs. (The file is located in the “graphics” subdirectory of the “collects”
subdirectory of the “mred” subdirectory of the PLT distribution).

• (regular-poly sides radius) draws a regular poly centered at the turtle with sides sides and with
radius radius.

• (regular-polys sides s) draws s regular polys spaced evenly outwards with sides sides.

• (radial-turtles n) places 2n turtles spaced evenly pointing radially outward

• (spaced-turtles n) places 2n turtles pointing in the same direction as the original turtle evenly
spaced in a line.

• (spokes) draws some spokes, using radial-turtles and spaced-turtles

• (spyro-gyra) draws a spyro-grya reminiscent shape

• (neato) as the name says. . .

• (graphics-bexam) draws a fractal that came up on an exam I took.

• serp-size a constant which is a good size for the serp procedures

• (serp serp-size), (serp-nosplit serp-size) draws the Serpinski triangle in two different ways,
the first using split heavily. After running the first one, try executing (draw 10).

• koch-size a constant which is a good size for the koch procedures

• (koch-split koch-size),(koch-draw koch-size) draws the same koch snowflake in two different
ways.

• (lorenz a b c) watch the lorenz ”butterfly” attractor with initial values a b and c.

• (lorenz1) a good setting for the lorenz attractor

• (peano1 peano-size)

This will draw the Peano space-filling curve, using split.

• (peano2 peano-size)

This will draw the Peano space-filling curve, without using split.

• fern-size a good size for the fern functions

11

3. Turtles

• (fern1 fern-size) You will probably want to point the turtle up before running this one, with
something like:

(turn/radians (- (/ pi 2)))

• (fern2 fern-size) a fern – you may need to backup a little for this one.

12

Index

#/return, 9

Butterfly Attractor, 11

change-color, 3
clear, 10
clear-ellipse, 5
clear-line, 4
clear-pixel, 4
clear-polygon, 6
clear-rectangle, 5
clear-solid-ellipse, 5
clear-solid-polygon, 6
clear-solid-rectangle, 5
clear-string, 6
clear-viewport, 4
close-graphics, 2
close-viewport, 3
copy-viewport, 4

default-display-is-color?, 4
draw, 10
draw-ellipse, 5
draw-line, 4
draw-offset, 10
draw-pixel, 4
draw-pixmap, 7
draw-pixmap-posn, 6
draw-polygon, 6
draw-rectangle, 5
draw-solid-ellipse, 5
draw-solid-polygon, 6
draw-solid-rectangle, 5
draw-string, 6
draw-viewport, 4

erase, 10
erase-offset, 10

Fern Fractal, 11
flip-ellipse, 5
flip-line, 4
flip-pixel, 4
flip-polygon, 6
flip-rectangle, 5
flip-solid-ellipse, 6
flip-solid-polygon, 6
flip-solid-rectangle, 5
flip-string, 6
flip-viewport, 4

get-color-pixel, 3
get-key-press, 9
get-mouse-click, 8
get-pixel, 3
get-string-size, 7
graphics

simple, 2
graphics.ss graphicr.ss graphicss.ss graphicspr.ss,

2

key-value, 9
Koch Snowflake, 11

left-mouse-click?, 9
Lorenz Attractor, 11

make-posn, 3
make-rgb, 3
middle-mouse-click?, 9
mouse-click-posn, 8
move, 10
move-offset, 10

open-graphics, 2
open-pixmap, 2
open-viewport, 2

Peano space-filling curve, 11
posn-x, 3
posn?, 3

query-mouse-posn, 8

ready-key-press, 9
ready-mouse-click, 8
ready-mouse-release, 8
rgb-red, 3
rgb?, 3
right-mouse-click?, 9

Serpinski Triangle, 11
split, 10
split*, 10

test-pixel, 3
tprompt, 11
turn, 10
turtles, 10

viewport, 2
viewport->snip, 7
viewport-flush-input, 9

13

