
Collocation Software for Second-Order
Elliptic Partial Differential Equations
E. N. HOUSTIS
Purdue University and University of Thessaloniki
and
W. F. MITCHELL AND J. R. RICE
Purdue University

We consider the collocation method for linear, second-order elliptic problems on rectangular and
general two-dimensional domains. An overview of the method is given for general domains, followed
by a discussion of the improved efficiencies and simplifications possible for rectangular domains. A
very-high-level description is given of three specific collocation algorithms that use Hermite bicubic
basic functions, (1) GENCOL (collocation on general two-dimensional domains), (2) HERMCOL
(collocation on rectangular domains with general linear boundary conditions), and (3) INTCOL
(collocation on rectangular domains with uncoupled boundary conditions). The linear system resulting
from INTCOL has half the bandwidth of that from HERMCOL, which provides substantial benefit
in solving the system. We provide some examples showing the range of applicability of the algorithms
and some performance profiles illustrating their efficiency. Fortran implementations of these algo-
rithms are given in the companion papers [lo, 111.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis]: Partial Differential Equations-
elliptic, finite element methods

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Hermite bicubics, rectangular domains, general domains, uncou-
pled boundary conditions, two-dimensional

1. INTRODUCTION

We consider a linear two-dimensional partial differential equation (PDE),

Lu = uuxx + bu,, + cuyy + du, + eu, + fu = g, (1.1)

over a two-dimensional domain R in the x, y plane. It is assumed that the
coefficients a, b, c satisfy the ellipticity condition 6’ - 4ac c 0 and that R is given
by the boundary aR with clockwise orientation given parametrically as follows:

x = Xi(P)
Y = Yib)

for bli 5 p 5 bzi,
for bl; 5 p 5 bzi, ’

i = 1, 2, . . . , nbound. (1.2)

The work of the first author was supported in part by the National Science Foundation under Grant
MCS-78-04878 and in part by AR0 Contract DAAG-29-33-K-0026. The work of the second and third
authors was supported in part by Department of Energy Contract DE-ACOl-ER81-01997.
Authors’ address: Purdue University, Division of Mathematical Sciences, West Lafayette, IN 47907.
Permission to copy without fee all or part of this/material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1986 ACM 0098-3500/86/1200-0379 $00.75

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985, Pages 379-412.

380 - E. N. Houstis, W. F. Mitchell, and J. FL Rice

R is the interior of the domain defined by these nbound pieces; R need not be
simply connected, but we ignore that case in this paper in order to simplify the
discussion. In the case of a rectangular domain R = [AX, BX] x [AY, BY], the
boundary dR is implicitly defined by the end points AX, BX, AY, BY. Further,
we assume that the solution u of (1.1) is subject to the boundary conditions

Au = au + pux + yu, = 6 for (x, y) E aR. (1.3)

All the coefficients and right-hand sides in (1.1) and (1.3) may depend on x
and y.

A large class of methods for approximating the solution u of (Ll), (1.3) involves
first, the partition of R into a finite-element mesh fi and, second, the determi-
nation of a piecewise polynomial approximation U defined over the partition R.
This paper describes such a method, called collocation, and discusses specific
implementations.

2. OVERVIEW OF THE COLLOCATION METHOD

Collocation is a finite-element method for approximating the solution u(x, y) of
(l.l), (1.3), consisting of the following three conceptual phases.

Phase 1. Overlay the domain of definition R by a rectangular grid G, identify the
rectangular elements of G that are interior or exterior to R or that
intersect dR, and associate boundary pieces with boundary elements.
Define R, the finite-element mesh, as the union of the boundary
elements dQ and interior elements fi’. (See Figure 1.)

Phase 2. Approximate u(x:, y) by a bicubic Hermite piecewise polynomial
U(ZC, y) over the finite element mesh s2. Determine U(x, y) so that

(i) for each element E of 9,

KU - gl IP; = 0, i = 1 to 4,

where the Pi are four interior points of E. The Pi are called interior
collocation points;

(ii) for each element E of dfi,

[AU - SJIQ, = 0, j = 1 to n(E),

where the Qj are n(E) points of the piece of dR associated with E.
The Qj are called boundary collocation points.

Phase 3. Solve the resulting linear system from phase 2(i) and (ii) to obtain the
coefficients of the approximation U(x, y).

See [7, 8, 151 for further discussion.
We now present a more detailed, but still very-high-level, description of an

implementation of the collocation method. The procedure is broken into seven
steps given below and these are then described individually.

(1) Define the problem and I/O requirements
(2) Discretize the domain
(3) Generate the finite-element mesh
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 381

Fig. 1. A domain R (heavy lines) with finite-element mesh Q embedded in the rectan-
gular grid C (light lines). The boundary sides of Q are shown dotted where they do not
coincide with dR.

(4) Define the approximate solution
(5) Form the collocation equations
(6) Reorder the collocation equations
(7) Solve the collocation equations

2.1 Problem Definition and I/O Specification

Following the ELLPACK framework [19], an elliptic PDE problem is specified
by a set of functions as follows:

(a) Operator. Function PDE(X, Y, CVALUS), where

CVALUS[l : 71 = (a, b, c, d, e, f, g) at (x, y) in D and
PDE = g(x, y).

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

382 l E. N. Houstis, VJ. F. Mitchell, and J. R. Rice

(b) Domain of Problem (in parametric form)

(-dp, i), ~04 <iI), i = 1 to nbound, b(1, i) up I b(2, i),

where nbound is the number of boundary pieces and b(2, i) is the endpoint
of the parameter defining the ith boundary piece.

(c) Boundury conditions. Function BCOND(1, X, Y, BVALUS) where

BVALUS[1:4] = (a!, 0, y, 6) at (x, y) on the boundary piece i and
BCOND - 6(x, y).

(d) Uniqueness condition. In case of Neumann boundary conditions, a unique
solution is determined by knowing the solution at a boundary mesh point
(unqx, unqy). The information is supplied by the function unqu(unqx, unqy).

(e) Output specifications. The output is specified by two arrays OUTFNC and
OUTTYP as follows. The user specifies one of three functions for the ith
output through OUTFNC(i) as follows:

1: approximation solution U,
OUTFNC(i) =

1

2: error = U-TRUE,
3: residual = LU - g,

where TRUE(x, y) is tlne exact solution of (l.l), (1.3), a function which must
be supplied by the user. Other information for the ith output is specified by
OUTTYP(i) as follows:

A grid for output of type 2 and 4 is specified by the parameters

tubx, taby: vector of x and y coordinates of the grid,
ntubx, ntuby: number of grid lines in tubx and tuby.

Finally, the number of output specifications desired is specified by the param-
eter NOUT.

For example, if OUTFNC(1) = 2,OUTTYP(l) = 1, and NOUT = 1, then one
requests the max, L’, and L2 norms of the error U-TRUE on the discretization
grid.

2.2 Domain Discretization

Information must be generated that relates the problem domain R to the rectan-
gular grid G. This geometric information must be fairly detailed, otherwise large
amounts of code will appear in other parts of the implementation just to do a
basic analysis of the geometry. We use the two-dimensional domain processor of
[l?', 181 and, for completeness, briefly describe its input and output here.

The rectangular grid G is defined by the variables

AX, BX: left and right endpoints of x-interval,
AY, BY: bottom and top endpoints of y-interval,

NGRIDX: number of x-grid lines,
NGRIDY: number of y-grid lines,

GRIDX: vector of length NGRIDX containing values of x-grid lines,
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 383

GRIDY: vector of length NGRIDY containing values of y-grid lines,
EPSGRD: accuracy with which geometric data is to be determined.

With this information and the problem definition the domain processor generates
the following information. A two-dimensional array which associates the grid
points with the domain R and its boundary:
2.2.1 Grid specification

GTYPE(i, j), i = 1 to NGRIDX, j = 1 to NGRIDY

The values in GTYPE indicate whether a grid point is interior or exterior and
locate it relative to dR if it is a neighbor of dR.

The domain processor also generates seven one-dimensional arrays of length
NBNDPT + 1, where NBNDPT is the number of boundary points. A boundary
point is where dR intersects the grid G, and these are ordered along dR. If aR
changes pieces off the grid G, then the point of change is also included as a
boundary point. If Bi denotes the ith boundary point, the values of the arrays
are defined as follows:
2.2.2 Boundary specification

XBOUND(i), YBOUND(i): x and y coordinates of Bi,
BPARAM(i): parameter value of Bi,
PIECE(i): index of boundary piece to which Bi belongs (small-

est index if there are two),
BPTYPE(i):

BNEIGH(i):
BGRID(i):

type of boundary point (horizontal, vertical, both
or interior),
pointer to interior grid point neighbors of Bi,
ix + 1000 * jy if Bi is in the grid element with lower
left corner (ix, jy) in G.

The domain processor sets the (NBNDPT + 1)st value of the arrays to the initial
values (i = 1) and it also requires that NBDIM be set to the actual dimension of
above arrays.

Our implementation of the collocation method is based on this information. In
the absence of the domain processor, this information must be provided directly
as input. In the special case of rectangular domains, the domain discretization is
implicitly defined by the vectors GRIDX and GRIDY, and no domain processing
is required.

2.3 Finite-Element-Mesh Generation

In the case of rectangular regions, the finite-element mesh Q coincides with the
rectangular overlay G, and no further processing is needed. For nonrectangular
regions each element is identified by the indices (ix, jy) of the lower left corner
grid point, where

1 I ix < NGRIDX and 15 jy < NGRIDY.

There may be boundary elements whose intersection with R is very small. In
extreme cases, the use of these elements can make later computations numerically
unstable. In any case, it is intuitively plausible that very small elements should
be discarded just for the sake of efficiency. We thus define the finite-element

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

384 l E. N. Houstis, W’. F. Mitchell, and J. R. Rice

mesh R to consist of the interior elements, plus those boundary elements E for
which the ratio area of E n R over area of E is greater than the value of the
parameter DSCARE. The portions of dR from discarded elements are either
allocated to neighboring elements or ignored, depending on the value of the
logical variable GIVOPT. (GIVOPT = .TRUE. means to allocate discarded
elements to neighboring elements.)

The finite-element mesh[Q forms a rectangular approximation to R. Its exterior
sides are called boundary sides, and they play a key role in the method. (See
Figure 2 for an example.) The mesh lines of R define a partition of aR into
boundary segments that are used to locate the boundary collocation points.

The construction of the finite-element mesh thus consists of the following
three steps:

Generate ,finite-element mesh

2.3.1 Determine the boundary element types.
2.3.2 Determine the finite-element mesh.
2.3.3 Associate boundary segments with elements.
2.3.4 Number the nodes and elements of the finite-element mesh.

For steps 2.3.2 and 2.3.3 the elements of G are classified as interior, boundary, or
exterior, depending on whether they are completely inside R, intersect dR, or are
completely outside R. Some elements may be changed from boundary to exterior
or from interior to boundary by the discard procedure. Our implementation of
the above procedure depends very much on the following assumptions:

Assumptions for the finite-element mesh generation

al. A boundary element does not contain an entire boundary piece, and there
are at most two boundary pieces associated with it.

a2. If a boundary element has exactly two boundary sides, then they must be
adjacent; a boundary element cannot have all its sides be boundary sides.

a3. If a boundary element is discarded, then no more than two of the four (4)
neighboring elements can be without any boundary segment associated with
them.

a4. The domain is parameterized clockwise.
a5. The boundary does not enter an element more than once, except when it

leaves the element and reenters it without crossing a grid line and where the
neighboring element it enters is discarded.

These assumptions are usually satisfied for a reasonably fine mesh.
We present a code outline for the finite-element mesh generation.

2.3.1 Determine the boundary element types

LOOP: FOR EACH BOUNDARY POINT B, DO:
IF THE BOUNDARY LEAVES AN ELEMENT AND ENTERS A NEW ELE-

MENT (IX, JY) AT THIS POINT
THEN SAVE THE BOUNDARY POINT INDICES FOR THAT NEW ELEMENT

AS ELTYPE (IX, JY) := ZENTER+lOOO * ZEXZT WHERE ZENTER AND
ZEXZT ARE THE INDICES OF THE BOUNDARY POINTS WHERE THE
BOUNDARY ENTERS AND EXITS ELEMENT (IX, JY)

ENDLOOP;

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 385

1 1 4 4 8 8 12 12 17 17 24 24 33 33 42 42 51 51

5 5 8 8 12 12 18 26 34 18 26 34

7 7 11 11 16 16 23 23 32 32 41 41 50 50

11 11 17 25 33 17 25 33

15 15 22 22 31 31 40 40 49 49

16 24 32 16 24 32

21 21 30 30 39 39 48 48

15 15 23 31 23 31

20 20 29 29 38 38 47 47

22 30 22 30

28 28 37 37 46 46

/ , , , , / , il; “36, 2g4i / , , , , / , il; “36, 2g4i

Fig. 2. Numbering of finite-element mesh and nodes for the domain of Fig. 1.

2.3.2 Determine the finite-element mesh

LOOP: FOR EACH ELEMENT (IX, JY) OF G DO:
CASE TYPE OF ELEMENT (IX, JY)

EXTERIOR: ELTYPE(ZX, JY) := -1 /s DO NOT USE ELEMENT */
INTERIOR: ELTYPE(ZX, JY) := 0 /* USE ELEMENT */

BOUNDARY: AREA OF ELEMENT INTERSECTION
IF < DSCARE

AREA OF ELEMENT

THEN ELTYPE (IX, JY) := - ELTYPE (IX, JY) /* DO NOT USE
ELEMENT */

ENDCASE
ENDLOOP

ELSE ELTYPE = (ZENTER+lOOo * ZEXZT) /* AND THE ELE-
MENT IS USED */

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

386 - E. N. Houstis, W. F. Mitchell, and J. R. Rice

x

xx x x

xx x x X X X x x x x x x

X X x x x

X X x x x

X X x x x

Fig. 3. A domain showing the discarded elements shaded and the ends (dots) of the
boundary segments as associated with the retained elements for GIVOPT = TRUE.
The x’s are the collocation points for the operator and boundary conditions.

2.3.3 Associate boundary segments with elements

LOOP: FOR EACH BOUNDARY SEGMENT DO:
/* IF SEGMENT IS IN EL:EMENT (IX, JY) AND ELTYPE(IX, JY) c -1

THEN THE BOUNDARY SEGMENT IN THE DISCARDED ELEMENT IS
ASSIGNED TO A NEIGHBORING ELEMENT */

IF ANY NEIGHBORING ELEMENTS HAVE NO ASSOCIATED
BOUNDARY SEGMENT

THEN THE BOUNDARY SEGMENT IS SPLIT AMONG THEM (UP TO 2
PIECES)

ELSE IF GIVOPT = .TRUE.
THEN THE 130UNDARY SEGMENT IS SPLIT BETWEEN THE

TWO ELEMENTS WHOSE ASSOCIATED BOUNDARY SEG-
MENTS ARE CONNECTED TO IT

ENDLOOP
/* NOTE: IF GIVOPT IS .FALSE. THEN THE PIECE OF THE BOUNDARY IN THE

DISCARDED ELEMENT IS NOT USED */

2.3.4 Number the nodes and elements of the finite-element mesh

NODES AND ELEMENTS A:RE NUMBERED VERTICALLY FROM BOTTOM TO
TOP, THEN HORIZONTALLY FROM LEFT TO RIGHT. /* SEE FIGURE 2 */

Figure 3 shows a complex domain with the discarded elements shaded and the
association of the boundary segments made. A circle indicates the end of each
boundary segment and GIVOPT is .TRUE., that is, boundary segments from
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 387

Y
A

!

i+l -

hy =
(ix, j y) element

gridy(jy+l) -gridy(jy)

i

< ?
hx=gridx(ix+l) -gridx(ix)

(a)

j+l

i
)s

I
s = z/h

sqzs-3) +l

l-b1

.s(l-s) (h-z)

-s(l-s)z.

) 2 = x or y

()
h = hx or hy

6)

Fig. 4. (a) An interior element of the mesh Q with the nodes numbered. (b) The four
nonzero one-dimensional local basic functions for each variable in the element. These
functions are half of the two standard Hermite cubic basis functions for each of the two
nodes.

discarded segments are shared with neighboring elements. The default values of
DSCARE and GIVOPT are 0.05 and .TRUE. respectively.

2.4 Definition of the Approximate Solution

Consider an interior element of the finite-element mesh 0, it has the associated
nodes numbered i, i + 1, j, j + 1 as shown in Figure 4. The approximate solution

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

388 - E. N. Houstis, W. F. Mitchell, and J. R. Rice

U(x, y) is a Hermite bicubic piecewise polynomial; it is defined on each element
in terms of the one-dimensional local basis functions shown in Figure 4. If we
use a local numbering of the 16 degrees of freedom (d.o.f.) of U(x, y) on this
element, then we have

Ub, Y) = 41 h(Xh(Y) + Wlbh(Y) + q3u3(~h(Y) + Q4U3(~h(Y)

+ W2(Xh(Y) + Wd~hdY) + W&h(Y) + 4sU4bMY)

+ 49~2(~hbb’) + ql&bh(Y) + qllu4(~h(Y) + qK?u4(xhJ4(Y)

+ k3u1(~h(Y) + %4Ul(Xh(Y) + GP3bMY) + q*6u3(~h(Y).

It is worth noticing that there is a natural relation of the d.o.f. (the q coefficients)
of U with the values at each node of

u, 5, ag, J% axay (2.1)

We have, for example, q1 =: U(node(i)), Q = U,(node(i)). The global numbering
used for the four degrees of freedom (2.1) at the mth node is

(4m - 3, 4m - 2, 4m - 1, 4m].

2.5 Formation of the Collocation Equations

The generation of the collocation equations is outlined by the following code
skeleton.

Formation of the collocation equations

LOOP OVER ELEMENTS OF 0;
INVOKE BOUNDARY COLLOCATION POINTS PROCEDURE
IF ELEMENT = BOUNDARY

THEN INVOKE BOUNDARY ELEMENT PROCEDURE
INVOKE BOUNDARY CONDITION PROCEDURE

ELSE

ENDLOOP
INVOKE INTERIOR ELEMENT PROCEDURE

To generate the operator collocation equations for the interior elements in R’,
one first determines the interior collocation points Pi, i = 1 to 4, as the Gauss
points of the rectangle and then forces U to satisfy the differential equation at
these points. The collocation equations are represented by a data structure with
two-dimensional arrays:

COEF(n, 1) = Ith coefficient value of equation n,
IDCOEF(n, 1) = index of the unknown associated with COEF(n, I).

These arrays have 17 columns, 16 for the coefficients and the 17th for the value
of the right side g at the collocation point.

procedure INTERIOR ELEMENT

DETERMINE THE P, AS THE FOUR GAUSS POINTS OF THE ELEMENT;
LOOP WITH P, = (X,, Y,) :FOR Z = 1 TO 4 DO:

/* NROW IS EQUATION INDEX */
NROW := NROW+l

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 389

(a) (b)

,..“.........................*

:
l ..-o

: au : :
: : :
: : :
: . :
: : :
: : :

: :
: right :

:
:
:
i

: : . . l ..e

(c) (4

Fig. 5. The four basic mappings used for boundary elements. The dashed
lines are the boundary sides external to R. The four element sides are mapped
to the actual boundary of E n R as indicated by the images of the element
nodes. (a) One exterior node. (b) Two exterior nodes. (c) Three exterior nodes.
(d) Four exterior nodes.

LOOP FOR N, M = 1 TO 4 DO:
K:=N+4* (M-l)
IDCOEF(NROW, K) := GLOBAL NUMBERING OF DOF K
COEF(NROW, K) := L(Vy.~(x,) WM(Y,))

ENDLOOP
COEF(NROW, 17) := PDE RIGHT SIDE AT P, = G(X,, Y,)

ENDLOOP

To generate the operator collocation equations for a boundary element E
requires that E be mapped into E n R. The image of the four Gauss points under
this mapping are the collocation points used. (See Figure 5.)

procedure BOUNDARY ELEMENT

/= INTERIOR COLLOCATION POINTS FOR ‘BOUNDARY’ TYPE ELEMENT */

DEFINE A MAP FROM THE BOUNDARY dE OF THE ELEMENT E TO THE
BOUNDARY OF THE INTERSECTION OF THE ELEMENT AND DOMAIN,

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

390 - E. N. Houstis, W. F. Mitchell, and J. R. Rice

Fig. 6. The mappings of interior collocation points are along the boundary of the domain.
The o’s are the Gauss points of boundary elements, and the x’s are their images under the
mapping.

d(E n R), BY PARTITIONING a(.73 n R) INTO FOUR PARTS AND MAPPING
EACH SIDE OF THE ELEMENT TO ONE OF THOSE PARTS (SEE FIGURE 5.)

DEFINE A MAP FROM E TO E n R BY LINEARLY BLENDING THE FOUR
MAPS OF THE BOUNDARY.

DETERMINE THE P,‘S AS THE IMAGES UNDER THIS MAP OF THE FOUR
GAUSS POINTS OF THE ELEMENT.

FILL THE ARRAYS COEF AND IDCOEF AS IN THE PROCEDURE INTERIOR
ELEMENT.

The map in the procedure boundary element from dE to d(E fl R) depends on
several aspects of the geometry and is too complicated to give in complete detail
here. However, most of the maps are variants of the four cases shown in Figure
5. See [6] for a discussion of linear blending in two dimensions.

It appears that if E n R is convex, then the map from E to E rl R is one-to-
one and onto. If E n R is not convex, then the map might not be one-to-one and,
if there is a strong concavity, might even map points from E to points outside
E n R. However, a proper choice of grid will keep the images of the Gauss
points inside E n R. An example for a portion of an actual domain is shown in
Figure 6.

To generate the boundary condition collocation equations, one has to determine
the location of the boundary collocation points Qj, j = 1, . . . , n(E) associated
with each boundary element E of the finite element mesh a. It can be shown
that the method described gives 2s + 4 boundary collocation points, where s is
the number of boundary element sides of 0. The process of the distribution of
boundary points on the actual boundary is implemented in two passes.

The first pass is to place collocation points on the boundary sides of 8 (not on
the boundary itself). Four collocation points are associated with each grid node,
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 391

(4

(b)

Fig. 7. Mapping of points representing degrees of freedom into boundary collocation
points. (a) First mapping of exterior points. Four points are associated with each node
on the boundary of Q. Those exterior (o’s) to Q are mapped into the boundary (x’s) and
those interior (solid dots) are mapped to interior collocation points as in Figure 6.
(b) Second mapping of exterior points. The points (o’s) on the boundary are then
mapped onto dR (x’s) to the boundary collocation points.

one in each element adjacent to the node. Those points that are interior to Q
(possibly exterior to the domain R) are not considered further. Those points
which are exterior to Q are projected onto the boundary sides of the mesh and
become the (intermediate) boundary side collocation points. See Figure 7 for an
example.

The second pass is to map the boundary sides of a rectangular element onto
the pieces of the boundary associated with the element; the images of the

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

392 l E. N. Houstis, W. F. Mitchell, and J. R. Rice

boundary-side collocation points are the boundary collocation points used in the
discretization procedure.

There are two parameters, BCPl and BCP2, to adjust the placement of the
boundary collocation points in a boundary side. These allow one to vary place-
ment from the two Gauss points to nodes and midpoints, etc. The default case
(BCPl = BCP2 = 0) selects the Gauss points on an element boundary side. A
skeleton code for the placement of the boundary collocation points (BCPs) in
the element E follows.

procedure BOUNDARY COLLOCATION POINTS

PASS 1: /: ASSOCIATE ElOUNDARY COLLOCATION POINTS (BCPS) WITH
BOUNDARY OF FINITE ELEMENT MESH */

PLACE TWO BCPS ON EACH BOUNDARY SIDE OF E IN THE SAME CONFIG-
URATION AS PARAMETERS BCPl AND BCP2 ARE PLACED IN THE IN-
TERVAL (0, 1).

PLACE ONE BCP AT EACH CORNER OF &l n E.
IF THE END OF THE LAST BOUNDARY SIDE IS A CONCAVE CORNER OF

THE FINITE ELEMENT MESH
THEN REPLACE THE TWO BCP OF THE LAST BOUNDARY SIDE WITH

ONE BCP AT THE MIDPOINT OF THE SIDE
IF THE BEGINNING OF THE FIRST BOUNDARY SIDE IS CONCAVE CORNER

OF THE FINITE ELEMENT MESH
THEN MOVE THE TWO BCPS OF THE FIRST SIDE SO THAT THE FIRST

BCP IS AT THE BEGINNING OF THE FIRST SIDE AND THE SECOND
BCP IS AT THE MI:DPOINT OF THE FIRST SIDE

/* THIS PLACEMENT IS REPRESENTED BY VALUES IN (0,l) WITH l/2 COR-
RESPONDING TO THE CORNER IF THERE ARE TWO BOUNDARY SIDES
AND i/3 AND 213 CORRESPONDING TO THE CORNERS IF THERE ARE
THREE BOUNDARY SIDES */

PASS 2: /* MAPPING THE BCP FROM aQ TO dR :/
/: THIS IS A MAPPING FFtOM (0, 1) TO THE SEGMENT OF aR ASSOCIATED

WITH THE ELEMENT E */
IF THE SEGMENT OF aR IS CONTAINED IN ONE PIECE OF THE BOUNDARY

THEN LINEARLY MAP (0,l) TO (PENTER=BPARAM(ZENT), PEXIT=
BPARAM(ZEXZT))
DETERMINE THE BCPS FROM THE PASS 1 VALUES AND THE DEFINITION
OF tiR.

ELSE IF THE SEGMENT OF aR IS CONTAINED IN TWO PIECES OF THE
BOUNDARY

THEN LINEARLY MAP (0, l/2) TO (PENTER, &,I) AND (l/2, 1) TO
(B 1,1+1, PEXIT), WHERE Z IS THE NUMBER OF THE FIRST PIECE AND
&,I, %,+I ARE FROM 1t1.2)

DETERMINE THE BCPS FROM THE PASS 1 VALUES AND THE DEFINITION
OF aR

ELSE ERROR /* DO NOT ALLOW MORE THAN TWO PIECES OF BOUNDARY
IN ONE ELEMENT */

Once the collocation points for the boundary conditions are determined by the
above procedure, generating the rest of the boundary-condition collocation equa-
tions is simple.
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 393

procedure BOUNDARY CONDITION
/s BOUNDARY ELEMENT E HAS K BOUNDARY SIDES */

LOOP OVER BOUNDARY SIDES OF E DO:
LOOP OVER BOUNDARY COLLOCATION POINTS Q, = (X,, Y,) FOR BOUND-

ARY SIDES DO:
/s NROW IS EQUATION INDEX */
NROW:=NROW+l
LOOP FOR N, M = 1 TO 4 DO:

K:=N+4:(M-1)
COEF(NROW, K) = A(VN(X,) WM(Y,))
IDCOEF(NROW, K) = GLOBAL NUMBERING OF KTH DOF

ENDLOOP
COEF(NROW, 17) = 6(X,, Y,)

ENDLOOP
ENDLOOP

2.6 Reordering of the Collocation Equations

The numbering of the equations and unknowns used in the previous section
results in a system of linear equations that is banded in nature. If R is rectangular
or close to rectangular, then the system has bandwidth about 4 * NGRIDY. As
the domain R deviates more and more from being rectangular, the structure of
the linear system becomes less and less regular and very little can be said for a
completely general region.

The reordering generated in the actual algorithms discussed here is the natural
extension of the finite-element ordering [21] to general domains. That is, if R
were rectangular, this ordering would be obtained. There is a second ordering
natural to collocation called the collorder ordering. This ordering is defined for
rectangular domains in [4]; it can be extended to general domains in a straight-
forward way. The finite element ordering is attractive because it gives minimum
band width in the rectangular case. The collorder ordering is attractive because
it gives a non-zero diagonal and provides maximum numerical stability in the
rectangular case. An example of these two ordering for a triangular domain is
given in [l5] and reproduced in Figure 8.

2.7 Solution of the Collocation Equations

It is customary for the linear equations arising from finite-element methods
(such as this collocation method) to be solved by some form of Gauss elimination.
If R is not far from rectangular, then the system can be made banded by a variety
of orderings and considerable efficiency achieved compared to Gauss elimination
for a general system of equations. The widely used frontal method [21] often
provides the efficiency of bandedness even when R is far from rectangular, even
though it is not guaranteed to do so.

A recent study by Rice [16] indicates that iterative methods are much more
efficient than elimination methods for the Galerkin method equations (on a
rectangle), and it is plausible that this is also true for the collocation equations.
The usual finite-element ordering prevents iterative methods from being applied
to collocation because there are mostly zeros on the diagonal. The collorder
ordering remedies this, but the usual iterative methods diverge rapidly when

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

394 * E. N. Houstis, W. F. Mitchell, and J. FL Rice

(b)

Fig. 8. The patterns of nonzeros in the collocation equations for a triangular domain with
(a) the finite-element ordering of the equations and unknowns and (b) the collorder
ordering.

directly applied. A convergent iteration method (for the model problem of
Laplace’s equation on a rectangle) has been presented by Balart et al [l]. It is
still open as to how to define fast converging methods for the collocation equations
in general, but this question should be viewed as one with good prospects for
favorable results.

At this time the only reliable way to solve the collocation equations in general
is by Gauss elimination with scaled partial pivoting.

3. THE SPECIAL CASES OF RECTANGULAR DOMAINS

The method described in Section 2 can be considerably simplified in case: (i) the
domain R is rectangular and further simplified if (ii) the problem has uncoupled
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 395

boundary conditions, that is,

lL=6 in part of the boundary dR1,
au
,,=" in the rest of the boundary aRz = aR - aR1.

The collocation method for rectangular domains with general mixed boundary
conditions is called throughout Hermite collocation, while for rectangular regions
with uncoupled boundary conditions it is called interior collocation. For rectan-
gular domains, some of the collocation steps are implicitly defined by the input
data. First, the domain discretization process is implicitly defined by the vectors
GRIDX, GRIDY. Second, the finite-element mesh generator process is not
needed, since the nodes of Q coincide with the grid points of rectangular overlay
G. The same local definition of the approximate solution is used, but the steps of
generating the collocation equations are considerably simplified. We describe
these steps for both interior and Hermite collocation.

3.1 Interior Collocation

In the case of uncoupled boundary conditions the boundary collocation equations
can be solved explicitly during the discretization of the boundary conditions.
Thus, one need only generate and solve the interior collocation equations. This
step can be implemented by two parallel asynchronous processes and it is based
on the assumption that

the boundary conditions only change type at the boundary nodes.

A code skeleton for the two processes follows.

/: OPERATOR DISCRETIZATION */

LOOP OVER ALL ELEMENTS E DO:
INVOKE INTERIOR ELEMENT PROCEDURE
/* THIS PROCEDURE IS GIVEN IN SECTION 2.5 */

ENDLOOP

/* BOUNDARY DISCRETIZATION */

LOOP OVER EACH BOUNDARY PIECE:
LOOP OVER EACH NODE T, OF BOUNDARY PIECE;

DETERMINE THE LEFT OR RIGHT HALF INTERVAL ([T,+, T,] OR
[T,, T,+1,2J) WHERE THE BOUNDARY CONDITION BC IS OF THE SAME
TYPE AS AT T,.

/a DENOTE THE INTERVAL BY A AND LET TV, 72 BE ITS TWO GAUSS
POINTS */
S = {TV, 72 AND END POINTS OF A);
CASE BC TYPE IS:

DIRICHLET (U = 6): DETERMINE Ux (OR V,) AT T, BY INTERPOLATING
6 BY A CUBIC AT THE POINTS S; IDENTIFY ACTIVE
DOFS;

NEUMANN (aU/aN = 6): DETERMINE Uxv(= V,) AT T, BY INTERPOLAT-
ING 6 BY A CUBIC AT THE POINTS S; IDENTIFY
ACTIVE DOF;

ENDCASE;
ENDLOOP;

ENDLOOP;

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

396 l E. N. Houstis, W. F. Mitchell, and J. R. Rice

4

u=h
4

u=h
3

u =h
Y 2
(4

1 =h
x 1

(0,0,0.6) (0,17,0,15) (0.29,0,30) (0.56,O.O)

(0,0.4,5) _
(25,26,27,28)

(34,35.0,0)
(13,14,1;,16)

(0,0.2,4)
(21.22,23,24)

(32.33.0.0)
(9.10,11,12)

(0.0,O.l) (31,0,0,0)

U’,‘J.8,0) (19,0,20,0)

(b)

Fig. 9. Example of the interior collocation process of identifying degrees of
freedom. (a) Indicates boundary conditions of problem. (b) Numbering of active
degree of freedom associated with nodal values of (u, y, u,, u,) for the boundary
conditions of (a). The inactive or predetermined degrees of freedom are denoted
by 0.

Figure 9 shows the numbering of active d.o.f. at the end of the boundary
discretization process. Finally, the nonactive d.o.f. predetermined in the boundary
discretization process are eliminated from equations generated in the operator
discretization process.

3.2 Hermite Collocation
In the case of mixed bound.ary conditions the boundary condition collocation
equations are explicitly generated along with the operator collocation equations.
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 397

The user can set the location of the two boundary collocation points at each
boundary element side by using the parameters 0 5 BCP1, BCP2 5 1. The
default case (BCPl = BCP2 = 0) selects the Gauss points in each boundary
element side.

The Hermite collocation method is a direct simplification of the general method
described previously. A code skeleton of the method follows.

LOOP OVER ELEMENTS E OF R DO:
INVOKE INTERIOR ELEMENT PROCEDURE
IF ELEMENT = BOUNDARY
THEN LOOP OVER BOUNDARY COLLOCATION POINTS (X,, Y,) DO:

NROW = NROW+l
LOOP FOR N,M=l TO 4 DO:

K:=N+4*(M-1)
COEF(NROW,K) = A(V,(X,)W,(Y,))
IDCOEF(NROW,Kj = GLOBAL NUMBERING OF KTH DOF

ENDLOOP
COEF(NROW, 17) = 6(X,, Y,)

ENDLOOP
ENDLOOP

4. THE ALGORITHMS GENCOL, INTCOL, AND HERMCOL

The collocation methods described above have been implemented as three Fortran
programs [lo, 111. The initial comments of those programs provide a concise
summary of each algorithm; we do not repeat that here. We identify the three
algorithms and their input. Each applies to the operator (1.1) and boundary
conditions (1.3).

GENCOL: General Collocation
INPUT: GENERAL DOMAIN SPECIFIED IN PARAMETRIC FORM CLOCKWISE

RECTANGULAR OVERLAY: [AX,BX] x [AY,BY]
7 PDE COEFFICIENT FUNCTIONS: CUXX(X,Y), . . . , CU(X,Y),G(X,Y)
4 BOUNDARY CONDITION FUNCTIONS: a(X,Y), P(X,Y),r(X,Y)$(X,Y)
2 OUTPUT SPECIFICATION ARRAYS: OUTFNC(I),OUTTYP(I), I=1 TO
NOUT

INTCOL: Interior Collocation
INPUT: RECTANGULAR DOMAIN

RECTANGULAR GRID: POINTS X(I), I=1 TO NX+l; Y(J), J=l TO NY+1
7 PDE COEFFICIENT FUNCTIONS: CUXX(X,Y), . . . , CU(X,Y), G(X,Y)
4 UNCOUPLED BOUNDARY CONDITION FUNCTIONS: a(X,Y), /3(X,Y),
Y KY), 6 KY)
2 OUTPUT SPECIFICATION ARRAYS: OUTFNC(I), OUTTYP(I), I=1 TO
NOUT

HERMCOL: Hermite Collocation
INPUT: RECTANGULAR DOMAIN

RECTANGULAR GRID: POINTS X(I), I=1 TO NX+l; Y(J), J=l TO NY+1
7 PDE COEFFICIENT FUNCTIONS: CUXX(X,Y), . . . , CU(X,Y), G(X,Y)
4 BOUNDARY CONDITION FUNCTIONS: a(X,Y), @(X,Y), y(X,Y), b(X,Y)
2 BOUNDARY SPECIFICATION ARRAYS: OUTFNC(I), OUTTYP(I), I=1
TO NOUT

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

398 l E. N. Houstis, W. F. Mitchell, and J. FL Rice

5. EXAMPLES

A wide class of elliptic PDEs have been solved by GENCOL, INTCOL, and
HERMCOL. Many results can be found in the references [7,8,9,12]. We include
a set of problems to illustrate the use of this software and to give a general
indication of its applicability.

5.1 Example 1: Incompressible Flow in a Circular Tube

This example involves an elliptic PDE that models an incompressible Newton-
ian fluid flow in an internally finned circular tube [13]. The problem is defined
by

PDE: u,, + -$ U, + 1 u, = -1;
x

DOMAIN: (0, 1) x (0, a);

BC: u=O at x=1 and Ory~cr,
u=o at y=a and 1 I xl 1,

uy=o at y=ar and O<n<l,
u, = 0 at x=0 and Ory~cu,
u,=o at y=O and O<x<l.

We choose (Y = ?r/4,1= .5 and a uniform spaced 32 X 17 mesh. Note that for this
example all three algorithms can be applied. The one used is INTCOL (interior
collocation), as it is the most efficient whenever it is applicable. Figure 10
presents a contour plot of the approximation to the unknown solution of this
problem. This problem has been solved with a variety of meshes, and the
agreement between the solutions for finer meshes is quite good, which suggests
that the solutions are accurate.

5.2 Example 2: Distribution of Diffused Particles
This example involves a non-self-adjoint problem used to model the distribution
of diffused particles [20]. The problem is defined by

PDE: U, + -$ h + : u, + (l/(x tan y))u, = g,

DOMAIN: (0, 1) x (0, l),

BC: u = h.

In order to test convergence,, the functions g and h are chosen so that u = ex+y.
In this case, all three algorithms can be applied. The problem is solved for various
meshes, and for each mesh various performance indicators are computed. These
data are summarized in Table I. These data indicate that the rate of convergence
of the collocation method is of order 3.8. This is similar to the fourth-order
convergence in the approximation with bicubic Hermite polynomials; order 4 is
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 399

.893y-l

&87- .6687-

SOOO- SOOO-

> >

.3B3- .3B3-

.1681- .1681-

Fig. 10. Contour plot of the solution of Example 1 by INTCOL.

Table I. Performance Data for Example 2”

HERMCOL INTCOL HERMCOL GENCOL

Grid Equations Time-D Time-T Time-D Time-T Time-D Time-T Error Order

3x3 36
5x5 100
9x9 324

13 x 13 676
17 x 17 1156

0.08 0.20 0.17 0.47 0.15 0.53 2.84e - 4
0.13 0.75 0.28 1.83 0.27 1.81 2.39e - 5 3.57
0.60 5.72 0.58 11.94 0.72 11.92 1.70e - 6 3.81
1.17 22.12 1.10 41.67 1.48 45.38 3.5Oe - 7 3.90
2.40 57.83 1.62 109.88 2.55 109.47 1.15e - 7 3.87

“Time-D is the time in seconds on a VAX 11/780 for discretization, Time-T is the total time for
problem solution (excluding I/O). Error and order are estimates of the maximum error and the order
of convergence as a function of AZ. The same band Gauss elimination solver was used for each
discretization, and the same errors were obtained.

the highest possible order of convergence. The order is estimated at the ith grid
by

order = log(error(i)/error(i - 1)
lOg(AXi/AXi-1) '

Recall that INTCOL has fewer equations and produces an insignificantly differ-
ent solution.

This example is modified to make the domain nonrectangular. The Dirichlet
boundary condition is kept the same so the problem is defined by u = I&c, y) on

lines: (1.0,O.O) to (0.0,O.O) to (0.1,0.5) to (0.5,0.5),
arc: x = 0.5 + .5 * sin t, y = .5 * cos t for t = 0. to a/2.

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

400 ’ E. N. Houstis, W. F. Mitchell, and J. R. Rice

Table II. Performance Data for Example 2 with a Nonrectangular Domain”

GENCOL

Grid Equations Time-D Time-T Error Order

3x 3 36 0.15 0.46 1.04e - 4

5x 3 60 0.27 1.16 1.02e - 5 3.78

9x 5 176 0.67 4.64 7.40e - 7 3.78
17x 9 560 1.73 21.90 7.96e - 8 3.22

15 x 13 117:! 3.38 68.92 1.21e - 8 4.65

’ The notation is the same as for Table I.

The performance results of GENCOL for this modified problem are given in
Table II. These data suggest that the rate of convergence of the collocation
method is about 3.7. There is no theoretical basis upon which to base a conjecture
about the rate one should expect here, but this example suggests that the
convergence may be about the same as collocation on rectangular domains.

5.3 Example 3: Flux Distribution in Magnetic Materials (Nonlinear) Problem

The calculation of flux distribution in magnetic material with saturation leads
to the nonlinear elliptic PDE

where $ is the flux function and p is the permeability which can be expressed as
the ratio of the magnitudes of the flux vector B and field vector H. It is shown
by Poritsky [14] that B = (@ + #f)“’ and H = (~$2 + &J1”, where 4 is the
potential function. In [14] a number of methods are applied to determine the
distribution of magnetic flux in a transformer core with periodic circular bolt
holes (Figure lla), for an (H, B)-relation shown in Table III and average flux
density B. = 15,000 lines per centimeter across a 6-inch lamination width. We
denote by Ho, p. the values of H, p corresponding to Bo(Ho = 3.1, I.CO = 5,000).
Because of symmetry, it is sufficient to solve the PDE in the domain shown in
Figure lib with the indicated boundary conditions. A dimensionless form of the
problem is obtained by replacing p by p/pa, where p. is an average value. Similarly,
B and H are replaced by B/.Bo and H/Ho in the dimensionless form.

The PDE can be written in the form

In this form, p. and Ho do not enter into the calculations. We select B. = 3333
so that]] B]lm (the maximum magnitude of B) is about 18000 and Table III can
be used to calculate p as a function of B.
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 198.5.

8
II
3

0

0

f

II
73

402 l E. N. Houstis, W. F. Mitchell, and J. R. Rice

Table III. Flux Distributions
with Saturation for Example 3

B H
(lines/cm*) (Gilberts/cm)

500 0.0500
1,000 0.0645
2,000 0.0850
4,000 0.117
6,000 0.149
8,000 0.190

10,000 0.259
12,000 0.399
13,000 0.544
14,000 0.815
15,000 1.67
16,000 16.50
17,000 1'7.7
18,000 41.0

Table IV. Maximum Differences
between Iterates for Example 3

K DIFF(K)

1 6.500e + 01
2 3.645e - 03
3 3.740e - 04
4 1.764e - 05
5 2.861e - 06
6 1.907e - 06

The nonlinear problem is solved by the following simple iteration.

GUESS I)“) = 10:X: Y
LOOPFORK=lTOLDO

The term ~(~-l) is computed by

where

B’k-“(X, y) = ((#:k-‘)(x, y))” + (lp’(x, y))‘)“’

and H’k-“(~, y) is computed by linear interpolation of Table III. The terms
/&” and ,$-1) are computed similarly.

The four methods used in [14] were (1) ordinary finite differences, (2) a
graphical method, (3) an analog device, and (4) a hodograph method. None were
very satisfactory, but that is no surprise since the paper is more than 30 years
old. The simple iteration converges very well. Table IV indicates the convergence
as measured by

DIFFW = (,r,yj~;;oints I #(kY~, Y) - ti(k-l)(~, Y) I.

The contour plot obtained after six iterations with a 13 x 11 grid is shown in
Figure 12. It agrees qualitatively with the crude results obtained by Poritsky.
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 403

2wo

2.m

l.ax,

>

1.@Jo

.Hm

am0
a

-

10 .-boo I .-boo 1.~600
X

2,

u
CONTOURS

3 2:m s.tao

Fig. 12. Contour plot of the solution of the nonlinear problem of Example 3.

5.4 Example 4: Gas Lubrication (Nonlinear Problem)

The Navier-Stokes equations for compressible, nonviscous fluid flow in thin
films reduce to Reynolds equation. It models the pressure distribution in the gas
films that lubricate high speed devices such as gyroscope bearings or magnetic
read heads. The PDE is

(Uh3U,) + (uh3uJ, + c(uh)x = 0,

with boundary conditions u = 1.0 everywhere. The function h(x, y) is the height
of the thin lubrication film. The parameter c is a physical constant, when c is
small (low speed), the problem is easy, and when c is large (high speed), the
problem becomes quite difficult.

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

404 - E. N. Houstis, W. F. Mitchell, and J. R. Rice

Table V. Maximum Differences
Between Iterates for Example 4

K DIFF(K)

1 1.418e + 00
2 6.064e - 02
3 3.116e - 03
4 1.102e - 03
5 3.788e - 06
6 1.295e - 07

This problem is solved by Newton’s method, see [Eland [19] for a derivation
of this iteration. The Newton iteration is

GUESSU'(X,Y)
FORK=OTOLDO:

(1) SOLVETHELINEARIZEDPROBLEM
u'~'U~~ + U'K'Uyy + D(X,Y)Uy + E(X,Y)Ux+ F(X,Y)U=G(X,Y)

(2) SET UcK+') = U(X,Y)
ENDLOOP

where

3h uCk)
e(x, y) = 22@ + y

h ’

f(x, y) = L&g + ug +
3(dk’ + uck)) ch

x h y + $,

g(x, y) = U(k)(U$:) A- l&q + (u$k’)2 + (u$k’)2 +
3h(uCk’ + u@))

xu(k) x .

We choose as an example a simple slider bearing, that is, h(x, y) is linear in x
and constant in y. The bearing geometry is a square pad with a half disk on the
leading edge. Thus we have

h(x, y) = 1 + 2x,

and the domain is defined by

lines: (1.0, 0.0) to (0.0, 0.0) to (0.0, 1.0) to (1.0, l.O),
arc: x: = 1.0 + 0.5 sin p, y = 0.5(1 + cos p) for p = 0.0 to R.

We also choose c = 12.0, a moderate value for this physical parameter.
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 405

1.0430~

.-m

a- .soo~

.260~

0.000~
0 :koo .‘m

X
1 :lal 1 .‘ko lo

Fig. 13. Contour plot of the solution to Example 4, Reynold’s equation, computed by
Newton’s method and GENCOL.

With the initial guess of u(O) = 1.0 (no motion at all) the values of DIFF as
defined in Example 3 are given in Table V for a 12 by 9 grid. We see that the
Newton iteration converges rapidly. A contour plot of the final U(X, y) is shown
in Figure 13. The problem has been solved again with a 16 X 12 grid; the contour
plot is essentially the same and the error using the 12 X 9 grid is about 9.6 X

10w4. This is estimated by comparing with a solution on a 10 X 10 grid.

5.5 Example 5: Minimal Surface (Nonlinear Problem)

The minimal surface equation (or plateau problem) is

(1 + ~y)p~xx - 2U&U, + (1 + L&)9.& = 0.

Its solution is the shape a soap film takes on a wire loop defined by the boundary
conditions (see [2]).

We select the example of an elliptical domain and boundary condition that
have an upward peak at the top of the ellipse and a downward peak at the bottom
of the ellipse. Specifically, the domain and boundary conditions are given by

u = e-4x2 on x = 2 sin t, y = cos t for t = -;to;,

u = e-4x= on x = 2 sin t, y = cos t for t = 5 to $.

The problem is solved by Newton’s method; see, for example, [19, ch. 51 for a

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

406 l E. N. Houstis, W. F. Mitchell, and J. R. Rice

Table VI. Maximum differences
between iterates for Example 5

K DIFF(K)

1 l.OOOe + 00

2 1.020e - 01
3 9.719e - 02

4 2.156e - 02

5 1.408e - 03

6 8.613e - 06
7 8.138e - 06

derivation of the following iteration:

GUESS U’O’ = 0
FORK=OTOLDO

SOLVE THE LINEARIZED PROBLEM

A(X,Y)Uxx + B(X,Y)& +, C(X,Y)Uyy + D(X,Y)& + E(X,Y)& = G(X,Y)
U’K”’ = U(X,Y)

ENDLOOP

where

a(x y) = (1 + uy2
b(x: y) = -2up’:$k’,’
c(x y) = (1 + U(k))2
d(x: y) = 2(u!k’u$ 1 UWU(W) ry)
e(x, y) = 2(u$k’~i$ - u~k”u$~)),
g(x, y) = 2(@%(k) - u’k’u$)u~k’ + (u;k’ulf;’ - up’ug$4~k’). w Y

Again, the iteration converges well. Table VI shows the differences between
iterates for a 17 x 9 grid. Figure 14 shows the contour plots of the solution for
the first three iterations. The plot of the final solution is nearly identical to the
third plot.

6. PERFORMANCE EVALUATION

There are four principal performance questions for software such as considered
here: (1) How much time does it take to run? (2) How much memory does it use?
(3) How much accuracy does it achieve? (4) How reliable is it? We do not attempt
a scientific analysis of reliability at all. We merely note that the three algorithms
have been used on a large number of varied problems. The only difficulty that
has been observed is in GENCOL’s handling of nonrectangular geometry. Some-
times a grid used does not satisfy the assumptions stated in Section 2.3 and must
be modified. Less frequently, but still possible, there are domains with sharp
corners where considerable care must be taken in selecting the grid overlay so
that reasonably accurate results are obtained. We have also noted for very large
problems that linear equation solvers which do not do scaling (such as the
LINPACK software) may produce unacceptable magnification of round-off
errors [5].
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 407

I .003 ,------

KQ

ooo

Fig. 14. Contour plots for Example 5. The contours for the first three iterations
are shown in top-to-bottom order. The width of the two peaks decreases by a factor
of about 3 from the initial Laplace solution estimate (the resolution of the plotter
and does not allow this to be seen clearly).

Time and memory use are the standard and most easily handled measures of
performance. The algorithms INTCOL and HERMCOL are parameterized by
the grid sizes NGRIDX and NGRIDY, and time and memory can be expressed
in terms of these two parameters. We distinguish two phases of the solution: the

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

408 l E. N. Houstis, W. F. Mitchell, and J. R. Rice

Table VII. ‘Time and Memory Performance Estimates for
INTCOL and HERMCOL

INTCOL HERMCOL

Time-D
Memory-D
Time-T
Memory-T

O(NX * NY) O(NX * NY)
34*NX*NY 34*(NX+l)*(NY+l)
O(NX * NY’) O(NX * NY’)
O(NX * NY*) O(NX * Np)

Table VIII. Time and Memory Performance Data for GENCOL”

Example

Ratio 2 3 4 5

Time-D/(NX * NY)
NX=4 0.017 0.067 0.021
NX=8 0.011 0.057 0.056 0.016
NX=12 0.010 0.059 0.051 0.012
NX= 16 0.010 0.056 0.059 0.010

Memory-D/(NX * NY)
NX=4 212.813 214.375 212.813
NX=8 172.203 173.469 169.344 163.953
NX=l2 159.646 159.903 155.319 141.313
NX=16 153.551 153.133 148.492 132.926

Time-T/(NX * NY’)
NX=4 0.033 0.041 0.032
NX=8 0.026 0.032 0.028 0.024
NX= 12 0.028 0.032 0.024 0.016
NX=16 0.028 0.029 0.024 0.015

Memory-T/(NX * NY’)
NX=4 200.609 196.953 195.797
NX=8 109.990 109.287 108.727 107.912
NX= 12 86.435 86.083 85.666 84.438
NX= 16 75.782 75.547 75.241 74.208

a In each case we have NX = NY. Time is measured in seconds on a VAX 11/780 in single precision
with code compiled by F77.

discretization (which is fixed for each algorithm) and the solution of the linear
system (which may be changed by the user). Table VII presents basic estimates
of performance for these two algorithms. We use the following notation in this
table:

NX,NY = NGRIDX-1, NGRIDY-1,
Time-D = Time to discretize problem (in units of one arithmetic

operation),
Time-T = Time to solve problem using Gauss elimination software for

band matrices (in units of one arithmetic option),
Memory-D = Memory used to discretize problem,
Memory-T = Memory used to solve problem.

The orders given in Table VII do not distinguish much between INTCOL and
HERMCOL; INTCOL is more efficient in both time and memory. The paper [3]
gives specific data for a large number of problems.
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 409

Example 4

100 101 102 103
Log (computing time)

Fig. 15. Performance of GENCOL applied to Examples 2-5. The plot is logterror) versus
log(computing time).

Time and memory use for GENCOL are less easily parameterized because the
shape of the domain R enters. The orders given in Table VII for HERMCOL are
applicable provided (a) the domain is reasonably “compact” and (b) the grid G
just covers R. In Table VIII we give specific performance data for four of the
examples from Section 5.

Accuracy achieved is perhaps the most important measure of performance, and
yet it is sometimes not considered at all. High efficiency is only meaningful when

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December i985.

410 l E. N. Houstis, W. F. Mitchell, and J. R. Rice

100

10-l Example 5

Example 3
-2

E 10-j 3
2

‘-:::
Example 4

10-z

100 101
Log W)

Fig. 16. Performance of GENCOL applied to Examples 2-5. The plot is log(error) versus log(NX);
the slopes of the lines are estimates of the order of convergence of the collocation method.

related to accuracy achieved. Accuracy performance is highly problem-dependent,
whereas time and memory performance are almost problem-independent. Therein
lies the difficulty of measuring accuracy performance in a broadly meaningful
way; see [12] for more details on this topic. There is theoretical reason to
expect that collocation on rectangular domains is a fourth-order method. That
is, the error] U(X, y) - U(x, y)] should be of the order of 1/N4, where
ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

Collocation Software for Second-Order PDEs l 411

N = min(NGRIDX, NGRIDY), provided the problem is well-behaved. This
expectation is correct; the data in [3,7,8,9] provides ample evidence of this and
there is much more such evidence elsewhere; see, for example, [19].

The accuracy to be expected by GENCOL is unknown at present. It surely
should be at least 0(1/N’); it should sometimes be as good as 0(1/N4) and one
can hope that it is usually O(l/N3), or even O(l/N4). Figures 15 and 16 show
accuracy versus NX and versus total computing time for GENCOL applied to
Examples 2-5 of Section 5. The error data is plotted on a log-log scale and the
slopes of the data estimate the order of convergence. These figures strongly
suggest fourth-order convergence (error versus grid size or computer time). The
reliability of this suggestion is suspect because this is a very small sample and
the errors for three of these examples are only estimates because the true solutions
are unknown.

REFERENCES

1. BALART, R., HOUSTIS, E. N., AND PAPATHEODOROU, T. S. On the iterative solution of collo-
cation method equations. In 10th ZMACS World Congress, (Montreal, Canada) vol. 1,
R. Vishnevetsky, ed. 1982, pp. 98-100.

2. COURANT, R. Dirichlet’s Principle, Conformal Mappings, and Minimal Surfaces. Vol. 3. Inter-
science, New York, 1950.

3. DYKSEN, W. R., HOUSTIS, E. N., LYNCH, R. E., AND RICE, J. R. The performance of the
collocation and Galerkin methods with Hermite bicubics. SIAM J. Numer. Anal. 21 (1984)
695-715.

4. DYKSEN, W. R., AND RICE, J. R. A New ordering scheme for the Hermite bicubic collocation
equations. In Elliptic Problem Solvers II, G. Birkhoff and A. Schoenstat, Eds. Academic Press,
New York, 1984, pp. 467-480.

5. DYKSEN, W. R., AND RICE, J. R. The importance of scaling for the Hermite bicubic collocation
equations. SIAM J. Stat. Sci. Comput. To be published.

6. GORDON, W. J., AND HALL, C. A. Construction of curvilinear coordinate systems and applica-
tions to mesh generation. Znt. J. Numer. Meth. Eng. 7 (1973), 461-477.

7. HOUSTIS, E. N., LYNCH, R. E., PAPATHEODOROU, T. S., AND RICE, J. R. Evaluation of numerical
methods for elliptic partial differential equations. J. Comput. Phy. 27 (1978), 323-350.

8. HOUSTIS, E. N., MITCHELL, W. F., AND PAPATHEODOROU, T. S. A Cl-collocation method for
mildly nonlinear elliptic equations on general domains. In Advances in Computer Methods for
Partial Differential Equations ZZ (R. Vishnevetsky, ed.) ZMACS, Rutgers University, 1979, 13-17.

9. HOUSTIS, E. N., MITCHELL, W. F., AND PAPATHEODOROU, T. S. Performance evaluation of
algorithms for mildly nonlinear elliptic problems. Znt. J. Numer. Meth. Eng. 19 (1983), 665-709.

10. HOUSTIS, E. N., MITCHELL, W. F., AND RICE, J. R. Algorithm GENCOL: Collocation on general
domains with bicubic Hermite polynomials. Rep. ACM Trans. Softw. 22 (1985), 413-415.

11. HOUSTIS, E. N., MITCHELL, W. F., AND RICE, J. R. Algorithms INTCOL and HERMCOL:
Collocation on rectangular domains with bicubic Hermite polynomials. ACM Trans. Softw. 12
(1985), 416-418.

12. HOUSTIS, E. N., AND RICE, J. R. An experimental design for the computational evaluation of
partial differential equation solvers. In Production and Assessment of Numerical Software,
M. Delves and M. Hennell, Eds. Academic Press, London, pp. 57-66,198O.

13. MASLIYAH, J. H., AND KUMAR, D. Application of orthogonal collocation on finite elements to
a flow problem. Math. Comput. Simulation 22, (1980), 49-54.

14. PORITSKY, H. Calculation of flux distributions with saturation. AZEE Trans. 70 (1951),
309-319.

15. RICE, J. R. Numerical Methods, Software, ana’ Analysis, McGraw-Hill, New York, 1983, ch. 10.
16. RICE, J. R. Performance analysis of 13 methods to solve the Galerkin method equations. Linear

Alg. Appl. 53, (1983), 533-546.

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

412 l E. N. Houstis, W. F. Mitchell, and J. R. Rice

17. RICE, J. R. Numerical computation with general two dimensional domains. ACM Trans. Math.
Softw. 10, (1984), 443-452.

18. RICE, J. R. Algorithm 625: A two dimensional domain processor. ACM Trans. Math. Softw. IO,
(1984), 453-462.

19. RICE, J. R., AND BOISVERT, 12. F. Solving Elliptic Problems with ELLPACR Springer-Verlag,
New York, 1985.

20. RICE, J. R., HOUSTIS, E. N., .4ND DYKSEN, W. R. A population of linear, second order elliptic
partial differential equations on rectangular domains. Math. Cornput. 36 (1981), 475-484.

21. ZIENKIEWICZ, 0. The Finite Element Method in Engineering Science. McGraw-Hill, London,
1971.

Received May 1984; revised May 11985; accepted September 1985

ACM Transactions on Mathematical Software, Vol. 11, No. 4, December 1985.

