
Inside PLT MzScheme

Matthew Flatt
mflatt@cs.utah.edu

Version 103
August 2000

Rice University
University of Utah

Copyright notice

Copyright c©1995-2000 Matthew Flatt

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

libscheme: Copyright c©1994 Brent Benson. All rights reserved.

Conservative garbage collector: Copyright c©1988, 1989 Hans-J. Boehm, Alan J. Demers. Copyright c©1991-
1996 by Xerox Corporation. Copyright c©1996-1998 by Silicon Graphics. All rights reserved.

Collector C++ extension by Jesse Hull and John Ellis: Copyright c©1994 by Xerox Corporation. All rights
reserved.

Send us your Web links

If you use any parts or all of the DrScheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize
the fact on some Web page, we would like to link to that page. Please drop us a line at scheme@cs.rice.edu.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Thanks

Some typesetting macros were originally taken from Julian Smart’s Reference Manual for wxWindows 1.60:
a portable C++ GUI toolkit.

Contents

1 Overview 1

1.1 Writing MzScheme Extensions . 1

1.2 Embedding MzScheme into a Program . 2

1.3 MzScheme and Threads . 3

2 MzScheme Architecture 4

2.1 Scheme Values and Types . 4

2.1.1 Standard Types . 4

2.1.2 Global Constants . 6

2.1.3 Library Functions . 7

2.2 Memory Allocation . 9

2.2.1 Library Functions . 9

2.3 Scheme Namespaces (Top-Level Environments) . 12

2.3.1 Library Functions . 12

2.4 Procedures . 13

2.4.1 Library Functions . 14

2.5 Evaluation . 14

2.5.1 Top-level Evaluation Functions . 15

2.5.2 Tail Evaluation . 15

2.5.3 Multiple Values . 15

2.5.4 Library Functions . 16

2.6 Exceptions and Escape Continuations . 18

2.6.1 Temporarily Catching Error Escapes . 18

2.6.2 Library Functions . 21

2.7 Threads . 23

i

CONTENTS CONTENTS

2.7.1 Integration with Threads . 23

2.7.2 Blocking the Current Thread . 24

2.7.3 Threads in Embedded MzScheme with Event Loops 24

2.7.4 Sleeping by Embedded MzScheme . 27

2.7.5 Library Functions . 27

2.8 Parameterizations . 30

2.8.1 Library Functions . 31

2.9 Bignums, Rationals, and Complex Numbers . 32

2.9.1 Library Functions . 32

2.10 Ports and the Filesystem . 34

2.10.1 Library Functions . 34

2.11 Structures . 39

2.11.1 Library Functions . 39

2.12 Units . 40

2.12.1 Library Functions . 41

2.13 Objects, Classes, and Interfaces . 42

2.13.1 Library Functions . 43

2.14 Custodians . 45

2.14.1 Library Functions . 45

2.15 Miscellaneous Utilities . 46

2.15.1 Library Functions . 46

2.16 Flags and Hooks . 48

Index 50

ii

1. Overview

This manual describes MzScheme’s C interface, which allows the interpreter to be extended by a dynamically-
loaded library, or embedded within an abitrary C/C++ program. The manual assumes familiarity with
MzScheme, as described in PLT MzScheme: Language Manual .

1.1 Writing MzScheme Extensions

To write a C/C++-based extension for MzScheme, follow these steps:

• For each C/C++ file that uses MzScheme library functions, #include the file escheme.h.

This file is distributed with the PLT software in plt/collects/mzscheme/include, but if mzc is used
to compile, this path is found automatically.

• Define the C function scheme initialize, which takes a Scheme Env * namespace (see §2.3) and
returns a Scheme Object * Scheme value.

This initialization function can install new global primitive procedures or other values into the name-
space, or it can simply return a Scheme value. The initialization function is called when the extension
is loaded with load-extension (the first time); the return value from scheme initialize is used as
the return value for load-extension. The namespace provided to scheme initialize is the current
namespace when load-extension is called.

• Define the C function scheme reload, which has the same arguments and return type as
scheme initialize.

This function is called if load-extension is called a second time (or more times) for an extension.
Like scheme initialize, the return value from this function is the return value for load-extension.

• Compile the extension C/C++ files to create platform-specific object files.

The mzc compiler, distributed with MzScheme, compiles plain C files when the --cc flag is specified.
Actually, mzc does not compile the files itself, but it locates a C compiler on the system and launches it
with the appropriate compilation flags. If the platform is a relatively standard Unix system, a Windows
system with either Microsoft’s C compiler or gcc in the path, or a MacOS system with Metrowerks
CodeWarrior installed, then using mzc is typically easier than working with the C compiler directly.

• Link the extension C/C++ files with mzdyn.o (Unix) or mzdyn.obj (Windows) to create a shared
object.

The mzdyn object file is distributed in a platform-specific directory in plt/collects/mzscheme/lib for
Unix or Windows, but it is not distributed for MacOS.

The mzc compiler links object files into an extension when the --ld flag is specified, automatically
locating mzdyn. Under MacOS, mzc generates the mzdyn object file as necessary.

• Load the shared object within Scheme using (load-extension path), where path is the name of the
extension file generated in the previous step.

1

1.2. Embedding MzScheme into a Program 1. Overview

IMPORTANT: Scheme values are garbage collected using a conservative garbage collector, so point-
ers to MzScheme objects can be kept in registers, stack variables, or structures allocated with
scheme malloc. However, static variables that contain pointers to collectable memory must be registered
using scheme register extension global (see §2.2).

As an example, the following C code defines an extension that returns "hello world" when it is loaded:

#include "escheme.h"
Scheme_Object *scheme_initialize(Scheme_Env *env) {
return scheme_make_string("hello world");

}
Scheme_Object *scheme_reload(Scheme_Env *env) {
return scheme_initialize(env); /* Nothing special for reload */

}

Assuming that this code is in the file hw.c, the extension is compiled under Unix with the following two
commands:

mzc --cc hw.c
mzc --ld hw.so hw.o

(Note that the --cc and --ld flags are each prefixed by two dashes, not one.)

The plt/collects/mzscheme/examples directory in the PLT distribution contains additional examples.

1.2 Embedding MzScheme into a Program

To embed MzScheme in a program, first download the MzScheme source code. Then, follow these steps:

• Compile the MzScheme libraries.

Under Unix, the libraries are libmzscheme.a and libgc.a. After compiling MzScheme and running
make install, the libraries are in a platform-specific directory under plt/collects/mzscheme/lib/.
Under Windows and MacOS, consult the compilation instructions for information on compiling the
libraries.

• For each C/C++ file that uses MzScheme library functions, #include the file scheme.h.1

This file is distributed with the PLT software in plt/collects/mzscheme/include.

• In your main program, obtain a global MzScheme environment Scheme Env * by calling
scheme basic env. This function must be called before any other function in the MzScheme library
(except scheme make param).

• Access MzScheme though scheme load, scheme rep, scheme eval, and/or other top-level MzScheme
functions described in this manual.

• Compile the program and link it with the MzScheme libraries.

Scheme values are garbage collected using a conservative garbage collector, so pointers to MzScheme objects
can be kept in registers, stack variables, or structures allocated with scheme malloc. In an embedding
application, static variables are also automatically registered as roots for garbage collection (but see the
Windows-specific note below).

1The C preprocessor symbol SCHEME DIRECT EMBEDDED is defined as 1 when scheme.h is #included, or as 0 when escheme.h
is #included.

2

1. Overview 1.3. MzScheme and Threads

For example, the following is a simple embedding program which evaluates all expressions provided on the
command line and displays the results:

#include "scheme.h"
int main(int argc, char *argv[])
{
Scheme_Env *e = scheme_basic_env();
Scheme_Object *curout = scheme_get_param(scheme_config, MZCONFIG_OUTPUT_PORT);
int i;
for (i = 1; i < argc; i++) {

if (scheme_setjmp(scheme_error_buf)) {
return -1; /* There was an error */

} else {
Scheme_Object *v = scheme_eval_string(argv[i], e);
scheme_display(v, curout);
scheme_display(scheme_make_character(’\n’), curout);

}
}
return 0;

}

Under Windows, the garbage collector finds static variables in an embeddeding program by examining
all memory pages. This strategy fails if a program contains multiple Windows threads; a page may get
unmapped by a thread while the collector is examining the page, causing the collector to crash. To avoid
this problem, set GC use registered statics to 1 before calling any scheme function, and register all
globals with GC use registered statics to 1 before calling any GC or MzScheme function, and register all
globals with scheme register static.

1.3 MzScheme and Threads

In its normal configuration, MzScheme implements threads for Scheme programs without aid from the
operating system. On a few platforms, including Windows, Solaris, and Linux, MzScheme can be compiled
to map each Scheme thread to a separate operating system thread.2 The advantage of the OS-thread
configuration is that different Scheme threads can take advantage of different processors on a multi-processor
machine.

In either configuration, MzScheme can co-exist with additional OS threads that are created by an exten-
sion or an embedding program. However, the additional OS threads must not call any scheme function.
In the normal configuration, only the OS thread that originally calls scheme basic env can call scheme
functions.3 In the OS-thread configuration, only the scheme basic env thread and other OS threads created
by MzScheme (via the thread Scheme function or the scheme thread C function) should call or scheme
functions.

In the normal configuration, when scheme basic env is called a second time to reset the interpreter, it can
be called in an OS thread that is different from the original call to scheme basic env. Thereafter, all calls
to scheme functions must originate from the new thread.

See §2.7 for more information about threads, including the possible effects of MzScheme’s thread implemen-
tation on extension and embedding C code.

2MrEd requires the normal configuration on all platforms.
3This restriction is stronger than saying all calls must be serialized across threads. MzScheme relies on properties of specific

threads to avoid stack overflow and garbage collection.

3

2. MzScheme Architecture

2.1 Scheme Values and Types

A Scheme value is represented by a pointer-size value. The low bit is a mark bit: a 1 in the low bit indicates
an immediate integer, a 0 indicates a (word-aligned) pointer.

A pointer-based Scheme value references a structure that begins with a type tag. This type tag has the C type
Scheme Type. The rest of the structure (following the type tag) is type-dependent. Examples of Scheme Type
values include scheme pair type, scheme symbol type, and scheme compiled closure type.

MzScheme’s C interface gives Scheme values the type Scheme Object *. (The “object” here does not refer
to objects in the sense of object-oriented programming.) The struct type Scheme Object is defined in
scheme.h, but never access this structure directly. Instead, use macros (such as SCHEME CAR) that provide
access to the data of common Scheme types. A Scheme Object structure is actually only allocated for certain
types (a few built-in types that contain two words of data in addition to the type tag), but Scheme Object
* is nevertheless used as the type of a generic Scheme value (for historical reasons).

For all standard Scheme types, constructors are provided for creating Scheme values. For example,
scheme make pair takes two Scheme Object * values and returns the cons of the values.

The macro SCHEME TYPE takes a Scheme Object * and returns the type of the object. This macro performs
the tag-bit check, and returns scheme integer type when the value is an immediate integer; otherwise,
SCHEME TYPE follows the pointer to get the type tag. Macros are provided to test for common Scheme types;
for example, SCHEME PAIRP returns 1 if the value is a Scheme cons cell, 0 otherwise.

In addition to the standard Scheme data types, there are six global constant Scheme values: scheme true,
scheme false, scheme null, scheme eof, scheme void, and scheme undefined. Each of these has a unique
type tag, but they are normally recognized via their constant addresses rather than via their type tags.

An extension or application can create new a primitive data type by calling scheme make type, which returns
a fresh Scheme Type value. To create a collectable instance of this type, allocate memory for the instance with
scheme malloc. From MzScheme’s perspective, the only constraint on the data format of such an instance
is that the first sizeof(Scheme Type) bytes must contain the value returned by scheme make type.

Scheme values should never be allocated on the stack, or contain pointers to values on the stack. Besides the
problem of restricting the value’s lifetime to that of the stack frame, allocating values on the stack creates
problems for continuations and threads, both of which copy into and out of the stack.

2.1.1 Standard Types

The following are the Scheme Type values for the standard types:

• scheme char type — SCHEME CHAR VAL extracts the character; test for this type with SCHEME CHARP

4

2. MzScheme Architecture 2.1. Scheme Values and Types

• scheme integer type — fixnum integers, which are identified via the tag bit rather than following
a pointer to this Scheme Type value; SCHEME INT VAL extracts the integer; test for this type with
SCHEME INTP

• scheme double type — flonum inexact numbers; SCHEME FLOAT VAL or SCHEME DBL VAL extracts the
floating-point value; test for this type with SCHEME DBLP

• scheme float type — single-precision flonum inexact numbers, when specifically enabled when com-
piling MzScheme; SCHEME FLOAT VAL or SCHEME FLT VAL extracts the floating-point value; test for this
type with SCHEME FLTP

• scheme bignum type — test for this type with SCHEME BIGNUMP

• scheme rational type — test for this type with SCHEME RATIONALP

• scheme complex type — test for this type or scheme complex izi type with SCHEME COMPLEXP

• scheme complex izi type — complex number with an inexact zero imaginary part (so it counts as a
real number); test for this type specifically with SCHEME COMPLEX IZIP

• scheme string type — SCHEME STR VAL extracts the string (which is always null-terminated, but
may also contain embedded nulls; the Scheme string is modified if this string is modified) and
SCHEME STRLEN VAL extracts the string length (not counting the null terminator); test for this type
with SCHEME STRINGP

• scheme symbol type — SCHEME SYM VAL extracts the string (do not modify this string); test for this
type with SCHEME SYMBOLP

• scheme box type — SCHEME BOX VAL extracts/sets the boxed value; test for this type with SCHEME BOXP

• scheme pair type — SCHEME CAR extracts/sets the car and SCHEME CDR extracts/sets the cdr; test
for this type with SCHEME PAIRP

• scheme vector type — SCHEME VEC SIZE extracts the length and SCHEME VEC ELS extracts the array
of Scheme values (the Scheme vector is modified when this array is modified); test for this type with
SCHEME VECTORP

• scheme type symbol type — SCHEME TSYM VAL extracts the symbol; test for this type with
SCHEME TSYMBOLP

• scheme object type — SCHEME OBJ CLASS extracts the class, SCHEME OBJ DATA extracts/sets the user
pointer, and SCHEME OBJ FLAG extracts/sets the flag; test for this type with SCHEME OBJP

• scheme class type — test for this type with SCHEME CLASSP

• scheme interface type — test for this type with SCHEME INTERFACEP

• scheme structure type — structure instances; test for this type with SCHEME STRUCTP

• scheme struct type type — structure types; test for this type with SCHEME STRUCT TYPEP

• scheme unit type — test for this type with SCHEME UNITP

• scheme input port type — SCHEME INPORT VAL extracts/sets the user data pointer; test for this type
with SCHEME INPORTP

• scheme output port type — SCHEME OUTPORT VAL extracts/sets the user data pointer; test for this
type with SCHEME OUTPORTP

• scheme promise type — test for this type with SCHEME PROMP

5

2.1. Scheme Values and Types 2. MzScheme Architecture

• scheme process type — thread descriptors; test for this type with SCHEME PROCESSP

• scheme sema type — semaphores; test for this type with SCHEME SEMAP

• scheme hash table type — test for this type with SCHEME HASHTP

• scheme weak box type — test for this type with SCHEME WEAKP; SCHEME WEAK PTR extracts the con-
tained object, or NULL after the content is collected; do not set the content of a weak box

• scheme generic data type — data analogous to a generic procedure created with make-generic; test
for this type with SCHEME GENDATAP

• scheme namespace type — namespaces; test for this type with SCHEME NAMESPACEP

• scheme config type — parameterizations; test for this type with SCHEME CONFIGP

The following are the procedure types:

• scheme prim type — a primitive procedure

• scheme closed prim type — a primitive procedure with a data pointer

• scheme compiled closure type — a Scheme procedure

• scheme cont type — a continuation

• scheme escaping cont type — an escape continuation

• scheme case closure type — a case-lambda procedure

The predicate SCHEME PROCP returns 1 for all procedure types and 0 for anything else.

The following are additional number predicates:

• SCHEME NUMBERP — all numerical types

• SCHEME REALP — all non-complex numerical types, plus scheme complex izi type

• SCHEME EXACT INTEGERP — fixnums and bignums

• SCHEME EXACT REALP — fixnums, bignums, and rationals

• SCHEME FLOATP — both single-precision (when enabled) and double-precision flonums

2.1.2 Global Constants

There are six global constants:

• scheme null — test for this value with SCHEME NULLP

• scheme eof — test for this value with SCHEME EOFP

• scheme true

• scheme false — test for this value with SCHEME FALSEP; test against it with SCHEME TRUEP

• scheme void — test for this value with SCHEME VOIDP

• scheme undefined

6

2. MzScheme Architecture 2.1. Scheme Values and Types

2.1.3 Library Functions

Scheme Object *scheme make char(char ch)

Returns the character value.

Scheme Object *scheme make character(char ch)

Returns the character value. (This is a macro.)

Scheme Object *scheme make integer(long i)

Returns the integer value; i must fit in a fixnum. (This is a macro.)

Scheme Object *scheme make integer value(long i)

Returns the integer value. If i does not fit in a fixnum, a bignum is returned.

Scheme Object *scheme make integer value from unsigned(unsigned long i)

Like scheme make integer value, but for unsigned integers.

int scheme get int val(Scheme Object *o, long *i)

Extracts the integer value. Unlike the SCHEME INT VAL macro, this procedure will extract an integer
that fits in a long from a Scheme bignum. If o fits in a long, the extracted integer is placed in *i and 1 is
returned; otherwise, 0 is returned and *i is unmodified.

int scheme get unsigned int val(Scheme Object *o, unsigned long *i)

Like scheme get int val, but for unsigned integers.

Scheme Object *scheme make double(double d)

Creates a new floating-point value.

Scheme Object *scheme make float(float d)

Creates a new single-precision floating-point value. The procedure is nly available when MzScheme is
compiled with single-precision numbers enabled.

double scheme real to double(Scheme Object *o)

Converts a Scheme real number to a double-precision floating-point value.

Scheme Object *scheme make pair(Scheme Object *carv , Scheme Object *cdrv)

Makes a cons pair.

Scheme Object *scheme make string(char *chars)

Makes a Scheme string from a null-terminated C string. The chars string is copied.

Scheme Object *scheme make string without copying(char *chars)

7

2.1. Scheme Values and Types 2. MzScheme Architecture

Like scheme make string , but the string is not copied.

Scheme Object *scheme make sized string(char *chars, long len, int copy)

Makes a string value with size len. A copy of chars is made if copy is not 0. The string chars should
contain len characters; chars can contain the null character at any position, and need not be null-terminated.
However, if len is negative, then the null-terminated length of chars is used for the length.

Scheme Object *scheme make sized offset string(char *chars, long d , long len, int copy)

Like scheme make sized string, except the len characters start from position d in chars.

Scheme Object *scheme alloc string(int size, char fill)

Allocates a new Scheme string.

Scheme Object *scheme append string(Scheme Object *a, Scheme Object *b)

Creates a new string by appending the two given strings.

Scheme Object *scheme intern symbol(char *name)

Finds (or creates) the symbol matching the given null-terminated string. The case of name is (non-
destructively) normalized before interning if scheme case sensitive is 0.

Scheme Object *scheme intern exact symbol(char *name, int len)

Creates or finds a symbol given the symbol’s length. The the case of name is not normalized.

Scheme Object *scheme make symbol(char *name)

Creates an uninterned symbol from a null-terminated string.

Scheme Object *scheme make exact symbol(char *name, int len)

Creates an uninterned symbol given the symbol’s length.

Scheme Object *scheme intern type symbol(Scheme Object *sym)

Creates or finds a type symbol from a symbolic name.

Scheme Object *scheme make type symbol(Scheme Object *sym)

Creates an uninterned type symbol.

Scheme Object *scheme make vector(int size, Scheme Object *fill)

Allocates a new vector.

Scheme Object *scheme make promise(Scheme Object *expr , Scheme Env *env)

Creates a promise that can be evaluated with the Scheme function force. The expr argument is an
uncompiled S-expression.

8

2. MzScheme Architecture 2.2. Memory Allocation

Scheme Object *scheme box(Scheme Object *v)

Creates a new box containing the value v .

Scheme Object *scheme make weak box(Scheme Object *v)

Creates a new weak box containing the value v .

Scheme Type scheme make type(char *name)

Creates a new type (not a Scheme value).

2.2 Memory Allocation

MzScheme uses both malloc and allocation functions provided the conservative garbage collector. Embed-
ding/extension C/C++ code may use either allocation method, keeping in mind that pointers to garbage-
collectable blocks in malloced memory are invisible (i.e., such pointers will not prevent the block from being
garbage-collected).

The garbage collector normally only recognizes pointers to the beginning of allocated objects. Thus, a
pointer into the middle of a GC-allocated string will normally not keep the string from being collected.
The exception to this rule is that pointers saved on the stack or in registers may point to the middle of a
collectable object. Thus, it is safe to loop over an array by incrementing a local pointer variable.

The collector allocation functions are:

• scheme malloc — Allocates collectable memory that may contain pointers to collectable objects.

• scheme malloc atomic — Allocates collectable memory that does not contain pointers to collectable
objects. If the memory does contain pointers, they are invisible to the collector and will not prevent
an object from being collected.

Atomic memory is used for strings or other blocks of memory which do not contain pointers. Atomic
memory can also be used to store intentionally-hidden pointers.

• scheme malloc stubborn — Allocates collectable memory that may contain pointers to collectable
objects, but also has special properties to support generational collection. Once the content of the
allocated memory is set, call scheme end stubborn change; this function call serves as a promise that
the memory’s contents will never be changed again (until after it is garbage-collected).

• scheme malloc uncollectable — Allocates uncollectable memory that may contain pointers to col-
lectable objects. There is no way to free the memory.

If a MzScheme extension stores Scheme pointers in a global variable, then that variable must be registered
with scheme register extension global; this makes the pointer visible to the garbage collector. Regis-
tered variables need not contain a collectable pointer at all times. No registration is needed for the global
variables of an embedding program.

Collectable memory can be temporarily locked from collection by using the reference-counting function
scheme dont gc ptr.

2.2.1 Library Functions

void *scheme malloc(size t n)

9

2.2. Memory Allocation 2. MzScheme Architecture

Allocates n bytes of collectable memory.

void *scheme malloc atomic(size t n)

Allocates n bytes of collectable memory containing no pointers visible to the garbage collector.

void *scheme malloc stubborn(size t n)

Allocates n bytes of collectable memory that is intended for use with scheme end stubborn change.

void *scheme malloc uncollectable(size t n)

Allocates n bytes of uncollectable memory.

void *scheme malloc eternal(size t n)

Allocates uncollectable atomic memory. This function is equivalent to malloc except that it the memory
cannot be freed.

void scheme end stubborn change(void *p)

Promises that the contents of p will never be changed.

void *scheme calloc(size t num, size t size)

Allocates num * size bytes of memory.

char *scheme strdup(char *str)

Copies the null-terminated string str ; the copy is collectable.

char *scheme strdup eternal(char *str)

Copies the null-terminated string str ; the copy will never be freed.

void *scheme malloc fail ok(void *(*mallocf)(size t size), size t size)

Attempts to allocate size bytes using mallocf . If the allocation fails, the exn:misc:out-of-memory
exception is raised.

void scheme register extension global(void *ptr , long size)

Registers an extension’s global variable that can contain Scheme pointers. The address of the global
is given in ptr , and its size in bytes in size. This function can actually be used to register any permanent
memory that the collector would otherwise treat as atomic.

void scheme register static(void *ptr , long size)

Like scheme register extension global, but for use only on static variables, and for use in embedding
applications in situations where the collector does not automatically find static variables.

The macro MZ REGISTER STATIC can be used directly on a static variable. It expands to a comment if
statics need not be registered, and a call to scheme register static (with the address of the static variable)
otherwise.

10

2. MzScheme Architecture 2.2. Memory Allocation

void scheme weak reference(void **p)

Registers the pointer *p as a weak pointer; when no other (non-weak) pointers reference the same
memory as *p references, then *p will be set to NULL by the garbage collector. The value in *p may change,
but the pointer remains weak with respect to the value of *p at the time p was registered.

void scheme weak reference indirect(void **p, void *v)

Like scheme weak reference, but *p is cleared (regardless of its value) when there are no references to
v .

void scheme register finalizer(void *p, void (*f)(void *p, void *data), void *data,
void (**oldf)(void *p, void *data), void **olddata)

Registers a callback function to be invoked when the memory p would otherwise be garbage-collected.
The f argument is the callback function; when it is called, it will be passed the value p and the data pointer
data; data can be anything — it is only passed on to the callback function. If oldf and olddata are not
NULL, then *oldf and *olddata are filled with with old callback information (f and data will override ths old
callback).

Note: registering a callback not only keeps p from collection until the callback is invoked, but it also
keeps data from collection.

void scheme add finalizer(void *p, void (*f)(void *p, void *data), void *data)

Adds a finalizer to a chain of primitive finalizers. This chain is separate from the single finalizer installed
with scheme register finalizer; all finalizers in the chain are called immediately after a finalizer that is
installed with scheme register finalizer.

See scheme register finalizer, above, for information about the arguments.

void scheme add scheme finalizer(void *p, void (*f)(void *p, void *data), void *data)

Installs a “will”-like finalizer, similar to will-register. Scheme finalizers are called one at a time,
requiring the collector to prove that a value has become inaccesibile again before calling the next Scheme
finalizer.

See scheme register finalizer, above, for information about the arguments.

void scheme dont gc ptr(void *p)

Keeps the collectable block p from garbage collection. Use this procedure when a reference to p is be
stored somewhere inaccessible to the collector. Once the reference is no longer used from the inaccessible
region, de-register the lock with scheme gc ptr ok.

This function keeps a reference count on the pointers it registers, so two calls to scheme dont gc ptr
for the same p should be balanced with two calls to scheme gc ptr ok.

void scheme gc ptr ok(void *p)

See scheme dont gc ptr.

void scheme collect garbage()

11

2.3. Scheme Namespaces (Top-Level Environments) 2. MzScheme Architecture

Forces an immediate garbage-collection.

2.3 Scheme Namespaces (Top-Level Environments)

A Scheme namespace (a top-level environment) is represented by a value of type Scheme Env * (although
it is also a Scheme value). Calling scheme basic env returns a namespace that includes all of MzScheme’s
standard global procedures and syntax.

The scheme basic env function must be called once by an embedding program, before any other MzScheme
function is called (except scheme make param). The returned namespace is the initial current namespace for
the main MzScheme thread. MzScheme extensions cannot call scheme basic env.

The current thread’s current namespace is available from scheme get env, given the current parameterization
(see §2.8): scheme get env(scheme config).

New values can be added as globals in a namespace using scheme add global. The scheme lookup global
function takes a Scheme symbol and returns the global value for that name, or NULL if the symbol is undefined.

2.3.1 Library Functions

void scheme add global(char *name, Scheme Object *val , Scheme Env *env)

Adds a value to the table of globals for the namespace env , where name is a null-terminated string.
(The string’s case will be normalized in the same way as for interning a symbol.)

void scheme add global symbol(Scheme Object *name, Scheme Object *val , Scheme Env *env)

Adds a value to the table of globals by symbol name instead of string name.

void scheme add global constant(char *name, Scheme Object *v , Scheme Env *env)

Like scheme add global, but the global variable name is also made constant if built-in constants are
enabled, and #%name is also defined as a constant.

void scheme add global keyword(char *name, Scheme Object *v , Scheme Env *env)

Like scheme add global, but the global variable name is also made constant and a keyword (unless
keywords are disabled).

void scheme remove global(char *name, Scheme Env *env)

Removes the variable binding from the table of globals for the namespace env . Constant globals cannot
be removed.

void scheme remove global symbol(Scheme Object *name, Scheme Env *env)

Removes a variable binding from the table of globals by symbol instead of by name.

void scheme remove global constant(char *name, Scheme Env *env)

Undefines name and also #%name. Both are undefined despite their potential constantness.

void scheme constant(Scheme Object *sym, Scheme Env *env)

12

2. MzScheme Architecture 2.4. Procedures

Declares the given global variable name (given as a symbol) to be constant in the table of globals for
the namespace env .

void scheme set keyword(Scheme Object *sym, Scheme Env *env)

Declares the given symbol to be a keyword in the namespace env .

Scheme Object *scheme lookup global(Scheme Object *symbol , Scheme Env *env)

Given a global variable name (as a symbol) in sym, returns the current value.

Scheme Bucket *scheme global bucket(Scheme Object *symbol , Scheme Env *env)

Given a global variable name (as a symbol) in sym, returns the bucket where the value is stored. When
the value in this bucket is NULL, then the global variable is undefined.

The Scheme Bucket structure is defined as:
typedef struct Scheme_Bucket {

Scheme_Type type; /* = scheme_variable_type */
void *key;
void *val;

} Scheme_Bucket;

void scheme set global bucket(char *procname, Scheme Bucket *var , Scheme Object *val ,
int set undef)

Changes the value of a global variable. The procname argument is used to report errors (in case the
global variable is constant, not yet bound, or a keyword). If set undef is not 1, then the global variable must
already have a binding. (For example, set! cannot set unbound variables, while define can.)

Scheme Env *scheme get env(Scheme Config *config)

Returns the current namespace for the given parameterization. See §2.8 for more information. The
current thread’s current parameterization is available as scheme config.

2.4 Procedures

A primitive procedure is a Scheme-callable procedure that is implemented in C. Primitive procedures are
created in MzScheme with the function scheme make prim w arity, which takes a C function pointer, the
name of the primitive, and information about the number of Scheme arguments that it takes; it returns a
Scheme procedure value.

The C function implementing the procedure must take two arguments: an integer that specifies the number of
arguments passed to the procedure, and an array of Scheme Object * arguments. The number of arguments
passed to the function will be checked using the arity information. (The arity information provided to
scheme make prim w arity is also used for the Scheme arity procedure.) The procedure implementation
is not allowed to mutate the input array of arguments, although it may mutate the arguments themselves
when appropriate (e.g., a fill in a vector argument).

The function scheme make closed prim w arity is similar to scheme make prim w arity, but it takes an
additional void * argument; this argument is passed back to the C function when the closure is invoked. In
this way, closure-like data from the C world can be associated with the primitive procedure.

13

2.5. Evaluation 2. MzScheme Architecture

2.4.1 Library Functions

Scheme Object *scheme make prim w arity(Scheme Prim *prim, char *name,
short mina, short maxa)

Creates a primitive procedure value, given the C function pointer prim. The form of prim is defined by:
typedef Scheme Object *(*Scheme Prim)(int argc, Scheme Object **argv);

The value mina should be the minimum number of arguments that must be supplied to the procedure.
The value maxa should be the maximum number of arguments that can be suplied to the procedure, or -1 if
the procedure can take arbitrarily many arguments. The mina and maxa values are used for automatically
checking the argument count before the primitive is invoked, and also for the Scheme arity procedure. The
name argument is used to report application arity errors at run-time.

Scheme Object *scheme make folding prim(Scheme Prim *prim, char *name,
short mina, short maxa, short folding)

Like scheme make prim w arity, but if folding is non-zero, the compiler assumes that an application of
the procedure to constant values can be folded to a constant. For example, +, zero?, and string-length
are folding primitives, but display, cons, and string-ref are not. (Constant strings are currently mutable
in MzScheme.)

Scheme Object *scheme make prim(Scheme Prim *prim)

Same as scheme make prim w arity, but the arity (0, -1) and the name “UNKNOWN” is assumed. This
function is provided for backward compatibility only.

Scheme Object *scheme make noneternal prim w arity(Scheme Prim *prim,
char *name, short mina, short maxa)

Same as scheme make prim w arity. This function is provided for backward compatibility only.

Scheme Object *scheme make noneternal prim(Scheme Prim *prim)

Same as scheme make prim. This function is provided for backward compatibility only.

Scheme Object *scheme make closed prim w arity(Scheme Closed Prim *prim, void *data,
char *name, short mina, short maxa)

Creates a primitive procedure value; when the C function prim is invoked, data is passed as the first
parameter. The form of prim is defined by:
typedef Scheme Object *(*Scheme Closed Prim)(void *data, int argc, Scheme Object **argv);

Scheme Object *scheme make closed prim(Scheme Closed Prim *prim, void *data)

Creates a closed primitive procedure value. This function is provided for backward compatibility only.

2.5 Evaluation

A Scheme S-expression is evaluated by calling scheme eval. This function takes an S-expression (as a
Scheme Object *) and a namespace and returns the value of the expression in that namespace.

The function scheme apply takes a Scheme Object * that is a procedure, the number of arguments to

14

2. MzScheme Architecture 2.5. Evaluation

pass to the procedure, and an array of Scheme Object * arguments. The return value is the result of the
application. There is also a function scheme apply to list, which takes a procedure and a list (constructed
with scheme make pair) and performs the Scheme apply operation.

The scheme eval function actually calls scheme compile followed by scheme eval compiled.

2.5.1 Top-level Evaluation Functions

The functions scheme eval, scheme apply, etc., are top-level evaluation functions. Continuation invo-
cations are confined to jumps within a top-level evaluation.

The functions scheme eval compiled, scheme apply, etc. provide the same functionality without starting
a new top-level evaluation; these functions should only be used within new primitive procedures. Since these
functions allow full continuation hops, calls to non-top-level evaluation functions can return zero or multiple
times.

Currently, escape continuations and primitive error escapes can jump out of all evaluation and application
functions. For more information, see §2.6.

2.5.2 Tail Evaluation

All of MzScheme’s built-in functions and syntax support proper tail-recursion. When a new primitive
procedure or syntax is added to MzScheme, special care must be taken to ensure that tail recursion is
handled properly. Specifically, when the final return value of a function is the result of an application,
then scheme tail apply should be used instead of scheme apply. When scheme tail apply is called, it
postpones the procedure application until control returns to the Scheme evaluation loop.

For example, consider the following implementation of a thunk-or primitive, which takes any number of
thunks and performs or on the results of the thunks, evaluating only as many thunks as necessary.
static Scheme_Object *
thunk_or (int argc, Scheme_Object **argv)
{
int i;
Scheme_Object *v;

if (!argc)
return scheme_false;

for (i = 0; i < argc - 1; i++)
if (SCHEME_FALSEP((v = _scheme_apply(argv[i], 0, NULL))))
return v;

return scheme_tail_apply(argv[argc - 1], 0, NULL);
}

This thunk-or properly implements tail-recursion: if the final thunk is applied, then the result of thunk-or
is the result of that application, so scheme tail apply is used for the final application.

2.5.3 Multiple Values

A primitive procedure can return multiple values by returning the result of calling scheme values.
The functions scheme eval compiled multi, scheme apply multi, scheme eval compiled multi, and
scheme apply multi potentially return multiple values; all other evaluation and applications procedures

15

2.5. Evaluation 2. MzScheme Architecture

return a single value or raise an exception.

Multiple return values are repsented by the scheme multiple values “value”. This quasi-value has the type
Scheme Object *, but it is not a pointer or a fixnum. When the result of an evaluation or application is
scheme multiple values, the number of actual values can be obtained as scheme multiple count and the
array of Scheme Object * values as scheme multiple array. If any application or evaluation procedure is
called, the scheme multiple count and scheme multiple array variables may be modified, but the array
previously referenced by scheme multiple array is never re-used and should never be modified.

The scheme multiple count and scheme multiple array variables only contain meaningful values when
scheme multiple values is returned.

2.5.4 Library Functions

Scheme Object *scheme eval(Scheme Object *expr , Scheme Env *env)

Evaluates the (uncompiled) S-expression expr in the namespace env .

Scheme Object *scheme eval compiled(Scheme Object *obj)

Evaluates the compiled expression obj , which was previously returned from scheme compile.

Scheme Object *scheme eval compiled multi(Scheme Object *obj)

Evaluates the compiled expression obj , possibly returning multiple values (see §2.5.3).

Scheme Object * scheme eval compiled(Scheme Object *obj)

Non-top-level version of scheme eval compiled. (See §2.5.1.)

Scheme Object * scheme eval compiled multi(Scheme Object *obj)

Non-top-level version of scheme eval compiled multi. (See §2.5.1.)

Scheme Env *scheme basic env()

Creates the main namespace for an embedded MzScheme. This procedure must be called before other
MzScheme library function (except scheme make param). Extensions to MzScheme cannot call this function.

If it is called more than once, this function resets all threads (replacing the main thread), parameters,
ports, namespaces, and finalizations.

Scheme Object *scheme make namespace(int argc, Scheme Object **argv)

Creates and returns a new namespace. This values can be cast to Scheme Env *. It can also be installed
in a parameterization using scheme set param with MZCONFIG ENV.

When MzScheme is embedded in an application, create the initial namespace with scheme basic env
before calling this procedure to create new namespaces.

Scheme Object *scheme apply(Scheme Object *f , int c, Scheme Object **args)

Applies the procedure f to the given arguments.

16

2. MzScheme Architecture 2.5. Evaluation

Scheme Object *scheme apply multi(Scheme Object *f , int c, Scheme Object **args)

Applies the procedure f to the given arguments, possibly returning multiple values (see §2.5.3).

Scheme Object * scheme apply(Scheme Object *f , int c, Scheme Object **args)

Non-top-level version of scheme apply. (See §2.5.1.)

Scheme Object * scheme apply multi(Scheme Object *f , int c, Scheme Object **args)

Non-top-level version of scheme apply multi. (See §2.5.1.)

Scheme Object *scheme apply to list(Scheme Object *f , Scheme Object *args)

Applies the procedure f to the list of arguments in args.

Scheme Object *scheme eval string(char *str , Scheme Env *env)

Reads an S-expression from str and evaluates it in the given namespace (raising an exception if the
expression returns multiple values).

Scheme Object *scheme eval string multi(char *str , Scheme Env *env)

Like scheme eval string, but returns scheme multiple values when the expression returns multiple
values.

Scheme Object *scheme eval string all(char *str , Scheme Env *env , int all)

Like scheme eval string, but if all is not 0, then expressions are read and evaluated from str until the
end of the string is reached.

Scheme Object *scheme tail apply(Scheme Object *f , int n, Scheme Object **args)

Applies the procedure as a tail-call. Actually, this function just registers the given application to be
invoked when control returns to the evaluation loop. (Hence, this function is only useful within a primitive
procedure that is returning to its calle.)

Scheme Object *scheme tail apply no copy(Scheme Object *f , int n, Scheme Object **args)

Like scheme tail apply, but the array args is not copied. Use this only when args has infinite extent
and will not be used again, or when args will certainly not be used again until the called procedure has
returned.

Scheme Object *scheme tail apply to list(Scheme Object *f , Scheme Object *l)

Applies the procedure as a tail-call.

Scheme Object *scheme compile(Scheme Object *form, Scheme Env *env)

Compiles the S-expression form in the given namespace. The returned value can be used with
scheme eval compiled et al.

Scheme Object *scheme expand(Scheme Object *form, Scheme Env *env)

17

2.6. Exceptions and Escape Continuations 2. MzScheme Architecture

Expands all macros in the S-expression form using the given namespace.

Scheme Object *scheme values(int n, Scheme Object **args)

Returns the given values together as multiple return values. Unless n is 1, the result will always be
scheme multiple values.

void scheme rep()

Executes a read-eval-print loop, reading from the current input port and writing to the current output
port. The current thread’s namespace is used for evaluation.

2.6 Exceptions and Escape Continuations

When MzScheme encounters an error, it raises an exception. The default exception handler invokes the error
display handler and then the error escape handler. The default error escape handler escapes via a primitive
error escape, which is implemented by calling scheme longjmp(scheme error buf). An embedding pro-
gram should call scheme setjmp(scheme error buf) before any top-level entry into MzScheme evaluation
to catch primitive error escapes:
...
if (scheme_setjmp(scheme_error_buf)) {

/* There was an error */
...

} else {
v = scheme_eval_string(s, env);

}
...

New primitive procedures can raise a generic exception by calling scheme signal error. The arguments
for scheme signal error are roughly the same as for the standard C function printf. A specific primitive
exception can be raised by calling scheme raise exn.

Full continuations are implemented in MzScheme by copying the C stack and using scheme setjmp and
scheme longjmp. As long a C/C++ application invokes MzScheme evaluation through the top-level evalua-
tion functions (scheme eval, scheme eval, etc., as opposed to scheme eval, scheme apply, etc.), the code
is protected against any unusual behavior from Scheme evaluations (such as returning twice from a function)
because continuation invocations ae confined to jumps within a single top-level evaluation. However, escape
continuation jumps are still allowed; as explained in the following sub-section, special care must be taken in
extension that is sensitive to escapes.

2.6.1 Temporarily Catching Error Escapes

When implementing new primitive procedure, it is sometimes useful to catch and handle errors that occur
in evaluating subexpressions. One way to do this is the following: first copy scheme error buf to a tem-
porary variable, invoke scheme setjmp(scheme error buf), perform the function’s work, and then restore
scheme error buf before returning a value.

However, beware that the invocation of an escaping continuation looks like a primitive error escape, but
the special indicator flag scheme jumping to continuation is non-zero (instead of its normal zero value);
this situation is only visible when implementing a new primitive procedure. Honor the escape request by
chaining to the previously saved error buffer; otherwise, call scheme clear escape.

18

2. MzScheme Architecture 2.6. Exceptions and Escape Continuations

mz_jmp_buf save;
memcpy(&save, &scheme_error_buf, sizeof(mz_jmp_buf));
if (scheme_setjmp(scheme_error_buf)) {

/* There was an error or continuation invokcation */
if (scheme_jumping_to_continuation) {
/* It was a continuation jump */
scheme_longjmp(save, 1);
/* To block the jump, instead: scheme_clear_escape(); */

} else {
/* It was a primitive error escape */

}
} else {

scheme_eval_string("x", scheme_env);
}
memcpy(&scheme_error_buf, &save, sizeof(mz_jmp_buf));

This solution works fine as long as the procedure implementation only calls top-level evaluation func-
tions (scheme eval, scheme eval, etc., as opposed to scheme eval, scheme apply, etc.). Otherwise,
use scheme dynamic wind to protect your code against full continuation jumps in the same way that
dynamic-wind is used in Scheme.

The above solution simply traps the escape; it doesn’t report the reason that the escape occurred. To
catch exceptions and obtain information about the exception, the simplest route is to mix Scheme code
with C-implemented thunks. The code below can be used to catch exceptions in a variety of situations. It
implements the function apply catch exceptions, which catches exceptions during the application of a
thunk. (This code is in plt/src/mzscheme/dynsrc/oe.c in the source code distribution.)

static Scheme_Object *exn_catching_apply, *exn_p, *exn_message;

static void init_exn_catching_apply()
{
if (!exn_catching_apply) {

char *e =
"(#%lambda (thunk) "
"(#%with-handlers ([#%void (#%lambda (exn) (#%cons #f exn))]) "
"(#%cons #t (thunk))))";

/* make sure we have a namespace with the standard syntax: */
Scheme_Env *env = (Scheme_Env *)scheme_make_namespace(0, NULL);

#if !SCHEME_DIRECT_EMBEDDED
scheme_register_extension_global(&exn_catching_apply, sizeof(Scheme_Object *));
scheme_register_extension_global(&exn_p, sizeof(Scheme_Object *));
scheme_register_extension_global(&exn_message, sizeof(Scheme_Object *));

#endif

exn_catching_apply = scheme_eval_string(e, env);
exn_p = scheme_lookup_global(scheme_intern_symbol("exn?"), env);
exn_message = scheme_lookup_global(scheme_intern_symbol("exn-message"), env);

}
}

/* This function applies a thunk, returning the Scheme value if there’s no exception,

19

2.6. Exceptions and Escape Continuations 2. MzScheme Architecture

otherwise returning NULL and setting *exn to the raised value (usually an exn
structure). */

Scheme_Object *_apply_thunk_catch_exceptions(Scheme_Object *f, Scheme_Object **exn)
{
Scheme_Object *v;

init_exn_catching_apply();

v = _scheme_apply(exn_catching_apply, 1, &f);
/* v is a pair: (cons #t value) or (cons #f exn) */

if (SCHEME_TRUEP(SCHEME_CAR(v)))
return SCHEME_CDR(v);

else {
*exn = SCHEME_CDR(v);
return NULL;

}
}

Scheme_Object *extract_exn_message(Scheme_Object *v)
{
init_exn_catching_apply();

if (SCHEME_TRUEP(_scheme_apply(exn_p, 1, &v)))
return _scheme_apply(exn_message, 1, &v);

else
return NULL; /* Not an exn structure */

}

In the following example, the above code is used to catch exceptions that occur during while evaluating
source code from a string.

static Scheme_Object *do_eval(void *s, int noargc, Scheme_Object **noargv)
{
return scheme_eval_string((char *)s, scheme_get_env(scheme_config));

}

static Scheme_Object *eval_string_or_get_exn_message(char *s)
{
Scheme_Object *v, *exn;

v = _apply_thunk_catch_exceptions(scheme_make_closed_prim(do_eval, s), &exn);
/* Got a value? */
if (v)

return v;

v = extract_exn_message(exn);
/* Got an exn? */
if (v)

return v;

/* ‘raise’ was called on some arbitrary value */
return exn;

20

2. MzScheme Architecture 2.6. Exceptions and Escape Continuations

}

2.6.2 Library Functions

void scheme signal error(char *msg , ...)

Raises a generic primitive exception. The parameters are roughly as for printf, but restricted to the
following format directives:

• %c — a character

• %d — an integer

• %ld — a long integer

• %f — a floating-point double

• %s — a nul-terminated string

• %S — a MzScheme symbol (a Scheme Object*)

• %t — a string with a long size (two arguments), possibly containing a non-terminating nul character,
and possibly without a nul-terminator

• %T — a MzScheme string (a Scheme Object*)

• %q — a string, truncated to 253 characters, with ellipses printed if the string is truncated

• %Q — a MzScheme string (a Scheme Object*), truncated to 253 characters, with ellipses printed if
the string is truncated

• %V — a MzScheme value (a Scheme Object*), truncated according to the current error print width.

• %e — an errno value, to be printed as a text message.

• %E — a platform-specific value, to be printed as a text message.

• %% — a percent sign

The arguments following the format string must include no more than 10 strings, 10 MzScheme values, 10
integers, and 10 floating-point numbers. (This restriction simplifies the implementation with precise garbage
collection.)

void scheme raise exn(int exnid , ...)

Raises a specific primitive exception. The exnid argument specifies the exception to be raised. If an
instance of that exception has n fields, then the next n−2 arguments are values for those fields (skipping the
message and debug-info fields). The remaining arguments start with an error string and proceed roughly
as for printf; see scheme signal error above for more details.

Exception ids are #defined using the same names as in Scheme, but prefixed with “MZ”, all
letters are capitalized, and all “:’s’, “-”s, and “/”s are replaced with underscores. For example,
MZEXN I O FILESYSTEM DIRECTORY is the exception id for the bad directory pathname exception.

void scheme warning(char *msg , ...)

21

2.6. Exceptions and Escape Continuations 2. MzScheme Architecture

Signals a warning. The parameters are roughly as for printf; see scheme signal error above for more
details.

void scheme wrong count(char *name, int minc, int maxc, int argc, Scheme Object **argv)

This function is automatically invoked when the wrong number of arguments are given to a prim-
itive procedure. It signals that the wrong number of parameters was received and escapes (like
scheme signal error). The name argument is the name of the procedure that was given the wrong num-
ber of arguments; minc is the minimum number of expected arguments; maxc is the maximum number of
expected arguments, or -1 if there is no maximum; argc and argv contain all of the received arguments.

void scheme wrong type(char *name, char *expected , int which, int argc, Scheme Object **argv)

Signals that an argument of the wrong type was received, and escapes (like scheme signal error).
name is the name of the procedure that was given the wrong type of argument; expected is the name of the
expected type; which is the offending argument in the argv array; argc and argv contain all of the received
arguments. If the original argc and argv are not available, provide -1 for which and a pointer to the bad
value in argv ; argc is ignored in this case.

void scheme wrong return arity(char *name, int expected , int got , Scheme Object **argv ,
const char *detail , . . .)

Signals that the wrong number of values were returned to a multiple-values context. The expected
argument indicates how many values were expected, got indicates the number received, and argv are the
received values. The detail string can be NULL or it can contain a printf-style string (with additional
arguments) to describe the context of the error; see scheme signal error above for more details about the
printf-style string.

void scheme unbound global(char *name)

Signals an unbound-variable error, where name is the name of the variable.

char *scheme make provided string(Scheme Object *o, int count , int *len)

Converts a Scheme value into a string for the purposes of reporting an error message. The count argument
specifies how many Scheme values total will appear in the error message (so the string for this value can be
scaled appropriately). If len is not NULL, it is filled with the length of the returned string.

char *scheme make args string(char *s, int which, int argc, Scheme Object **argv , long *len)

Converts an array of Scheme values into a string, skipping the array element indicated by which. This
function is used to specify the “other” arguments to a function when one argument is bad (thus giving the
user more information about the state of the program when the error occurred). If len is not NULL, it is filled
with the length of the returned string.

void scheme check proc arity(char *where, int a, int which, int argc, Scheme Object **argv)

Checks the whichth argument in argv to make sure it is a procedure that can take a arguments. If
there is an error, the where, which, argc, and argv arguments are passed on to scheme wrong type. As in
scheme wrong type, which can be -1, in which case *argv is checked.

Scheme Object *scheme dynamic wind(
void (*pre)(void *data),
Scheme Object *(*action)(void *data),

22

2. MzScheme Architecture 2.7. Threads

void (*post)(void *data),
Scheme Object *(*jmp handler)(void *data),
void *data)

Evaluates calls the function action to get a value for the scheme dynamic wind call. The functions pre
and post are invoked when jumping into and out of action, repsectively.

The function jmp handler is called when an error is signaled (or an escaping continuation is invoked)
duirng the call to action; if jmp handler returns NULL, then the error is passed on to the next error handler,
otherwise the return value is used as the return value for the scheme dynamic wind call.

The pointer data can be anything; it is passed along in calls to action, pre, post , and jmp handler .

void scheme clear escape()

Clears the “jumping to escape continuation” flag associated with a thread. Call this function when
blocking escape continuation hops (see the first example in §2.6.1).

2.7 Threads

The intializer function scheme basic env creates the main Scheme thread; all other threads are created
through calls to scheme thread.

Information about each internal MzScheme thread is kept in a Scheme Process structure. A pointer to the
current thread’s structure is available as scheme current process. A Scheme Process structure includes
the following fields:

• error buf — This is the mz jmp buf value used to escape from errors. The error buf value of the
current thread is available as scheme error buf.

• cjs.jumping to continuation — This flag distinguishes escaping-continuation invocations from
error escapes. The cjs.jumping to continuation value of the current thread is available as
scheme jumping to continuation.

• config — The thread’s current parameterization. See also §2.8.

• next — The next thread in the linked list of threads; this is NULL for the main thread.

The list of all threads is kept in a linked list; scheme first process points to the first thread in the list.
The last thread in the list is always the main thread.

2.7.1 Integration with Threads

MzScheme’s threads can break external C code under two circumstances:

• Pointers to stack-based values can be communicated between threads. For example, if thread A stores a
pointer to a stack-based variable in a global variable, if thread B uses the pointer in the global variable,
it may point to data that is not currently on the stack.

• C functions that can invoke MzScheme (and also be invoked by MzScheme) depend on strict function-
call nesting. For example, suppose a function F uses an internal stack, pushing items on to the stack
on entry and popping the same items on exit. Suppose also that F invokes MzScheme to evaluate an
expression. If the evaluate on this expression invoked F again in a new thread, but then returns to the
first thread before completeing the second F, then F’s internal stack will be corrupted.

23

2.7. Threads 2. MzScheme Architecture

If either of these circumstances occurs, MzScheme will probably crash.

2.7.2 Blocking the Current Thread

Embedding or extension code sometimes needs to block, but blocking should allow other MzScheme threads
to execute. To allow other threads to run, block using scheme block until. This procedure takes two
functions: a polling function that tests whether the blocking operation can be completed, and a prepare-
to-sleep function that sets bits in fd sets when MzScheme decides to sleep (because all MzScheme threads
are blocked). Under Windows and BeOS, an “fd set” can also accomodate OS-level semaphores or other
handles via scheme add fd handle.

Since the functions passed to scheme block until are called by the Scheme thread scheduler, they must
never raise exceptions, call scheme apply, or trigger the evaluation of Scheme code in any way. The
scheme block until function itself may call the current exception handler, however, in reaction to a break
(if breaks are enabled).

2.7.3 Threads in Embedded MzScheme with Event Loops

When MzScheme is embedded in an application with an event-based model (i.e., the execution of Scheme
code in the main thread is repeatedly triggered by external events until the application exits) special hooks
must be set to ensure that non-main threads execute correctly. For example, during the execution in the
main thread, a new thread may be created; the new thread may still be running when the main thread
returns to the event loop, and it may be arbitrarily long before the main thread continues from the event
loop. Under such circumstances, the embedding program must explicitly allow MzScheme to execute the
non-main threads; this can be done by periodically calling the function scheme check threads.

Thread-checking only needs to be performed when non-main threads exist (or when there are active callback
triggers). The embedding application can set the global function pointer scheme notify multithread to a
function that takes an integer parameter and returns void. This function is be called with 1 when thread-
checking becomes necessary, and then with 0 when thread checking is no longer necessary. An embedding
program can use this information to prevent unnecessary scheme check threads polling.

The below code illustrates how MrEd formerly set up scheme check threads polling using the wxWindows
wxTimer class. (Any regular event-loop-based callback is appropriate.) The scheme notify multithread
pointer is set to MrEdInstallThreadTimer. (MrEd no longer work this way, however.)

class MrEdThreadTimer : public wxTimer
{
public:
void Notify(void); /* callback when timer expires */

};

static int threads_go;
static MrEdThreadTimer *theThreadTimer;
#define THREAD_WAIT_TIME 40

void MrEdThreadTimer::Notify()
{
if (threads_go)

Start(THREAD_WAIT_TIME, TRUE);

scheme_check_threads();
}

24

2. MzScheme Architecture 2.7. Threads

static void MrEdInstallThreadTimer(int on)
{
if (!theThreadTimer)

theThreadTimer = new MrEdThreadTimer;

if (on)
theThreadTimer->Start(THREAD_WAIT_TIME, TRUE);

else
theThreadTimer->Stop();

threads_go = on;
if (on)

do_this_time = 1;
}

An alternate architecture, which MrEd now uses, is to send the main thread into a loop, which blocks until
an event is ready to handle. MzScheme automatically takes care of running all threads, and it does so
efficiently because the main thread blocks on a file descriptor, as explained in §2.7.2.

2.7.3.1 Callbacks for Blocked Threads

Scheme threads are sometimes blocked on file descriptors, such as an input file or the X event socket.
Blocked non-main threads do not block the main thread, and therefore do not affect the event loop, so
scheme check threads is sufficient to implement this case correctly. However, it is wasteful to poll these
descriptors with scheme check threads when nothing else is happening in the application and when a lower-
level poll on the file descriptors can be installed. If the global function pointer scheme wakeup on input is
set, then this case is handled more efficiently by turning off thread checking and issuing a “wakeup” request
on the blocking file descriptors through scheme wakeup on input. (The scheme wakeup on input function
is only used on platforms with file descriptions.)

A scheme wakeup on input procedure takes a pointer to an array of three fd sets (sortof1) and returns
void. The scheme wakeup on input does not sleep; it just sets up callbacks on the specified file descriptors.
When input is ready on any of those file descriptors, the callbacks are be removed and scheme wake up is
called.

For example, the X Windows version of MrEd formerly set scheme wakeup on input to this MrEdNeedWakeup:

static XtInputId *scheme_cb_ids = NULL;
static int num_cbs;

static void MrEdNeedWakeup(void *fds)
{
int limit, count, i, p;
fd_set *rd, *wr, *ex;

rd = (fd_set *)fds;
wr = ((fd_set *)fds) + 1;
ex = ((fd_set *)fds) + 2;

limit = getdtablesize();

1To ensure maximum portability, use MZ FD XXX instead of FD XXX.

25

2.7. Threads 2. MzScheme Architecture

/* See if we need to do any work, really: */
count = 0;
for (i = 0; i < limit; i++) {

if (MZ_FD_ISSET(i, rd))
count++;

if (MZ_FD_ISSET(i, wr))
count++;

if (MZ_FD_ISSET(i, ex))
count++;

}

if (!count)
return;

/* Remove old callbacks: */
if (scheme_cb_ids)

for (i = 0; i < num_cbs; i++)
notify_set_input_func((Notify_client)NULL, (Notify_func)NULL,

scheme_cb_ids[i]);

num_cbs = count;
scheme_cb_ids = new int[num_cbs];

/* Install callbacks */
p = 0;
for (i = 0; i < limit; i++) {

if (MZ_FD_ISSET(i, rd))
scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputReadMask,
(XtInputCallbackProc)MrEdWakeUp, NULL);

if (MZ_FD_ISSET(i, wr))
scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputWriteMask,
(XtInputCallbackProc)MrEdWakeUp, NULL);

if (MZ_FD_ISSET(i, ex))
scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputExceptMask,
(XtInputCallbackProc)MrEdWakeUp,
NULL);

}
}

/* callback function when input/exception is detected: */
Bool MrEdWakeUp(XtPointer, int *, XtInputId *)
{
int i;

if (scheme_cb_ids) {
/* Remove all callbacks: */
for (i = 0; i < num_cbs; i++)
XtRemoveInput(scheme_cb_ids[i]);

scheme_cb_ids = NULL;

26

2. MzScheme Architecture 2.7. Threads

/* ‘‘wake up’’ */
scheme_wake_up();

}

return FALSE;
}

2.7.4 Sleeping by Embedded MzScheme

When all MzScheme threads are blocked, MzScheme must “sleep” for a certain number of seconds or until
external input appears on some file descriptor. Generally, sleeping should block the main event loop of
the entire application. However, the way in which sleeping is performed may depend on the embedding
application. The global function pointer scheme sleep can be set by an embedding application to implement
a blocking sleep, although MzScheme implements this function for you.

A scheme sleep function takes two arguments: a float and a void *. The latter is really points to an array
of three “fd set” records (one for read, one for write, and one for exceptions); these records are described
further below. If the float argument is non-zero, then the scheme sleep function blocks for the specified
number of seconds, at most. The scheme sleep function should block until there is input one of the file
descriptors specified in the “fd set,” indefinitely if the float argument is zero.

The second argument to scheme sleep is conceptually an array of three fd set records, but always use
scheme get fdset to get anything other than the zeroth element of this array, and manipulate each “fd set”
with MZ FD XXX instead of FD XXX.

The following function mzsleep is an appropriate scheme sleep function for most any Unix or Windows
application. (This is approximately the built-in sleep used by MzScheme.)
void mzsleep(float v, void *fds)
{
if (v) {

sleep(v);
} else {

int limit;
fd_set *rd, *wr, *ex;

ifdef WIN32
limit = 0;

else
limit = getdtablesize();

endif

rd = (fd_set *)fds;
wr = (fd_set *)scheme_get_fdset(fds, 1);
ex = (fd_set *)scheme_get_fdset(fds, 2);

select(limit, rd, wr, ex, NULL);
}

}

2.7.5 Library Functions

Scheme Object *scheme thread(Scheme Object *thunk , Scheme Config *config)

27

2.7. Threads 2. MzScheme Architecture

Creates a new thread, using the given parameterization for the new thread. If config is NULL, a new
parameterization is created using the current thread’s parameterization’s current base parameterization. The
new thread begins evaluating the application of the procedure thunk (with no arguments).

Scheme Object *scheme make sema(long v)

Creates a new semaphore.

void scheme post sema(Scheme Object *sema)

Posts to sema.

int scheme wait sema(Scheme Object *sema, int try)

Waits on sema. If try is not 0, the wait can fail and 0 is returned for failure, otherwise 1 is returned.

void scheme process block(float sleep time)

Allows the current thread to be swapped out in favor of other threads. If sleep time positive, then the
current thread will sleep for at least sleep time seconds.

void scheme swap process(Scheme Process *process)

Swaps out the current thread in favor of process.

void scheme break thread(Scheme Process *thread)

Issues a user-break in the given thread.

int scheme break waiting(Scheme Process *thread)

Returns 1 if a break from break-thread or scheme break thread has occured in the specified process
but has not yet been handled.

int scheme block until(int (*f)(Scheme Object *data),
void (*fdf)(Scheme Object *data, void *fds), void *data, float sleep)

Blocks the current thread until f returns a true value. The f function is called periodically, and it may
be called multiple times even after it returns a true value. (If f ever returns a true value, it must continue
to return a true value.) The argument to f is the same data as provided to scheme block until, and data
is ignored otherwise. (The type mismatch between void* and Scheme Object* is an ugly artifact. The data
argument is not intended to necessarily be a Scheme Object* value.)

If MzScheme decides to sleep, then the fdf function is called to sets bits in fds, conceptually an array
of three fd sets: one or reading, one for writing, and one for exceptions. Use scheme get fdset to get
elements of this array, and manipulate an “fd set” with MZ FD XXX instead of FD XXX. Under Windows and
BeOS, an “fd set” can also accomodate OS-level semaphores or other handles via scheme add fd handle.

The fdf argument can be NULL, indicating that the thread becomes unblocked only through Scheme
actions, and never through external processes (e.g., through a socket or OS-level semaphore).

If sleep is a positive number, then scheme block until polls f roughly every sleep seconds, but
scheme block until does not return until f returns a true value.

28

2. MzScheme Architecture 2.7. Threads

The return value from scheme block until is the return value of its most recent call to f , which enables
f to return some information to the scheme block until caller.

See §2.7.2 for information about restrictions on the f and fdf functions.

void scheme check threads()

This function is periodically called by the embedding program to give background processes time to
execute. See §2.7.3 for more information.

void scheme wake up()

This function is called by the embedding program when there is input on an external file descriptor. See
§2.7.4 for more information.

void *scheme get fdset(void *fds)

Extracts an “fd set” from an array passed to scheme sleep, a callback for scheme block until, or an
input port callback for scheme make input port.

void scheme add fd handle(void *h, void *fds, int repost)

Adds an OS-level semaphore (Windows, BeOS) or other waitable handle (Windows) to the “fd set”
fds. When MzScheme performs a “select” to sleep on fds, it also waits on the given semaphore or handle.
This feature makes it possible for MzScheme to sleep until it is awakened by an external process.

MzScheme does not attempt to deallocate the given semaphore or handle, and the “select” call using
fds may be unblocked due to some other file descriptor or handle in fds. If repost is a true value, then h must
be an OS-level semeaphore, and if the “select” unblocks due to a post on h, then h is reposted; this allows
clients to treat fds-installed semaphores uniformly, whether or not a post on the semaphore was consumed
by “select”.

The scheme add fd handle function is useful for implementing the second procedure passed to
scheme wait until, or for implementing a custom input port.

Under Unix and MacOS, this function has no effect.

void scheme add fd eventmask(void *fds, int mask)

Adds an OS-level event type (Windows) to the set of types in the “fd set” fds. When MzScheme
performs a “select” to sleep on fds, it also waits on events of them specified type. This feature makes it
possible for MzScheme to sleep until it is awakened by an external process.

The event mask is only used when some handle is installed with scheme add fd handle. This restriction
is stupid, and it may force you to create a dummy semaphore that is never posted.

Under Unix, BeOS, and MacOS, this function has no effect.

int scheme tls allocate()

Allocates a thread local storage index to be used with scheme tls set and scheme tls get.

void scheme tls set(int index , void *v)

Stores a thread-specific value using an index allocated with scheme tls allocate.

29

2.8. Parameterizations 2. MzScheme Architecture

void *scheme tls get(int index)

Retrieves a thread-specific value installed with scheme tls set. If no thread-specific value is available
for the given index, NULL is returned.

2.8 Parameterizations

Parameterization information is stored in a Scheme Config record. For the currently executing thread,
scheme config is the current parameterization. For any thread, the thread’s Scheme Process record’s
config field stores the parameterization pointer.

Parameter values for built-in parameters are obtained and modified using scheme get param and
scheme set param. Each parameter is stored as a Scheme Object * value, and the built-in parameters
are accessed through the following indices:

• MZCONFIG ENV — current-namespace (use scheme get env)
• MZCONFIG INPUT PORT — current-input-port
• MZCONFIG OUTPUT PORT — current-output-port
• MZCONFIG ERROR PORT — current-error-port
• MZCONFIG ENABLE BREAK — break-enabled
• MZCONFIG ENABLE EXCEPTION BREAK — exception-break-enabled
• MZCONFIG ERROR DISPLAY HANDLER — error-display-handler
• MZCONFIG ERROR PRINT VALUE HANDLER — error-value->string-handler
• MZCONFIG EXIT HANDLER — exit-handler
• MZCONFIG EXN HANDLER — current-exception-handler
• MZCONFIG DEBUG INFO HANDLER — debug-info-handler
• MZCONFIG EVAL HANDLER — current-eval
• MZCONFIG LOAD HANDLER — current-load
• MZCONFIG PRINT HANDLER — current-print
• MZCONFIG PROMPT READ HANDLER — current-prompt-read
• MZCONFIG CAN READ GRAPH — read-accept-graph
• MZCONFIG CAN READ COMPILED — read-accept-compiled
• MZCONFIG CAN READ BOX — read-accept-box
• MZCONFIG CAN READ TYPE SYMBOL — read-accept-type-symbol
• MZCONFIG CAN READ PIPE QUOTE — read-accept-bar-quote
• MZCONFIG PRINT GRAPH — print-graph
• MZCONFIG PRINT STRUCT — print-struct
• MZCONFIG PRINT BOX — print-box
• MZCONFIG CASE SENS — read-case-sensitive
• MZCONFIG SQUARE BRACKETS ARE PARENS — read-square-brackets-as-parens
• MZCONFIG CURLY BRACES ARE PARENS — read-curly-braces-as-parens
• MZCONFIG ERROR PRINT WIDTH — error-print-width
• MZCONFIG CONFIG BRANCH HANDLER — parameterization-branch-handler
• MZCONFIG ALLOW SET UNDEFINED — allow-compile-set!-undefined
• MZCONFIG ALLOW COND AUTO ELSE — allow-compile-cond-fallthrough
• MZCONFIG MANAGER — current-custodian
• MZCONFIG REQ LIB USE COMPILED — require-library-use-compiled
• MZCONFIG LOAD DIRECTORY — current-load-relative-directory
• MZCONFIG COLLECTION PATHS — current-library-collection-paths
• MZCONFIG PORT PRINT HANDLER — global-port-print-handler
• MZCONFIG REQUIRE COLLECTION — current-require-relative-collection
• MZCONFIG LOAD EXTENSION HANDLER — current-load-extension

30

2. MzScheme Architecture 2.8. Parameterizations

When installing a new parameter with scheme set param, no checking is performed on the supplied value to
ensure that it is a legal value for the parameter; this is the responsibility of the caller of scheme set param.
Note that Boolean parameters should only be set to the values #t and #f.

New primitive parameter indices are created with scheme new param and implemented with
scheme make parameter and scheme param config.

2.8.1 Library Functions

Scheme Object *scheme get param(Scheme Config *config , int param id)

Gets the current value of the parameter specified by param id . (This is a macro.)

Scheme Object *scheme get param or null(Scheme Config *config , int param id)

Gets the current value of the parameter specified by param id . (This is a macro.)

Scheme Object *scheme make config(Scheme Config *base)

Creates and returns a new configuration, using base as the base configuration. If base is NULL, the current
thread’s parameterization’s current base parameterization is used.

int scheme new param()

Allocates a new primitive parameter index. This function must be called before scheme basic env.

Scheme Object *scheme make parameter(Scheme Prim *function, char *name)

Use this function instead of the other primitive-constructing functions, like scheme make prim, to create
a primitive parameter procedure. See also scheme param config, below.

Scheme Object *scheme param config(char *name, Scheme Object *param, int argc, Scheme Object **argv ,
int arity , Scheme Prim *check , char *expected , int isbool)

Call this procedure in a primitive parameter procedure to implement the work of getting or setting the
parameter. The name argument should be the parameter procedure name; it is used to report errors. The
param argument is a fixnum corresponding to the primtive parameter index returned by scheme new param.
The argc and argv arguments should be the un-touched and un-tested arguments that were passed to the
primitive parameter. Argument-checking is performed within scheme param config using arity , check ,
expected , and isbool :

• If arity is non-negative, potential parameter values must be able to accept the specified number of
arguments. The check and expected arguments should be NULL.

• If check is not NULL, it is called to check a potential parameter value. The arguments passed to check
are always 1 and an array that contains the potential parameter value. If isbool is 0 and check returns
scheme false, then a type error is reported using name and expected . If isbool is 1, then a type error
is reported only when check returns NULL and any non-NULL return value is used as the actual value
to be stored for the parameter.

• Otherwise, isbool should be 1. A potential procedure argument is then treated as a Boolean value.

31

2.9. Bignums, Rationals, and Complex Numbers 2. MzScheme Architecture

2.9 Bignums, Rationals, and Complex Numbers

MzScheme supports integers of an arbitrary magnitude; when an integer cannot be represented as a fixnum
(i.e., 30 or 62 bits plus a sign bit), then it is reprsented by the MzScheme type scheme bignum type. There
is no overlap in integer values represented by fixnums and bignums.

Rationals are implemented by the type scheme rational type, composed of a numerator and a denominator.
The numerator and denominator fixnums or bignums (possibly mixed).

Complex numbers are implemented by the types scheme complex type and scheme complex izi type, com-
posed of a real and imaginary part. The real and imaginary parts will either be both flonums, both exact
numbers (fixnums, bignums, and rationals can be mixed in any way), or one part will be eacxt 0 and the
other part will be a flonum. If the inexact part is inexact 0, the type is scheme complex izi type, otherwise
the type is scheme complex type; this distinction make it easy to test whether a complex number should
be treated as a real number.

2.9.1 Library Functions

int scheme is exact(Scheme Object *n)

Returns 1 if n is an exact number, 0 otherwise (n need not be a number).

int scheme is inexact(Scheme Object *n)

Returns 1 if n is an inexact number, 0 otherwise (n need not be a number).

Scheme Object *scheme make bignum(long v)

Creates a bignum representing the integer v . This can create a bignum that otherwise fits into a fixnum.
This must only be used to create temporary values for use with the bignum functions. Final results can be
normalized with scheme bignum normalize. Only normalized numbers can be used with procedures that
are not specific to bignums.

Scheme Object *scheme make bignum from unsigned(unsigned long v)

Like scheme make bignum, but works on unsigned integers.

double scheme bignum to double(Scheme Object *n)

Converts a bignum to a floating-point number, with reasonable but unspecified accuracy.

float scheme bignum to float(Scheme Object *n)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme bignum to double.

Scheme Object *scheme bignum from double(double d)

Creates a bignum that is close in magnitude to the floating-point number d . The conversion accuracy
is reasonable but unspecified.

Scheme Object *scheme bignum from float(float f)

32

2. MzScheme Architecture 2.9. Bignums, Rationals, and Complex Numbers

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme bignum from double.

char *scheme bignum to string(Scheme Object *n, int radix)

Writes a bignum into a newly allocated string.

Scheme Object *scheme read bignum(char *str , int offset , int radix)

Reads a bignum from a string, starting from position offset in str . If the string does not represent
an integer, then NULL will be returned. If the string represents a number that fits in 31 bits, then a
scheme integer type object will be returned.

Scheme Object *scheme bignum normalize(Scheme Object *n)

If n fits in 31 bits, then a scheme integer type object will be returned. Otherwise, n is returned.

Scheme Object *scheme make rational(Scheme Object *r , Scheme Object *d)

Creates a rational from a numerator and denominator. The n and d parameters must be fixnums or
bignums (possibly mixed). The resulting will be normalized (thus, an bignum or fixnum might be returned).

double scheme rational to double(Scheme Object *n)

Converts the rational n to a double.

float scheme rational to float(Scheme Object *n)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme rational to double.

Scheme Object *scheme rational numerator(Scheme Object *n)

Returns the numerator of the rational n.

Scheme Object *scheme rational denominator(Scheme Object *n)

Returns the denominator of the rational n.

Scheme Object *scheme rational from double(double d)

Converts the given double into a maximally-precise rational.

Scheme Object *scheme rational from float(float d)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme rational from double.

Scheme Object *scheme make complex(Scheme Object *r , Scheme Object *i)

Creates a complex number from real and imaginary parts. The r and i arguments must be fixnums,
bignums, flonums, or rationals (possibly mixed). The resulting number will be normalized (thus, a real
number might be returned).

33

2.10. Ports and the Filesystem 2. MzScheme Architecture

Scheme Object *scheme complex real part(Scheme Object *n)

Returns the real part of the complex number n.

Scheme Object *scheme complex imaginary part(Scheme Object *n)

Returns the imaginary part of the complex number n.

2.10 Ports and the Filesystem

Ports are represented as Scheme values with the types scheme input port type and scheme output port type.
The function scheme read takes an input port value and returns the next S-expression from the port. The
function scheme write takes an output port and a value and writes the value to the port. Other standard
low-level port functions are also provided, such as scheme getc.

File ports are created with scheme make file input port and scheme make file output port; these
functions take a FILE * file pointer and return a Scheme port. Strings are read or written with
scheme make string input port, which takes a null-terminated string, and scheme make string output port,
which takes no arguments. The contents of a string output port are obtained with scheme get string output.

Custom ports, with arbitrary read/write handlers, are created with scheme make input port and
scheme make output port.

2.10.1 Library Functions

Scheme Object *scheme read(Scheme Object *port)

Reads the next S-expression from the given input port.

void scheme write(Scheme Object *obj , Scheme Object *port)

writes the Scheme value obj to the given output port.

void scheme write w max(Scheme Object *obj , Scheme Object *port , int n)

Like scheme write, but the printing is truncated to n characters. (If printing is truncated, the last three
characters are printed as “.”.)

void scheme display(Scheme Object *obj , Scheme Object *port)

displays the Scheme value obj to the given output port.

void scheme display w max(Scheme Object *obj , Scheme Object *port , int n)

Like scheme display, but the printing is truncated to n characters. (If printing is truncated, the last
three characters are printed as “.”.)

void scheme write string(char *str , long d , long len, Scheme Object *port)

displays len characters of str , starting with the dth character, to the given output port.

char *scheme write to string(Scheme Object *obj , long *len)

34

2. MzScheme Architecture 2.10. Ports and the Filesystem

writes the Scheme value obj to a newly allocated string. If len is not NULL, *len is set to the length of
the string.

void scheme write to string w max(Scheme Object *obj , long *len, int n)

Like scheme write to string, but the string is truncated to n characters. (If the string is truncated,
the last three characters are “.”.)

char *scheme display to string(Scheme Object *obj , long *len)

displays the Scheme value obj to a newly allocated string. If len is not NULL, *len is set to the length
of the string.

void scheme display to string w max(Scheme Object *obj , long *len, int n)

Like scheme display to string, but the string is truncated to n characters. (If the string is truncated,
the last three characters are “.”.)

void scheme debug print(Scheme Object *obj)

writes the Scheme value obj to the main thread’s output port.

void scheme flush output(Scheme Object *port)

If port is a file port, a buffered data is written to the file. Otherwise, there is no effect. port must be an
output port.

int scheme getc(Scheme Object *port)

Get the next character from the given input port.

int scheme peekc(Scheme Object *port)

Peeks the next character from the given input port.

long scheme get chars(Scheme Object *port , long size, char *buffer , int offset)

Gets multiple characters at once. The size argument indicates the number of requested characters,
to be put into the buffer array starting at offset . The return value is the number of characters actually
read, which can be less than the requested number of characters if an end-of-file is encountered. See also
scheme are all chars ready.

If size is negative, then scheme get chars returns only as many characters as are immediately ready
for reading, up to -size characters. If no characters are ready, scheme get chars blocks until at least one
character is ready.

int scheme are all chars ready(Scheme Object *port)

Returns 1 if scheme char ready will never return 0 for port . This function is useful for ensuring that
scheme get chars will not block for multiple-character reads.

void scheme ungetc(int ch, Scheme Object *port)

35

2.10. Ports and the Filesystem 2. MzScheme Architecture

Puts the character ch back as the next character to be read from the given input port. The character
need not have been read from port , and scheme ungetc can be called to insert any number of characters at
the start of port .

Use scheme getc followed by scheme unget only when your program will certainly call scheme getc
again to consume the character. Otherwsie, use scheme peekc, because some a port may implement peeking
and getting differently.

int scheme char ready(Scheme Object *port)

Returns 1 if a call to scheme getc is guranteed not to block for the given input port.

void scheme need wakeup(Scheme Object *port , void *fds)

Requests that appropriate bits are set in fds to specify which file descriptors(s) the given input port
reads from. (fds is sortof a pointer to an fd set struct; see §2.7.3.1.)

long scheme tell(Scheme Object *port)

Returns the current read position of the given input port.

long scheme tell line(Scheme Object *port)

Returns the current read line of the given input port. If lines are not counted, -1 is returned.

void scheme count lines(Scheme Object *port)

Turns on line-counting for the given input port. To get accurate line counts, call this function immedi-
ately after creating a port.

void scheme close input port(Scheme Object *port)

Closes the given input port.

void scheme close output port(Scheme Object *port)

Closes the given output port.

Scheme Object *scheme make port type(char *name)

Creates a new port subtype.

Scheme Input Port *scheme make input port(Scheme Object *subtype,
void *data,
int (*getc fun)(Scheme Input Port*),
int (*peekc fun)(Scheme Input Port*),
int (*char ready fun)(Scheme Input Port*),
void (*close fun)(Scheme Input Port*),
void (*need wakeup fun)(Scheme Input Port*, void *),
int must close)

Creates a new input port with arbitary control functions. The pointer data will be installed as the
port’s user data, which can be extracted/set with the SCHEME INPORT VAL macro. The C value EOF should
be used by getc fun to return an end-of-file. If peekc fun is NULL, it is automatically implemented in terms

36

2. MzScheme Architecture 2.10. Ports and the Filesystem

of getc fun.

The function need wakeup fun will be invoked when the port is blocked on a read; need wakeup fun
should set appropriate bits in fds to specify which file decriptor(s) it is blocked on. The fds argument is
conceptually an array of three fd set structs (one for read, one for write, one for exceptions), but manipulate
this array using scheme get fdset to get a particular element of the array, and use MZ FD XXX instead of
FD XXX to manipulate a single “fd set”. Under Windows and BeOS, each “fd set” can also contain OS-level
semaphores or other handles via scheme add fd handle.

Although the return type of scheme make input port is Scheme Input Port *, it can be cast into a
Scheme Object *.

If must close is non-zero, the new port will be registered with the current custodian, and close fun is
guranteed to be called before the port is garbage-collected.

Scheme Output Port *scheme make output port(Scheme Object *subtype,
void *data,
void (*write string fun)(char *, long, Scheme Output Port*),
void (*close fun)(Scheme Output Port*),
int must close)

Creates a new output port with arbitary control functions. The pointer data will be installed as the
port’s user data, which can be extracted/set with the SCHEME OUTPORT VAL macro. When write string fun
is called, the second parameter is the length of the string to be written.

Although the return type of scheme make output port is Scheme Output Port *, it can be cast into a
Scheme Object *.

If must close is non-zero, the new port will be registered with the current custodian, and close fun is
guranteed to be called before the port is garbage-collected.

Scheme Object *scheme make file input port(FILE *fp)

Creates a Scheme input file port from an ANSI C file pointer.

Scheme Object *scheme make named file input port(FILE *fp, char *filename)

Creates a Scheme input file port from an ANSI C file pointer. The filename is used for error reporting.

Scheme Object *scheme make file output port(FILE *fp)

Creates a Scheme output file port from an ANSI C file pointer.

Scheme Object *scheme make string input port(char *str)

Creates a Scheme input port from a string; successive read-chars on the port return successive characters
in the string.

Scheme Object *scheme make string output port()

Creates a Scheme output port; all writes to the port are kept in a string, which can be obtained with
scheme get string output.

char *scheme get string output(Scheme Object *port)

37

2.10. Ports and the Filesystem 2. MzScheme Architecture

Returns (in a newly allocated string) all data that has been written to the given string output port so
far. (The returned string is null-terminated.)

char *scheme get sized string output(Scheme Object *port , int *len)

Returns (in a newly allocated string) all data that has been written to the given string output port so
far and fills in *len with the length of the string (not including the null terminator).

void scheme pipe(Scheme Object **read , Scheme Object **write)

Creates a pair of ports, setting *read and *write; data written to *write can be read back out of *read .
The pipe can store arbitrarily many unread characters,

void scheme pipe with limit(Scheme Object **read , Scheme Object **write, int limit)

Like scheme pipe is limit is 0. If limit is positive, creates a pipe that stores at most limit unread
characters, blocking writes when the pipe is full.

int scheme file exists(char *name)

Returns 1 if a file by the given name exists, 0 otherwise. If name specifies a directory, FALSE is returned.
The name should be already expanded.

int scheme directory exists(char *name)

Returns 1 if a directory by the given name exists, 0 otherwise. The name should be already expanded.

char *scheme expand filename(char *name, int len, char *where, int *expanded)

Expands the pathname name, resolving relative paths with respect to the current directory parameter.
Under Unix, this expands “∼” into a user’s home directory. On the Macintosh, aliases are resolved to real
pathnames. The len argument is the length of the input string; if it is -1, the string is assumed to be
null-terminated. The where argument is used if there is an error in the filename; if this is NULL, and error is
not reported and NULL is returned instead. If expanded is not NULL, *expanded is set to 1 if some expansion
takes place, or 0 if the input name is simply returned.

char *scheme build mac filename(FSSpec *spec, int isdir)

MacOS only: Converts an FSSpec record (defined by MacOS) into a pathname string. If spec contains
only directory information (via the vRefNum and parID fields), isdir should be 1, otherwise it should be 0.

int scheme mac path to spec(const char *filename, FSSpec *spec, long *type)

MacOS only: Converts a pathname into an FSSpec record (defined by MacOS), returning 1 if successful
and 0 otherwise. If type is not NULL and filename is a file that exists, type is filled with the file’s four-character
MacOS type. If type is not NULL and filename is not a file that exists, type is filled with 0.

char *scheme os getcwd(char *buf , int buflen, int *actlen, int noexn)

Gets the current working directory according to the operating system. This is separate from MzScheme’s
current directory parameter.

The direcory path is written into buf , of length buflen, if it fits. Otherwise, a new (collectable) string is
allocated for the directory path. If actlen is not NULL, *actlen is set to the length of the current directory

38

2. MzScheme Architecture 2.11. Structures

path. If noexn is no 0, then an exception is raised if the operation fails.

int scheme os setcwd(char *buf , int noexn)

Sets the current working directory according to the operating system. This is separate from MzScheme’s
current directory parameter.

If noexn is not 0, then an exception is raised if the operation fails.

char *scheme format(char *format , int flen, int argc, Scheme Object **argv , int *rlen)

Creates a string like MzScheme’s format procedure, using the format string format (of length flen) and
the extra arguments specified in argc and argv . If rlen is not NULL, *rlen is filled with the length of the
resulting string.

void scheme printf(char *format , int flen, int argc, Scheme Object **argv)

Writes to the current output port like MzScheme’s printf procedure, using the format string format
(of length flen) and the extra arguments specified in argc and argv .

2.11 Structures

A new Scheme structure type is created with scheme make struct type. This creates the structure type,
but does not generate the constructor, etc. procedures. The scheme make struct values function takes a
structure type and creates these procedures. The scheme make struct names function generates the stan-
dard structure procvedures names given the structure type’s name. Instances of a structure type are created
with scheme make struct instance and the function scheme is struct instance tests a structure’s type.
The scheme struct ref and scheme struct set functions access or modify a field of a structure.

The the structure procedure values and names generated by scheme make struct values and
scheme make struct names can be restricted by passing any combination of these flags:

• SCHEME STRUCT NO TYPE — the structure type value/name is not returned.
• SCHEME STRUCT NO CONSTR — the constructor procedure value/name is not returned.
• SCHEME STRUCT NO PRED— the predicate procedure value/name is not returned.
• SCHEME STRUCT NO GET — the selector procedure values/names are not returned.
• SCHEME STRUCT NO SET — the mutator procedure values/names are not returned.

When all values or names are returned, they are returned as an array with the following order: structure
type, constructor, predicate, first selector, first mutator, second selector, etc. When particular values/names
are omitted, the array is compressed accordingly.

2.11.1 Library Functions

Scheme Object *scheme make struct type(Scheme Object *base name, Scheme Object *super type,
int num fields)

Creates and returns a new structure type. The base name argument is used as the name of the new
structure type; it must be a symbol. The super type argument should be NULL or an existing structure type to
use as the super-type. The num fields argument specifies the number of fields for instances of this structure
type. (If a super-type is used, this is the number of additional fields, rather than the total number.)

39

2.12. Units 2. MzScheme Architecture

Scheme Object **scheme make struct names(Scheme Object *base name, Scheme Object *field names,
int flags, int *count out)

Creates and returns an array of standard structure value name symbols. The base name argument
is used as the name of the structure type; it should be the same symbol passed to the associated call to
scheme make struct type. The field names argument is a (Scheme) list of field name symbols. The flags
argument specifies which names should be generated, and if count out is not NULL, count out is filled with
the number of names returned in the array.

Scheme Object **scheme make struct values(Scheme Object *struct type, Scheme Object **names,
int count , int flags)

Creates and returns an array of the standard structure value and procedure values for struct type. The
struct type argument must be a structure type value created by scheme make struct type. The names
procedure must be an array of name symbols, generally the array returned by scheme make struct names.
The count argument specifies the length of the names array (and therefore the number of expected return
values) and the flags argument specifies which values should be generated.

Scheme Object *scheme make struct instance(Scheme Object *struct type, int argc,
Scheme Object **argv)

Creates an instance of the structure type struct type. The argc and argv arguments provide the field
values for the new instance.

int scheme is struct instance(Scheme Object *struct type, Scheme Object *v)

Returns 1 if v is an instance of struct type or 0 otherwise.

Scheme Object *scheme struct ref(Scheme Object *s, int n)

Returns the nth field (counting from 0) in the structure s.

void scheme struct set(Scheme Object *s, int n, Scheme Object *v)

Sets the nth field (counting from 0) in the structure s to v .

2.12 Units

Primitive units can be created by allocating an instance of the Scheme Unit data type:
typedef struct Scheme_Unit {

Scheme_Type type; /* = scheme_unit_type */
short num_imports;
short num_exports;
Scheme_Object **exports;
Scheme_Object **export_debug_names; /* NULL */
Scheme_Object *(*init_func)(Scheme_Object **boxes, Scheme_Object **anchors,

struct Scheme_Unit *m, void *debug_request);
Scheme_Object *data;

} Scheme_Unit;

The fields are filled as follows:

40

2. MzScheme Architecture 2.12. Units

• The type field is always scheme unit type.

• The num imports field specifies the number of variables imported by the unit and the num exports
field specifies the number of variables exported.

• Exported variables are named; the exports field must point to an array of symbols for the variable
names.

• The export debug names field is NULL for primitive units.

• The init func field points to a function that is called when the unit is instantiated. (A single unit
can be instantiated multiple times.) The first argument to this procedure is an array of boxes for
import and export variables (import variables first); the value of an imported or exported variable
is the value in the corresponding box, accessed or set with the SCHEME ENVBOX VAL macro. Boxes
for imported variables should never be mutated. Boxes for exported variables will be initialized to
scheme undefined and should be properly initialized by the init func function.

The second argument to init func is an array of anchor pointers associated with the boxes in the
first argument. Whenever a box pointer is kept, the corresponding anchor pointer must also be kept
to keep the box from being collected as garbage. Note that the anchor is for the box itself, not the
value within the box.

The final argument to init func should be ignored.

The return value of init func corresponds to the value of the last expression in the body of a Scheme-
based unit.

• The data field is not used directly by MzScheme; it is available to store unit-specific data needed by
init func.

2.12.1 Library Functions

Scheme Object *scheme invoke unit(Scheme Object *unit , int num ins,
Scheme Object **ins, Scheme Object **anchors, int tail , int multi)

Invokes a unit. The num ins argument specifies the number of variables to import into the unit. The ins
array must be an array of variables boxes (NULL if no variables are imported). The anchors argument is is
parallel to the ins array, providing a garbage-collecting anchor for each variable. The scheme invoke unit
function will check that the correct number of variables are provided for importing into the unit.

A variable box can be any pointer. The pointer is deferenced as a Scheme Object ** to get the variable
box’s contents. Anchors are associated with variable boxes so that a box can point into the middle of an
allocated array; in this case, the anchor would be the start of the array, so that the garbage collector sees a
reference to the array.

If tail is non-zero, scheme invoke unit produces a tail-call to invoke the unit. If tail is zero and multi
is non-zero, multiple values may be returned.

Scheme Object *scheme make envunbox(Scheme Object *v)

Creates a new variable box with v as the initial value. No anchor is needed (i.e., NULL can be used as
an anchor) for boxes created this way.

Scheme Object *scheme assemble compound unit(Scheme Object *imports, Scheme Object *links,
Scheme Object *exports)

“Compiles” a compound-unit expression, given the names for the compound unit’s imports, exports,
and sub-unit linking.

41

2.13. Objects, Classes, and Interfaces 2. MzScheme Architecture

• The imports argument is a Scheme list of symbols for the imported variable names.

• The links argument is a list of sub-unit linking specifications, where each specification is a pair con-
sisting of:

– a single tag symbol, used to identify the unit for links and re-exports
– a list of variable specifications, where each variable specification is either

∗ a symbol that is present in the imports list, specifying a link to a variable imported into the
compound unit, or

∗ pair consisting of a tag symbol and a list of symbols, specifying the names of exported variables
from another sub-unit in the compound unit

• the exports argument is a list of sub-unit export specifications, where each export specification is a
pair consisting of

– a tag symbol
– a symbol naming one export from the corresponding sub-unit (used as both the name of the

sub-unit export and the name of the compound unit’s export), or a pair of symbols where the
first one is the name of the sub-unit’s export and the second one is the name as exported from
the compound unit

The return value is an “assembled” compound unit. A compound unit is created from the assembly with
scheme make compound unit.

Scheme Object *scheme make compound unit(Scheme Object *assembly , Scheme Object **subs)

Returns a compound unit given an assembly created by scheme assemble compound unit and an array
of sub-units to be linked into the compound unit. The order of units in the sub-unit array should parallel
the order of tags in the assembly’s links specification.

2.13 Objects, Classes, and Interfaces

Primitive C++-like classes can be created with scheme make class. Methods are added to a primitive
class with scheme add method; all methods must be added to a class before an object is created from the
class. A C function that implements a class method is similar to a closed primitive function: it is passed a
pointer to the object, a interger inidicating the number of arguments passed to the method, and an array of
Scheme Object * arguments.

More general classes are created in two phases. The scheme make class assembly function creates a class
assembly value that represents a “compiled” class expression. A class is created from an assembly with
scheme create class with a creation-time determined superclass. An initialization procedure that is passed
to scheme make class assembly is called whenever an instance of the class is created.

Interfaces are also created in two phases: scheme make interface assembly creates a “compiled” interface
expression, and scheme create interface instantiates an actual interface from an assembly.

The function scheme make object creates a new object from a class and list of initialization arguments.
Instance variables are retrieved with scheme find ivar, which takes an object and a symbol and returns the
instance variable’s value, or NULL if it is not found. Classes and objects can be compared with scheme is a
and scheme is subclass.

An object value contains one pointer field that can be used by an implementation of a primitive class; this
field is set or accessed with the SCHEME OBJ DATA macro. There is an additional flag field – set/accessed with
SCHEME OBJ FLAG — that is initialized to 0; if this flag is set to a negative value, then the object will no

42

2. MzScheme Architecture 2.13. Objects, Classes, and Interfaces

longer be usable from Scheme. (This is useful, for example, for closing a Scheme object when a corresponding
C++ object can no longer be used.)

Connecting an arbitrary C++ class library to MzScheme can be tricky, and may require a large amount
of glue code. The plt/collects/mzscheme/examples directory in the PLT distribution contains a tree.cxx
example.

2.13.1 Library Functions

Scheme Object *scheme make class(char *name, Scheme Object *sup,
Scheme Method Prim *init , int num methods)

Creates a new primitive class. If an intializer method init is provided, then objects of this class can be
created from Scheme. The class sup specifies a superclass for the primitive class; it can be NULL to indicate
object%. The num methods argument must be an upper-bound on the actual number of methods to be
installed with scheme add method w arity or scheme add method. Once all of the methods are installed,
scheme made class must be called.

void scheme add method w arity(Scheme Object *cl , char *name, Scheme Method Prim *f ,
short mina, short maxa)

Adds a primitive method to a primitive class. The form of the method f is defined by:
Scheme Object *Scheme Method Prim(Scheme Object *obj, int argc, Scheme Object **argv);

void scheme add method(Scheme Object *cl , char *name, Scheme Method Prim *f)

Like scheme add method w arity, but mina and maxa are defaulted to 0 and -1, respectively.

void scheme made class(Scheme Object *cl)

Indicates that all of the methods have been added to the primitive class cl .

Scheme Object *scheme make object(Scheme Object *sclass, int argc, Scheme Object **argv)

Creates an instance of the class sclass. The arguments to the object’s intialization function are speicified
by argc and argv .

Scheme Object *scheme make uninited object(Scheme Object *sclass)

Creates a Scheme object instance of sclass without intitializing the object. This is useful for creating a
Scheme representation of an existing primitive object.

Scheme Object *scheme find ivar(Scheme Object *obj , Scheme Object *sym, int force)

Finds an instance variable by name (as a symbol). Returns NULL if the instance variable is not found.
The force argument should be 1.

Scheme Object *scheme get generic data(Scheme Object *class or intf , Scheme Object *name)

Creates a Scheme value that contains the essential information of a generic procedure. This information
can be applied to an object using scheme apply generic data. If the named field is not found in the
specified class, then the NULL pointer is returned.

43

2.13. Objects, Classes, and Interfaces 2. MzScheme Architecture

Scheme Object *scheme apply generic data(Scheme Object *gdata, Scheme Object *sobj , int force)

Given the result of a call to scheme get generic data, extracts a value from the specified Scheme
object. If the object is not in the appropriate class, and error is raised.

If force is 0 and the instance variable in the object is implemented as a primitive method, then NULL
is returned.

int scheme is subclass(Scheme Object *sub, Scheme Object *parent)

Returns 1 if the class sub is derived from the class parent , 0 otherwise.

int scheme is implementation(Scheme Object *cl , Scheme Object *intf)

Returns 1 if the class cl implements the interface intf , 0 otherwise.

int scheme is interface extension(Scheme Object *sub, Scheme Object *intf)

Returns 1 if the interface sub is an extension of the interface intf , 0 otherwise.

int scheme is a(Scheme Object *obj , Scheme Object *sclass)

Returns 1 if obj is an instance of the class sclass or of a class derived from sclass, 0 otherwise.

char *scheme get class name(Scheme Object *sclass, int *len)

Returns the name of the class sclass if it has one, or NULL otherwise. If the return value is not NULL,
*len is set to the length of the string.

struct Scheme Class Assembly *scheme make class assembly(
const char *name, int n interface,
int n public, Scheme Object **publics,
int n override, Scheme Object **overrides,
int n inh, Scheme Object **inherits,
int n ren, Scheme Object **renames,
int mina, int maxa,
Scheme Instance Init Proc *initproc)

“Compiles” a class expression, given a name for the class (or NULL), the number of interfaces that will
be declared as implemented by the class in n interfaces, and names for public, override, inherit, and
rename instance variables as symbols. The mina and maxa arguments specify the arity of the initialization
procedure (i.e., the implicit lambda in a class expression that accepts initialization arguments). The initproc
function has the following prototype:
typedef void (*Scheme_Instance_Init_Proc)(Scheme_Object **init_boxes,

Scheme_Object **extract_boxes,
Scheme_Object *super_init,
int argc,
Scheme_Object **argv,
Scheme_Object *instance,
void *data);

When an instance of the class is created, initproc will be called. The first two arguments are arrays of
environment boxes (whose values are manipulated with SCHEME ENVBOX VAL). These arrays are in parallel:
the first array is used for initializing variables from local expressions, and the second array is for looking

44

2. MzScheme Architecture 2.14. Custodians

up the value of a possibly-overridden instance variable. In both arrays, the public, override, inherit,
and rename variables are ordered as provided in scheme make class assembly (with public variables first,
then override, then private), but init boxes only contains boxes for public and override variables. The
argc and argv arguments specify the values passed in as initialization arguments. The super init argument
is the procedure for initializing the superclass (use scheme apply to invoke it). The instance argument is
the value of this. The data argument is supplied by the caller of scheme create class.

The result from scheme make class assembly is used with scheme create class to create an actual
class at run-time given the a run-time-determined superclass and interfaces.

Scheme Object *scheme create class(struct Scheme Class Assembly *a,
void *data, Scheme Object *super , Scheme Object **interfaces)

Returns a Scheme class value given the result of a call to scheme make class assembly, a superclass,
and an array of interface values. (The number of interfaces values must match the number of interfaces
specified in the call to scheme make class assembly.) Type-checking on the superclass and interface array
is performed by scheme create class.

struct Scheme Interface Assembly *scheme make interface assembly(
const char *name, int n supers,
int n names, Scheme Object **names)

“Compiles” an interface expression, given the interface’s name (or NULL), the number of super interfaces
that will be extended by the interface in n supers, and names for instance variables as symbols.

The result from scheme make interface assembly is used with scheme create interface to create an
actual class at run-time given the run-time-determined superinterfaces.

Scheme Object *scheme create interface(struct Scheme Interface Assembly *a,
Scheme Object **supers)

Returns a Scheme interface value given the result of a call to scheme make interface assembly and an
array of superinterface values. (The number of superinterfaces values must match the number of superinter-
faces specified in the call to scheme make interface assembly.) Type-checking on the superinterface array
is performed by scheme create interface.

2.14 Custodians

In MzScheme’s C library interface, custodians are called “managers”.

2.14.1 Library Functions

Scheme Manager *scheme make manager(Scheme Manager *m)

Creates a new custodian as a subordinate of m. If m is NULL, then the current custodian is used as the
new custodian’s supervisor.

Scheme Manager Reference *scheme add managed(Scheme Manager *m, Scheme Object *o,
Scheme Close Manager Client *f , void *data,
int strong)

45

2.15. Miscellaneous Utilities 2. MzScheme Architecture

Places the value o into the management of the custodian m. The f function is called by the custodian
if it is ever asked to “shutdown” its values; o and data are passed on to f , which has the type

typedef void (*Scheme Close Manager Client)(Scheme Object *o, void *data);

If strong is non-zero, then the newly managed value will be remembered until either the custodian shuts
it down or scheme remove managed is called. If strong is zero, the value is allowed to be garbaged collected
(and automatically removed from the custodian).

The return value from scheme add managed can be used to refer to the value’s custodian later in a call
to scheme remove managed. A value can be registered with at most one custodian.

void scheme remove managed(Scheme Manager Reference *mref , Scheme Object *o)

Removes o from the management of its custodian. The mref argument must be a value returned by
scheme add managed.

void scheme close managed(Scheme Manager *m)

Instructs the custodian m to shutdown all of its managed values.

2.15 Miscellaneous Utilities

2.15.1 Library Functions

int scheme eq(Scheme Object *obj1 , Scheme Object *obj2)

Returns 1 if the Scheme values are eq?.

int scheme eqv(Scheme Object *obj1 , Scheme Object *obj2)

Returns 1 if the Scheme values are eqv?.

int scheme equal(Scheme Object *obj1 , Scheme Object *obj2)

Returns 1 if the Scheme values are equal?.

Scheme Object *scheme build list(int c, Scheme Object **elems)

Creates and returns a list of length c with the elements elems.

int scheme list length(Scheme Object *list)

Returns the length of the list. If list is not a proper list, then the last cdr counts as an item. If there is
a cycle in list (involvng only cdrs), this procedure will not terminate.

int scheme proper list length(Scheme Object *list)

Returns the length of the list, or -1 if it is not a proper list. If there is a cycle in list (involvng only
cdrs), this procedure returns -1.

Scheme Object *scheme car(Scheme Object *pair)

Returns the car of the pair.

46

2. MzScheme Architecture 2.15. Miscellaneous Utilities

Scheme Object *scheme cdr(Scheme Object *pair)

Returns the cdr of the pair.

Scheme Object *scheme cadr(Scheme Object *pair)

Returns the cadr of the pair.

Scheme Object *scheme caddr(Scheme Object *pair)

Returns the caddr of the pair.

Scheme Object *scheme vector to list(Scheme Object *vec)

Creates a list with the same elements as the given vector.

Scheme Object *scheme list to vector(Scheme Object *list)

Creates a vector with the same elements as the given list.

Scheme Object *scheme append(Scheme Object *lstx , Scheme Object *lsty)

Non-destructively appends the given lists.

Scheme Object *scheme unbox(Scheme Object *obj)

Returns the contents of the given box.

void scheme set box(Scheme Object *b, Scheme Object *v)

Sets the contents of the given box.

Scheme Object *scheme load(char *file)

Loads the specified Scheme file, returning the value of the last expression loaded, or NULL if the load
fails.

Scheme Object *scheme load extension(char *filename)

Loads the specified Scheme extension file, returning the value provided by the extension’s initialization
function.

long scheme double to int(char *where, double d)

Returns a fixnum value for the given floating-point number d . If d is not an integer or if it is too large,
then an error message is reported; name is used for error-reporting.

void scheme secure exceptions(Scheme Env *env)

Secures the primitive exception types, just like secure-primitive-expcetion-types.

long scheme get millseconds()

Returns the current “time” in millseconds, just like current-millseconds.

47

2.16. Flags and Hooks 2. MzScheme Architecture

long scheme get process millseconds()

Returns the current process “time” in millseconds, just like current-process-millseconds.

char *scheme banner()

Returns the string that is used as the MzScheme startup banner.

char *scheme version()

Returns a string for the executing version of MzScheme.

2.16 Flags and Hooks

These flags and hooks are availble when MzScheme is embedded:

• scheme exit — This pointer can be set to a function which takes an integer argument and returns
void; the function will be used as the default exit handler. The default is NULL.

• scheme console printf — This pointer can be set to a function that takes arguments like printf;
the function will be called to display internal MzScheme warnings and messages. The default is NULL.

• scheme console output — This pointer can be set to a function that takes a string and a long string
length; the function will be called to display internal MzScheme warnings and messages that possibly
contain non-terminating nuls. The default is NULL.

• scheme check for break — This points to a function of no arguments that returns an integer. It is
used as the default user-break polling procedure in the main thread. (A non-zero return value indicates
a user break.) The default is NULL.

• scheme make stdin, scheme make stdout, scheme make stderr, — These pointers can be set to a
function that takes no arguments and returns a Scheme port Scheme Object * to be used as the
starting standard input, output, and/or error port. The defaults are NULL.

• scheme case sensitive — If this flag is set to a non-zero value before scheme basic env is called,
then MzScheme will not ignore capitalization for synbols and global variable names. The value of this
flag should not change once it is set. The default is zero.

• scheme constant builtins — If this flag is set to a non-zero value before scheme basic env is called,
then the standard MzScheme functions and syntax will be defined as constant globals. The default is
zero.

• scheme no keywords — If this flag is set to a non-zero value before scheme basic env is called, then
no keywords are enforced; i.e., the names of the core syntactic forms and all “#%” names are available
for local variable names. The default is zero.

• scheme allow set undefined — This flag determines the initial value of compile-allow-set!-undefined.
The default is zero.

• scheme allow cond auto else — This flag determines the initial value of compile-allow-cond-fallthrough.
The default is non-zero.

• scheme secure primitive exn — If this flag is set to non-zero, then the structure type values and
constructors for the primitive exception types will not be defined as global variables. The default is
zero.

48

2. MzScheme Architecture 2.16. Flags and Hooks

• scheme escape continuations only — If this flag is set to a non-zero value before scheme basic env
is called, then call/cc will be remapped to call/ec; this is useful for speeding up Scheme evaluation
when continuations are only used for escaping. The default is zero.

49

Index

--cc, 1
--ld, 1
scheme apply, 15, 17
scheme apply multi, 15, 17
scheme eval compiled, 15, 16
scheme eval compiled multi, 15, 16

allocation, 2, 9
allow-compile-cond-fallthrough, 30
allow-compile-set

allow-compile-set
-undefined, 30

apply, 15
arity, 13, 14

bignums, 32
break-enabled, 30

caddr, 47
cadr, 47
call/cc, 49
call/ec, 49
car, 5, 46
case-lambda, 6
cdr, 5, 47
cjs.jumping to continuation, 23
classes, 42

C++, 43
compile-allow-cond-fallthrough, 48
compile-allow-set

compile-allow-set
-undefined, 48

config, 23, 30
cons, 4, 7
constants, 4, 6
continuations, 15, 18, 23
current directory, 38
current-custodian, 30
current-error-port, 30
current-eval, 30
current-exception-handler, 30
current-input-port, 30
current-library-collection-paths, 30
current-load, 30
current-load-extension, 30
current-load-relative-directory, 30
current-namespace, 30
current-output-port, 30
current-print, 30

current-prompt-read, 30
current-require-relative-collection, 30
custodians, 45

debug-info-handler, 30
display, 34

embedding MzScheme, 2
environments, 12
EOF, 36
eq?, 46
equal?, 46
eqv?, 46
error-display-handler, 30
error-print-width, 30
error-value->string-handler, 30
error buf, 23
escheme.h, 1
evaluation, 14

top-level functions, 15
event loops, 24
exception-break-enabled, 30
exceptions, 18, 23

catching temporarily, 18
exit-handler, 30
extending MzScheme, 1

fd set, 36, 37
files, 34
force, 8
FSSpec, 38

garbage collection, see allocation
GC use registered statics, 3
global-port-print-handler, 30
globals, 12

in extension code, 9

header files, 1, 2

intialization, 12

libgc.a, 2
libmzscheme.a, 2

malloc, 9
managers, 45
memory, see allocation
multiple values, 15, 18
MZ FD XXX, 37

50

INDEX

mz jmp buf, 23
MZ REGISTER STATIC, 10
mzc, 1
MZCONFIG ALLOW COND AUTO ELSE, 30
MZCONFIG ALLOW SET UNDEFINED, 30
MZCONFIG CAN READ BOX, 30
MZCONFIG CAN READ COMPILED, 30
MZCONFIG CAN READ GRAPH, 30
MZCONFIG CAN READ PIPE QUOTE, 30
MZCONFIG CAN READ TYPE SYMBOL, 30
MZCONFIG CASE SENS, 30
MZCONFIG COLLECTION PATHS, 30
MZCONFIG CONFIG BRANCH HANDLER, 30
MZCONFIG CURLY BRACES ARE PARENS, 30
MZCONFIG DEBUG INFO HANDLER, 30
MZCONFIG ENABLE BREAK, 30
MZCONFIG ENABLE EXCEPTION BREAK, 30
MZCONFIG ENV, 16, 30
MZCONFIG ERROR DISPLAY HANDLER, 30
MZCONFIG ERROR PORT, 30
MZCONFIG ERROR PRINT VALUE HANDLER, 30
MZCONFIG ERROR PRINT WIDTH, 30
MZCONFIG EVAL HANDLER, 30
MZCONFIG EXIT HANDLER, 30
MZCONFIG EXN HANDLER, 30
MZCONFIG INPUT PORT, 30
MZCONFIG LOAD DIRECTORY, 30
MZCONFIG LOAD EXTENSION HANDLER, 30
MZCONFIG LOAD HANDLER, 30
MZCONFIG MANAGER, 30
MZCONFIG OUTPUT PORT, 30
MZCONFIG PORT PRINT HANDLER, 30
MZCONFIG PRINT BOX, 30
MZCONFIG PRINT GRAPH, 30
MZCONFIG PRINT HANDLER, 30
MZCONFIG PRINT STRUCT, 30
MZCONFIG PROMPT READ HANDLER, 30
MZCONFIG REQ LIB USE COMPILED, 30
MZCONFIG REQUIRE COLLECTION, 30
MZCONFIG SQUARE BRACKETS ARE PARENS, 30
mzdyn.o, 1
mzdyn.obj, 1

next, 23
numbers, 32

objects, 42
primitive, 42

parameterization-branch-handler, 30
parameterizations, 23, 30
ports, 34

custom, 34
print-box, 30

print-graph, 30
print-struct, 30
procedures, 6, 13

primitive, 13
processes

giving time, 24
sleeping, 27

read-accept-bar-quote, 30
read-accept-box, 30
read-accept-compiled, 30
read-accept-graph, 30
read-accept-type-symbol, 30
read-case-sensitive, 30
read-curly-braces-as-parens, 30
read-square-brackets-as-parens, 30
representation, 4
require-library-use-compiled, 30

scheme.h, 2
scheme add fd eventmask, 29
scheme add fd handle, 29
scheme add finalizer, 11
scheme add global, 12
scheme add global constant, 12
scheme add global keyword, 12
scheme add global symbol, 12
scheme add managed, 45
scheme add method, 42, 43
scheme add method w arity, 43
scheme add scheme finalizer, 11
scheme alloc string, 8
scheme allow cond auto else, 48
scheme allow set undefined, 48
scheme append, 47
scheme append string, 8
scheme apply, 14–16
scheme apply generic data, 44
scheme apply multi, 15, 17
scheme apply to list, 15, 17
scheme are all chars ready, 35
scheme assemble compound unit, 41
scheme banner, 48
scheme basic env, 2, 12, 16, 23, 31, 48
scheme bignum from double, 32
scheme bignum from float, 32
scheme bignum normalize, 33
scheme bignum to double, 32
scheme bignum to float, 32
scheme bignum to string, 33
scheme bignum type, 32
SCHEME BIGNUMP, 5
scheme block until, 24, 28
scheme box, 9

51

INDEX

SCHEME BOX VAL, 5
SCHEME BOXP, 5
scheme break thread, 28
scheme break waiting, 28
Scheme Bucket, 13
scheme build list, 46
scheme build mac filename, 38
scheme caddr, 47
scheme cadr, 47
scheme calloc, 10
SCHEME CAR, 5
scheme car, 46
scheme case sensitive, 8, 48
SCHEME CDR, 5
scheme cdr, 47
scheme char ready, 36
SCHEME CHAR VAL, 4
SCHEME CHARP, 4
scheme check for break, 48
scheme check proc arity, 22
scheme check threads, 24, 25, 29
SCHEME CLASSP, 5
scheme clear escape, 18, 23
scheme close input port, 36
scheme close managed, 46
scheme close output port, 36
scheme collect garbage, 11
scheme compile, 15, 17
scheme complex imaginary part, 34
scheme complex izi type, 32
SCHEME COMPLEX IZIP, 5
scheme complex real part, 34
scheme complex type, 32
SCHEME COMPLEXP, 5
Scheme Config, 30
scheme config, 13, 30
SCHEME CONFIGP, 6
scheme console output, 48
scheme console printf, 48
scheme constant, 12
scheme constant builtins, 48
scheme count lines, 36
scheme create class, 42, 45
scheme create interface, 42, 45
scheme current process, 23
SCHEME DBL VAL, 5
SCHEME DBLP, 5
scheme debug print, 35
SCHEME DIRECT EMBEDDED, 2
scheme directory exists, 38
scheme display, 34
scheme display to string, 35
scheme display to string w max, 35

scheme display w max, 34
scheme dont gc ptr, 9, 11
scheme double to int, 47
scheme dynamic wind, 19, 22
scheme end stubborn change, 9, 10
Scheme Env *, 12
SCHEME ENVBOX VAL, 41, 44
scheme eof, 4
SCHEME EOFP, 6
scheme eq, 46
scheme equal, 46
scheme eqv, 46
scheme error buf, 18, 23
scheme escape continuations only, 49
scheme eval, 2, 14–16
scheme eval compiled, 15, 16
scheme eval compiled multi, 15, 16
scheme eval string, 17
scheme eval string all, 17
scheme eval string multi, 17
SCHEME EXACT INTEGERP, 6
SCHEME EXACT REALP, 6
scheme exit, 48
scheme expand, 17
scheme expand filename, 38
scheme false, 4
SCHEME FALSEP, 6
scheme file exists, 38
scheme find ivar, 42, 43
scheme first process, 23
SCHEME FLOAT VAL, 5
SCHEME FLOATP, 6
SCHEME FLT VAL, 5
SCHEME FLTP, 5
scheme flush output, 35
scheme format, 39
scheme gc ptr ok, 11
SCHEME GENDATAP, 6
scheme get chars, 35
scheme get class name, 44
scheme get env, 12, 13, 30
scheme get fdset, 29, 37
scheme get generic data, 43
scheme get int val, 7
scheme get millseconds, 47
scheme get param, 30, 31
scheme get param or null, 31
scheme get process millseconds, 48
scheme get sized string output, 38
scheme get string output, 34, 37
scheme get unsigned int val, 7
scheme getc, 34, 35
scheme global bucket, 13

52

INDEX

SCHEME HASHTP, 6
scheme initialize, 1
SCHEME INPORT VAL, 5, 36
SCHEME INPORTP, 5
Scheme Input Port *, 37
scheme input port type, 34
SCHEME INT VAL, 5, 7
scheme integer type, 4
SCHEME INTERFACEP, 5
scheme intern exact symbol, 8
scheme intern symbol, 8
scheme intern type symbol, 8
SCHEME INTP, 5
scheme invoke unit, 41
scheme is a, 42, 44
scheme is exact, 32
scheme is implementation, 44
scheme is inexact, 32
scheme is interface extension, 44
scheme is struct instance, 39, 40
scheme is subclass, 42, 44
scheme jumping to continuation, 18, 23
scheme list length, 46
scheme list to vector, 47
scheme load, 2, 47
scheme load extension, 47
scheme longjmp, 18
scheme lookup global, 12, 13
scheme mac path to spec, 38
scheme made class, 43
scheme make args string, 22
scheme make bignum, 32
scheme make bignum from unsigned, 32
scheme make char, 7
scheme make character, 7
scheme make class, 42, 43
scheme make class assembly, 42, 44
scheme make closed prim, 14
scheme make closed prim w arity, 13, 14
scheme make complex, 33
scheme make compound unit, 42
scheme make config, 31
scheme make double, 7
scheme make envunbox, 41
scheme make exact symbol, 8
scheme make file input port, 34, 37
scheme make file output port, 34, 37
scheme make float, 7
scheme make folding prim, 14
scheme make input port, 34, 36
scheme make integer, 7
scheme make integer value, 7
scheme make integer value from unsigned, 7

scheme make interface assembly, 42, 45
scheme make manager, 45
scheme make named file input port, 37
scheme make namespace, 16
scheme make noneternal prim, 14
scheme make noneternal prim w arity, 14
scheme make object, 42, 43
scheme make output port, 34, 37
scheme make pair, 7, 15
scheme make parameter, 31
scheme make port type, 36
scheme make prim, 14
scheme make prim w arity, 13, 14
scheme make promise, 8
scheme make provided string, 22
scheme make rational, 33
scheme make sema, 28
scheme make sized offset string, 8
scheme make sized string, 8
scheme make stderr, 48
scheme make stdin, 48
scheme make stdout, 48
scheme make string, 7
scheme make string input port, 34, 37
scheme make string output port, 34, 37
scheme make string without copying, 7
scheme make struct instance, 39, 40
scheme make struct names, 39, 40
scheme make struct type, 39
scheme make struct values, 39, 40
scheme make symbol, 8
scheme make type, 4, 9
scheme make type symbol, 8
scheme make uninited object, 43
scheme make vector, 8
scheme make weak box, 9
scheme malloc, 2, 9
scheme malloc atomic, 9, 10
scheme malloc eternal, 10
scheme malloc fail ok, 10
scheme malloc stubborn, 9, 10
scheme malloc uncollectable, 9, 10
scheme multiple array, 16
scheme multiple count, 16
scheme multiple values, 16
SCHEME NAMESPACEP, 6
scheme need wakeup, 36
scheme new param, 31
scheme no keywords, 48
scheme notify multithread, 24
scheme null, 4
SCHEME NULLP, 6
SCHEME NUMBERP, 6

53

INDEX

SCHEME OBJ CLASS, 5
SCHEME OBJ DATA, 5, 42
SCHEME OBJ FLAG, 5, 42
Scheme Object, 4
Scheme Object *, 1
SCHEME OBJP, 5
scheme os getcwd, 38
scheme os setcwd, 39
SCHEME OUTPORT VAL, 5, 37
SCHEME OUTPORTP, 5
Scheme Output Port *, 37
scheme output port type, 34
SCHEME PAIRP, 5
scheme param config, 31
scheme peekc, 35
scheme pipe, 38
scheme pipe with limit, 38
scheme post sema, 28
scheme printf, 39
Scheme Process, 23, 30
scheme process block, 28
SCHEME PROCESSP, 6
SCHEME PROCP, 6
SCHEME PROMP, 5
scheme proper list length, 46
scheme raise exn, 18, 21
scheme rational denominator, 33
scheme rational from double, 33
scheme rational from float, 33
scheme rational numerator, 33
scheme rational to double, 33
scheme rational to float, 33
scheme rational type, 32
SCHEME RATIONALP, 5
scheme read, 34
scheme read bignum, 33
scheme real to double, 7
SCHEME REALP, 6
scheme register extension global, 2, 9, 10
scheme register finalizer, 11
scheme register static, 10
scheme reload, 1
scheme remove global, 12
scheme remove global constant, 12
scheme remove global symbol, 12
scheme remove managed, 46
scheme rep, 2, 18
scheme secure exceptions, 47
scheme secure primitive exn, 48
SCHEME SEMAP, 6
scheme set box, 47
scheme set global bucket, 13
scheme set keyword, 13

scheme set param, 16, 30
scheme setjmp, 18
scheme signal error, 18, 21
scheme sleep, 27
SCHEME STR VAL, 5
scheme strdup, 10
scheme strdup eternal, 10
SCHEME STRINGP, 5
SCHEME STRLEN VAL, 5
SCHEME STRUCT NO CONSTR, 39
SCHEME STRUCT NO GET, 39
SCHEME STRUCT NO PRED, 39
SCHEME STRUCT NO SET, 39
SCHEME STRUCT NO TYPE, 39
scheme struct ref, 39, 40
scheme struct set, 39, 40
SCHEME STRUCT TYPEP, 5
SCHEME STRUCTP, 5
scheme swap process, 28
SCHEME SYM VAL, 5
SCHEME SYMBOLP, 5
scheme tail apply, 15, 17
scheme tail apply no copy, 17
scheme tail apply to list, 17
scheme tell, 36
scheme tell line, 36
scheme thread, 23, 27
scheme tls allocate, 29
scheme tls get, 30
scheme tls set, 29
scheme true, 4
SCHEME TRUEP, 6
SCHEME TSYM VAL, 5
SCHEME TSYMBOLP, 5
SCHEME TYPE, 4
Scheme Type, 4
scheme unbound global, 22
scheme unbox, 47
scheme undefined, 4
scheme ungetc, 35
Scheme Unit, 40
scheme unit type, 41
SCHEME UNITP, 5
scheme values, 15, 18
SCHEME VEC ELS, 5
SCHEME VEC SIZE, 5
scheme vector to list, 47
SCHEME VECTORP, 5
scheme version, 48
scheme void, 4
SCHEME VOIDP, 6
scheme wait sema, 28
scheme wake up, 29

54

INDEX

scheme wakeup on input, 25
scheme warning, 21
SCHEME WEAK PTR, 6
scheme weak reference, 11
scheme weak reference indirect, 11
SCHEME WEAKP, 6
scheme write, 34
scheme write string, 34
scheme write to string, 34
scheme write to string w max, 35
scheme write w max, 34
scheme wrong count, 22
scheme wrong return arity, 22
scheme wrong type, 22
sleeping, 27
strings

conversion to C, 5
reading and writing, 34

structures, 39

tail recursion, 15
threads, 3, 23

blocking, 24
interaction with C, 23

types
creating, 4
standard, 4

units, 40
user breaks, 48

values, 4

working directory, 38
write, 34

55

