The JIT Compliler API

Frank Yellin

1 Summary

The JIT Compiler APl is intended for all programmers writing native code generators or other
utilities that run inside the Java Virtual Machine. This document describes what is implemented in
the JDK 1.0.2.

The JIT Compiler APl is intended to support several different styles of native code generators:

* Ahead-of-time recompilers This some of compiler rewrites a java class file into a so called
“fat” class file. This fat class file must give both the original byte-code definition of all of the
methods, and can also give one or more alternative native-machine code definitions for some
of the methods. The “fat” class file can easily accommodate native-machine code definitions
for several machine architectures, simultaneously.

* Ahead-of-time compiler. This sort of compiler converts Java (or other language) source code
into a “fat” class file. Again, the fat class file must give both byte-code definitions of all the
methods, and can also give one or more alternative native-machine code definitions for some
of the methods. Compilers can often produce better code than recompilers, since they can
know the original “intent” of the programmer.

e Just In Time Code Generators A JIT code generator is intended to run concurrently with
the execution of the Java Virtual Machine. The JIT code generator should determine those
methods that are called most often, and generate machine code for them on-the-fly. A JIT
code generator can make use of specific hardware or coprocessors running in the current
environment.

Although this APl is intended for code generators generating native code, this API can easily be
extended by vendors to be used for other purposes. This API provides convenient hooks so that
vendor-written code can be executed within the JVM. However for convenience, we call any
vendor-written code aompilerif it conforms to and makes use of this JIT Compiler API.

Note that in all cases, it is assumed that there is a vendor-provided “shared” library that is to be
linked in to the Java Virtual Machine. For ahead-of-time compilers, this library must include
routines to read in the compiled code from the fat class files and to patch it if necessary. For just-
in-time compilers, this library must be able to compile JVM byte codes on the fly.

It is assumed that readers of this document are familiar with the Java language and with the Java
Virtual Machine. Additional information on the virtual machine can be fourithenJava Virtual
Machineby Tim Lindholm and Frank Yellin

The JIT Compiler API October 4, 1996 1

2 The class java.lang.Compiler

The classjava. Tang.Compiler is the application interface to the native code API. This class
is responsible for both determining if a compiler is available, and if so initializing it. In addition,
this class contains several methods by which the application can pass information to the compiler.

By default, all the methods in this class effectively do nothing. However as part of the compiler
initialization step above, these methods can be modified to actually do useful work

Here are the methods java. Tang.Comp1iler and their intended meaning.

e public static void disable().

Disable the compiler. The compiler is enabled by default. The implementation of this method is
described more fully in 85.1.

e public static void enable()

Enable the compiler if it has been disabled. The implementation of this method is described
more fully in 85.1.

e public static boolean compileClass(Class clazz)

Compile the indicated class. Returnue if successfulfalse otherwise. The
implementation of this method is described more fully in 85.2.¢cThezz argument is an
instance ofjava. lang.Class representing a class in the running Java application.

* public static boolean compileClasses(String string)

Compile all classes whose names have the indicated pattern. Retwgnf successful,
false otherwise. The implementation of this method is described more fully in §5.2.

* public static Object command(Object any)
This method has no predefined meaning.

3 Additional structures

Every method in the JVM has a runtime structure associated with it callegethed blockThis
method block includes the following three fields:

void *CompiTledCode;
void *CompiledCodeInfo;
Tong CompiledCodeFlags;

These fields are never used by the Java Virtual Machine. Compiler implementors are free to use
these fields however they wish.

4 Start-up

There are three actions that the JVM performs in order to initialize any compiler.

* This method does not work in JDK 1.0.2. See §5.3 for more details.

The JIT Compiler API October 4, 1996 2

1. Before executing any Java code, set the C varilgdd ossTessQuickOpcodes to the
valueTRUE.

2. Load in the clasgava. Tang.Compiler using the normal class loading mechanism.
This action causes this class’s static initializer to execute. See 84.2 for more details.

3. If the compiler class could not be found, or if the compiler’s shared library could not be
found (see 84.2), the C variatilseLossTessQuickOpcodes is reset to the value
FALSE.

4.1 UselosslessQuickOpcodes

In the normal execution of the Java Virtual Machine, certain byte codes are rewritten into new, so-
called “quick” byte codes that can be executed more efficiently. These quick byte codes are
internal to the Java Virtual Machine and cannot normally appear in user code.
For example, Java code of the form

String x;

x.length(Q);

is compiled to something like
0 invokevirtual #4 /l Method String.Tength(QI

where, for example, index 4 into the constant pool of the current class is a symbolic reference to
the methodtring. Tength. However, after the first execution of this instruction, it is rewritten
into

0 invokevirtual_quick 3 1
This rewrite indicates several things:
* that theString class does in fact havelangth () method,
 the current method is entitled to call thength () method

* thatinString or any subclass &tring, thelength() method must always be the third
item in the class’s method table.

* thatString.length() has a total argument length of 1, including the “this” argument.

Future execution of this code can grab the “this” argument off the stack, find its method table, and
get the third method in that method table. No other checks are necessary. This new instruction is
much faster.

However the knowledge that the code is calling the specific m&thoiing . Tength () has
been lost. Just in time compilers that want to perform code inlining or other such optimizations
would be unable to determine what specific methods were intended to be called.

Setting the C variabldseLoss1essQuickOpcodes to TRUE forces the Java Virtual machine
to be very restrictive about the sorts of rewrites that it does. If this variali/s the JVM
performs special rewrites for which no information is lost. In particular:

The JIT Compiler API October 4, 1996 3

* All opc_invokevirtual byte codes are converted to
opc_invokevirtual_quick_w byte codes. Normally, this instruction can turn into
eitheropc_invokevirtual_quick, opc_invokevirtualobject_quick, or
opc_invokevirtual_quick_w

* All opc_getfield are converted intopc_getfield_quick_w byte codes. Normally,
this instruction can turn into eithepc_getfield_quick, opc_getfield2_quick,
oropc_getfield_quick_w.

* All opc_putfield are converted intopc_putfield_quick_w byte codes. Normally,
this instruction can turn into eithepc_putfield_quick, opc_putfield2_quick,
oropc_putfield_quick_w.

4.2 Static initialize of java.lang.Compiler

Loadingjava. lang.Comp1iler causes the following static initializer to be executed:

try {
String library = System.getProperty("java.compiler");
if (library != null) {
System.loadLibrary(library);
initialize(Q);

}
} catch (Throwable e) { }

If the system propertyava.compiler is defined and is netu11, it is treated as the name of a
shared library. This shared library is loaded; the compiler is then initialized through a call to the
native methodnitialize.

The exact method bywhich system properties are given values and by which shared libraries are
loaded is machine and implementation dependent.

The following is the native code that is executed by the call to the Java method
Compiler.initialize.

(void ()(void **)) address =
(void *) sysDynamicLink(“java_lang_Compiler_start”);
if (address != 0)
address (CompiTledCodelLinkVector)
compilerInitialized = TRUE;

1. We look for the address of the symbalva_Tlang_Compiler_start in the shared
library. The exact method by which that address is determined is machine and
implementation specific.

2. If that symbol is found, it is presumed to be the name of an initialization function. That
function is called with the value @ompiledCodeLinkVector (see §4.3, 85, 86) as its
single argument.

3. The variablecompilerInitialized is set tolRUE. If this variable maintains its initial
value of FALSE, the JVM assumes that the compiler has not been initialized and sets
UselLossTessQuickOpcodes (see 84.1) t¢ALSE on its own. If this variable is set to
TRUE, then the compiler has been initialized, and its initialization function must set
UselLossTessQuickOpcodes to whatever value is appropriate for that compiler.

The JIT Compiler API October 4, 1996 4

4.3 CompiledCodeLinkVector

The sole argument to the compiler initialization function is a link vector: an array of addresses of
various functions and variables in the Java Virtual Machine.

On some operating systems, shared libraries can access global functions and variables that exist in
the main program. However on many others, shared libraries and DLL's cannot access these global
functions and variables. For that reason, the initialization routine above passes the value
CompiledCodeLinkVector in Step 2. This link vector is an array of addresses in the main
program that the compiler might need.

Each address in the link vector is one of the following:

* The address of a hook (see 85) to the compiled code. The compiler initialization can modify
the value of these hooks to be the address of a function in the shared library.

* The address of a function that the compiler or compiled code might need to call.

* The address of variables whose value the compiler may want to change.

* The address of certain important constants, such as the class structure for
java. lang.String or the array of all classes.

The compiler should check the valueJafvaVersion (86.1), whose address is always the first
item in the link vector. The specific order and format of the elements in the link vector is not
guaranteed to be the same across versions. Compilers should not rule¥ &\ rsion

variable contains a value they do not understand.

5 JVM Hooks in the Link Vector

There are several entries in the link vector that can be used by a compiler to affect the running of
the Java Virtual Machine.

Each of these entries is the address of a variable. The initial value of each of these va#lables is
The compiler can set one or more of these variables to be a non-zero value in order to cause
compiler-specific functions to be called at specific times.

5.1 void (*p_CompilerEnable)(), void (*p_CompilerDisable)()

The two C functions
java_Tlang_Compiler_enable()
java_lang_Compiler_disable()

are called whenever the application calls the Java mettanjsi 1er.enable() or
Compiler.disable() respectively

The definition of these two functions are as follows:

void java_Tlang_Compiler_enable(Hjava_lang_Compiler *this) {
if (p_CompilerEnable != NULL)
p_CompilerEnable();

The JIT Compiler API October 4, 1996 5

void java_lang_Compiler_disable(Hjava_lang_Compiler *this) {
if (p_CompilerDisable != NULL)
p_CompilerDisable();
3

Compilers can set the values of the two variapleSompilerDisable and
p_CompilerEnable to cause compiler-specific actions to occur when the methods
Compiler.disable andCompiler.enable are invoked, respectively.

5.2 boolean (*p_CompilerCompileClass)(ClassClass *class)
boolean (*p_CompilerCompileClasses)(Hjava_lang_String *name)

The functionjava_Tlang_Compiler_CompilerCompileClass is called whenever the
application calls the Java meth6dmpiler.compileClass.

The functionjava_lang_Compiler_CompilerCompileClasses is called whenever the
application calls the Java meth6dmpiler.compileClasses.

The definition of these functions is as follows:

long java_lang_Compiler_compileClass(
Hjava_lang_Compiler *this,
Hjava_lang_Class *clazz) {
if (clazz == NULL) {
SignhalError(@, JAVAPKG "NullPointerException", 0);
return FALSE;
} else if (p_CompilerCompileClass != NULL) {
return p_CompilerCompileClass(unhand(clazz));
} else {
return FALSE;
b
b

long java_lang_Compiler_compileClasses(

Hjava_lang_Compiler *this,
Hjava_lang_String *name) {

if (name == NULL) {
SignalError(@, JAVAPKG "NullPointerException", 0);
return FALSE;

} else if (p_CompilercompileClasses != NULL) {
return p_CompilercompileClasses(name);

} else {
return FALSE;

ks

Compilers can set the valuesmfCompilerCompileClass and
p_CompilerCompileClasses to cause vendor-specific operations to occur when the Java
methods are called.

The JIT Compiler API October 4, 1996 6

The functions pointed at by the two variables should return a non-zero value if they have
successfully compiled the class(es), and zero otherwise.

5.3 JHandle *(*p_CompilerCommand)(JHandle *)

The function

java_lang_CompiTler_command()
is called whenever the application calls the Java mefoogbi 1er . commandy().

The definition of this function is as follows:

JHandle*
java_lang_Compiler_command(Hjava_lang_Compiler *this, JHandle *x)
{
if (x == NULL) {
SignalError(@, JAVAPKG "NullPointerException"”, 0);
return NULL;
} else if (p_CompilerCommand != NULL) {
return p_CompilerCommand(x);
} else {
return NULL;
3
ks

Compilers can set the values of the variaple§ompilerCommand” to cause vendor-specific
actions to occur when tiempiler.command method is invoked. This method has no
predefined meaning.

5.4 void (*p_InitializeForCompiler)(ClassClass *ch)

The functionInitializeForCompiler is called during the final phase of a class’s
resolution. Every Java class is resolved before any method in it is called, any static variable in it is
accessed, and before any instance of that class is created.

This function is called just after each method in the class has an “invoker” assigned to it, but before
the class has been verified. Methods that already have native code attached to them (see 85.7), y
have been assigned the invokervokeCompiledMethod. The definition of this function is as
follows:

void InitializeForCompiler(ClassClass *cb) {
if (p_InitializeForCompiler != NULL)
p_InitializeForCompiler(cb);

}

The function pointed at by_InitializeForCompiler can compile or recompile some of
the methods, can change the invokers, or can modify the compiled code.

* The address ofava_lang_Compiler_command seems to be missing from the link vector in the
JDK 1.0.2. No one seems to have noticed its absence.

The JIT Compiler API October 4, 1996 7

One important use of this function could be to “patch” precompiled code. For example,
precompiled code might not know the exact offsets of specified fields or methods of other classes.
Similarly, the precompiled code might contains calls to runtime functions whose address is not
known at compile time.

5.5 (void *)(*p_CompilerFreeClass)(ClassClass *)

The functionCompiTlerFreeClass () is called when a class is about to be removed from the
Java Virtual Machine because there are no more references to it and no more instanddseof it.
definition of this function is as follows:

void CompilerFreeClass(ClassClass *ch) {
if (p_CompilerFreeClass != NULL)
p_CompilerFreeClass(ch);
3

The function pointed at by_Compi TerFreeClass should free any resources that the
compiler has set aside for this class and perform any other necessary cleanup.

5.6 void (*p_CompiledCodeSignalHandler)(int sig, void *info, void *uc)

The functionCompi1edCodeSignalHandler is called by Java's interrupt handievhen the

Java process receives an unexpected interrupt. The arguments are the identical to the arguments by
which the signal handler is called. The variabtefo contains the siginfo structure, and the

contains additional information. The definition of this function is as follows:

void CompiledCodeSignalHandler(int sig, void *info, void *uc) {
if (p_CompiledCodeSignalHandler != NULL)
p_CompiledCodeSignalHandler(sig, info, uc);
b

The function pointed at by this method can be used together with a clever compiler to create code
in which normal flow-of-control is handled more efficiently, at the expense of making error
handling much slower. For example, a SPARC implementation could ensure that a register is
nonnull using the code sequence

cmp <reg>, %g0

teq 16
This code sequence causes an interrupt if the register contains a null value. Similarly, the code for
array-bounds checking could be

cmp <index>, <upper-bound>

tgeu 17

This code sequence causes an interrupt if the register contains a value that is negative, or is greater
than or equal to the upper bound. The signal handler code would be responsible for recognizing

* Classes are not garbage collected in JDK 1.0.2, so this function is never called. It is expected that class
garbage collectiowill be present in JDK1.1.

T Currently, this method is only called in the Solaris implementation of the Java Virtual Machine.

The JIT Compiler API October 4, 1996 8

the interrupt as being an exception, and cleaning up by causing the appropri&tecigvaion
to be thrown.

5.7 (void *)p_ReadIinCompiledCode(. . .),
char *CompiledCodeAttribute

The variableCompiledCodeAttribute and the functioReadInCompiledCode are used
by pre-compilers to read in native code from “fat” class files that contain both native code and Java
byte codes.

If the value of the variabl€ompiledCodeAttribute is notNULL, it is a string giving the

name of the attribute that specifies native code in the class file. The string should be hardware-
specific. Thelava Virtual Machine Specificati®muggests that ompiler writers should also make it
vendor- and application-specific.

Normally, the code that parses a class file ignores any attributes in the class file that it does not

recognize. However, if the following three conditions are met:

* The value ofComp1iledCodeAttribute is notNULL.

* The current class has not been loaded in through a class loader.

* The name of a method’s attribute matches the value of the variable
CompiledCodeAttribute

then the attribute is assumed to give the native-language implementation of the method.

The functionReadInCompiledCode is called to read the compiled code for that method. It is

passed the following seven arguments:

* (void *)context: The compiler need not look at this variable. It should be passed back
as the first argument etlbyte, get2bytes, get4bytes, andgetNbytes.

* 1int attribute_Tlength: The length of th€ompiledCodeAttribute attribute.

* struct methodblock *mb: The method on which the compiled code attribute was
found. The newly read compiled code can be attached tabtlaegument, for example, by
making it the value of thmb->Compi TedCode field.

e unsigned long (*getlbyte) (void *context): The compiler should call this
function with thecontext as its single argument, to read the next byte of the attribute.

* unsigned long (*get2bytes) (void *context): The compiler should call this
function with thecontext as its single argument, to read the next two bytes of the attribute
as an unsigned value in big-endian order.

* unsigned long (*getd4bytes) (void *context): The compiler should call this
function with thecontext as its single argument, to read the next four bytes of the attribute
as an unsigned value in big-endian order.

* For security reasons, the current implementation of the JDK does not accept native code from classes
loaded via a class loader. This restriction is because the JDK has no way of verifying native code. In
future releases, this restriction may be relaxed for signed classes.

The JIT Compiler API October 4, 1996 9

* void (*getNbytes) (void *, int count, char *buffer): The compiler
should call this function witlitontext, acount, and a buffer. The function reads the next
n bytes of the attribute and puts it into the buffer. Iftluef fer argument idNULL, n bytes
of the attribute are skipped.

The definition oReadInCompiledCode is as follows:

void ReadInCompiledCode(void *context, struct methodblock *mb,
int attribute_length,
unsigned long (*getlbyte) (),
unsigned long (*get2bytes) (),
unsigned long (*getdbytes) (),
void (*getNbytes)()) {
if (p_ReadInCompiledCode != NULL) {
p_ReadInCompiledCode(context, mb, attribute_length,
getlbyte, get2bytes, getdbytes,
getNbytes);
} else {
getNbytes(context, attribute_length, NULL);
3

}

The function pointed at by_ReadInCompiledCode must read (or skip) a total of exactly
attribute_length bytes of data; otherwise the results are unpredictable.

Note that ifp_ReadInCompiledCode is 0, thegetNbytes function is called to skip
attribute_length bytes of input.

5.8 boolean (*p_PCinCompiledCode)(unsigned char *pc,
struct methodblock *mb)
(unsigned char*)(*p_CompiledCodePC)(JavaFrame *frame,
struct methodblock *mb)
JavaFrame *(*p_CompiledFramePrev)(JavaFrame *frame,
JavaFrame *buf)

When an object of typEhrowab1e is created, one of its fields is filled with the program counters
(PC's) of all the stack frames above it in the Java stack.

Three hooks are provided for dealing with stack frames, methods, and program counters
* CompiledCodePC determines the program counter of a compiled frame
* CompiledFramePrev determines the previous frame of a compiled frame.

* PCinCompiledCode determines if a previously determined program counter is within a
specific compiled method.

The Java virtual machine determines the program counter of a specific frame as follows:

* If a specific frame indicates that it is running an interpreted (non-compiled) method, the PC is
extracted directly from the frame.

The JIT Compiler API October 4, 1996 10

* If the specific frame indicates that it is running a compiled method, the PC is extracted by
calling Comp1i TedCodePC function with the appropriate frame and method block

The definition ofCompi1edCodePC is as follows:

*

unsigned char
CompiTledCodePC(JavaFrame *frame, struct methodblock *mb) {
return (p_CompiledCodePC == NULL)
? NULL
: p_CompiledCodePC(frame, mb);
3

To walk up the stack, the Java Virtual Machine again looks at the current frame:

* If a specific frame indicates that it is running an interpreted (non-compiled) method, the
previous frame is extracted directly from the frameflbpme->prev.

* If the specific frame indicates that it is running a compiled method, the previous frame is
extracted by callingompiledFramePrev(frame, &temp_buffer). The variable
temp_buffer is aJavaFrame structure whose value must not be modified by the caller.
Its contents must be passed unchanged to the next Calinfwi 1edFramePrev as the
code walks up the stack.

In general, code to walk up the Java stack looks like the following:

JavaFrame *frame = ee->current_frame;
JavaFrame frame_buf;

while (frame != NULL) {
if (start_frame->current_method != NULL) {
< do something >
b
if (frame->current_method->fb.access &
ACC_MACHINE_COMPILED) {

frame = CompiledFramePrev(frame, &frame_buf)
} else {
frame = frame->prev;

}
}

The definition ofCompiledFramePrev is as follows:

JavaFrame *CompiledFramePrev(JavaFrame *frame, JavaFrame *buf) {
return (p_CompiledFramePrev == 0)
? frame->prev
: p_CompiledFramePrev(frame, buf);

}

Note that ifp_CompiledFramePrev is zero, the previous frame of a compiled frame is
calculated in exactly the same manner as the previous frame of an interpreted frame.

The functionPCinCompiledCode is used to determine if a specific program counter is within
the bounds of a specific method. The PC argument is either a value inside the code of some
interpreted method, or is a value returnedbypi 1edCodePC.

The definition ofPCinComp1i 1ed code is as follows:

The JIT Compiler API October 4, 1996 11

bool_t PCinCompiledCode(unsigned char *pc, struct methodblock *mb)

{
return (p_PCinCompiledCode != NULL)
&& p_PCinCompiledCode(pc, mb);
b

Note that ifp_PCinCompiledCode is zero, this function always returRALSE .

5.9 boolean (*p_invokeCompiledMethod)(. . .)

The invokerinvokeCompi ledMethod is attached to any method that has compiled code. As a
result, this function is called whenever an interpreted method invokes a method that has compiled
code.

All invoker methods (see 86.5) take four arguments:

* JHandle *o: The “this” of the method call. For class (static) methods, this argument
contains the handle of the class to whichnmbeargument belongs.

e struct methodblock *mb: The method being invoked.

* 1int args_size: The number of arguments with which the method is being called. For
instance (non-static) methods, this count includes the “this” argument.

e ExecEnv *ee: The current execution environment.
The currently executing frame can be foundat>current_frame. For class (static
methods), the i'th argument can be found@t>current_frame->optop[i-1]. For
instance methods, the value of “this” ise@->current_frame->optop[@], and the i'th
argument is ake->current_frame->optop[i].
If the compiled code returns an integer, float, or object value, it should

1. Place the value ae->current_frame->optop[0],

2. Increment the value @e->current_frame->optop by 1.

If the compiled code returns a long or double value, it should

1. Place the two words of valueed¢->current_frame->optop[0] and
ee->current_frame->optop[1]. The order of the two words of the long or double
is implementation dependeht.

2. Increment the value @e->current_frame->optop by 2.

* That is, “increment by 1” or “increment by 2" in the C sense. The value is actually incremented by the
size of one or two elements of the stack, respectively.

T Future implementations of the Java Native Code API should address this problem. One possible solution
is the creation of two new functiometurnLongToFrame andreturnDoubleToFrame which
will increment the optop and place the two words of the long or double correctly on the stack.

On all current implementations, the long or double is placed on the stack as if by the code
((long *) (&ee->current_frame->optop[0])) = <Tong value>
((doubTe *)(&ee->current_frame->optop[0])) = <double value>
However, ee->current_frame->optop[0] is not guaranteed to be 8-byte aligned.

The JIT Compiler API October 4, 1996 12

The definition ofi nvokeCompi TedMethod is as follows:

bool_t
invokeCompiledMethod(JHandle *o, struct methodblock *mb,
int args_size, ExecEnv *ee)

{
if (p_invokeCompiledMethod == NULL) {
SignalError(ee, JAVAPKG "InternalError",
"Error! Compiled methods not supported");
return FALSE;
} else {
return p_invokeCompiledMethod(o, mb, args_size, ee);
3
ks

If the value of the variablp_invokeCompiledMethod is not®, it should point to a function

that will cause the indicated method’s compiled code to be executed with the indicated arguments.
The invoker should return a non-zero value if the method executed without error. A zero value
indicates that an error has occurred.

If an error occurred, the fielde->exceptionKind andee->exception should be filled
in with appropriate values giving the error.
6 Other Values in the Link Vector

In addition to the hooks in link vector given in 85, the link vector contains pointers to a wide variety
of variables and functions that the compiler may want to use.

6.1 \ersion

The link vector contains the address of the varidbleaVersion. The format of this 32-bit
word is shown below:

31aq 29 2b 2l dods dababolorlod1d 18 1 b ds fatshohaid o] 6 1 4 § 4 3 2 1 o
compiler version major version minor version
2 43 3

Currently, the compiler version is 2, the major version is 43, and the minor version is 3.

6.2 UselLosslessQuickOpcodes

The link vector contains a pointer to the varididelLoss1essQuickOpcodes. This variable
is more fully described in §4.1

The JIT Compiler API October 4, 1996 13

6.3 Important Class Files

The link vector contains the addresses of variables whose value is the internal class structures for
the following classes and interfaces:

Link vector entry corresponding class
classJavalLangClass class java.lang.Class
classJavalangObject, class java.lang.Object
classJavalangString, class java.lang.String
classJavalLangThrowable, class java.lang.Throwable
classJavalangException, class java.lang.Exception
classJavalangRuntimeException, | class java.lang.RuntimeException
interfacelavalLangCloneable, interface java.lang.Cloneable

6.4 Generic memory allocation

The link vector contains the addresses of the funcegsMalloc, sysCalloc,

sysRealloc, andsysFree. These four functions are implementations of the C library routines
malloc, calloc, realloc, andfree. However these implementations are guaranteed to
integrated with Java’s memory allocation scheme.

The compiler should use these functions for its memory allocation.

6.5 Invokers
The link vector contains the addresses of the invokers that can be attached to a method. Each of
these methods is called with four arguments:

* JHandle *o: The “this” of the method call. For class (static) methods, this argument
contains the handle of the class to whichnbeargument belongs.

* struct methodblock *mb: The method being invoked.

* int args_size: The number of arguments with which the method is being called. For
instance (nhon-static) methods, this count includes the “this” argument.

e ExecEnv *ee: The current execution environment.

The invokers should each return a non-zero value if the method executed without error. A zero
value indicates that an error has occurred. If an error occurred, theefieldexceptionKind
andee->exception should be filled in with appropriate values giving the error.

The exact meaning of these arguments and the stack arrangement pointed aetardlienent is
more fully described in §85.9.

* boolean invokeJavaMethod(. . .)
This invoker is used to call an unsynchronized, interpreted Java method.

* boolean invokeSynchronizedJavaMethod(. . .)

The JIT Compiler API October 4, 1996 14

This invoker is used to call a synchronized, interpreted Java method.

e boolean invokeAbstractMethod(. . .)

This invoker is used to call an abstract or otherwise unimplemented method. It generates an
error.

* boolean invokelLazyNativeMethod(. . .)

This invoker is used to call a native method whose address is not yet known. The first time that
this invoker is called, it calldynoLink (see below) on the method block to link in the native
method (if necessary) and get its address. The address is put imbp-theode field of the
methodblock

This invoker then changes tmb->1nvoker field of the method to be either
invokeNativeMethod orinvokeSynchronizedNativeMethod or whether the
method is synchronized or not. The new invoker is then called.

boolean invokeNativeMethod(. . .)
This invoker is used to call unsynchronized native methods

boolean invokeSynchronizedNativeMethod(. . .)
This invoker is used to call synchronized native methods.

boolean invokeCompiledMethod(. . .)
This invoker is used to call compiled methods.

The native-language implementation of native methods are not necessarily loaded at the same time
that the class file is. The functiolynoLink is called the first time a specific native method is
invoked

* bool_t dynoLink(struct methodblock *mb)

This function is called to dynamically link in the address of a native method. It should only be
called ifmb is a native method that has not yet been linked. If this function succeeds, it places
the address of the native code imto->code and return§RUE. Otherwise, it returnBALSE.

The exact method by which native code is dynamically linked is vendor- and implementation-
dependent.

6.6 Monitors

The Java Virtual Machine provides two ways of creating and referencing monitors, by using a
“key”, or by directly creating and initializing a monitor.

When creating a monitor using a key, any unsigned integer value can be used as the key. This is the
sort of monitor used by the current JVM for synchornized methods. These monitors are created
when needed, and then automatically discarded as necessary, when no longer used.

A monitor can also be directly created and initialized. Such monitors tend to be faster than keyed
monitors, since there is no table-lookup associated with them. However these monitors are not
reclaimed and exist for the life of the program.

* The address of nvokeNativeMethod is missing from the link vector in JDK1.0.2. No one seems to
have noticed.

The JIT Compiler API October 4, 1996 15

The link vector contains the addresses of six functions useful for manipulating monitors:

void monitorEnter(unsigned int key)

Creates a monitor associated with the specified key, if such a monitor doesn't already exist. The
function then tries to enter the monitor ussysMonitorEnter.

The current JVM, when entering a synchronized instance (non-static) method, attempts to lock
“this” by callingmonitorEnter((unsigned int) this). When entering a

synchrnized class (static) method, it locks the class by caling torEnter ((unsigned
int)<handle to class of method >).The correspondingonitorExit function

is called with the same argument when leaving the synchronized method.

void monitorExit(unsigned int key)

Finds the monitor associated with the specified key (it must already exist) and then exits that
monitor usingsysMonitorExit.

void monitorRegister(sys_mon_t *mid, char *name)

Creates and registers a new monitor. fiid argument must point to a buffer whose size is at
least as big as that returnedsyysMonitorSizeof (). The new monitor is given the
specified name. This name is used by various debugging routin®ugThreads () in
86.11) which print out the state of the machine.

void sysMonitorEnter(sys_mon_t *mid)

If the monitor indicated by theid argument is unowned or already owned by the current
thread, then execution proceeds normally. Otherwise, the current thread waits for the monitor to
become free. Note that a count is kept of how many times the current thread has “entered” the
monitor.

The monitor argumemtid must either be a monitor created automatically by
monitorEnter, or it must be registered through a calihtinitorRegister. Failing to
register a monitor before using it may cause unpredictable results.

void sysMonitorExit(sys_mon_t *mid)

The monitor indicated by thei d argument must be owned by the current thread. The count
indicating how many times the current thread has “entered” the monitor is decremented. If the
count goes to zero, the current thread gives up ownership of the monitor.

The monitor argumemtid must either be a monitor created automatically by
monitorEnter, or it must be registered through a calhtanitorRegister. Failing to
register a monitor before using it may cause unpredictable results.

An error is signalled ifsysMonitorExit is called by a thread that does not currently own
the monitor.

int sysMonitorSizeof()
Returns the size of theys_mon_t structure.

6.7 Class access

The link vector contains the addresses of two variables and two functions for finding all classes
that have already been loaded directly:

ClassClass **binclasses
This variable points to an array of all the classes that have been loaded into the system.

The JIT Compiler API October 4, 1996 16

* int nbinclasses
This variable contains the number of elements currently in the array pointed by
nbinclasses.

« void *TockClasses()
The function acquires a monitor set aside for indicating access and modification of
binclasses andnbinclasses.

* void *unlockClasses()
The function releases the monitor acquiredlbgkClasses ().

No compiler code should access eithenclasses ornbinclasses without first calling the
functionTock_classes (). When it is done, it should then free the monitor by calling
unlock_classes().

The link vector also contains the addresses of two functions by which the compiler can find a class
by name. If the specified class has already been loaded, it is returned. If the class has not yet been
loaded, it is loaded.

e (ClassClass *
FindClass(struct execenv *ee, char *name, bool_t resolve)

e (ClassClass *
FindClassFromClass(struct execenv *ee, char *name,
bool_t resolve, ClassClass *from)

The functionFindClass is a convenience function. It looks at the current execution
environment to determine the class of the currently running method. It then calls
FindClassFromClass with the identical arguments that it was passed, but adds the current
class as thérom argument.

The functionFindCTlassFromClass is the general function for loading and finding classes.

* If the from class does not have a class loader, bienclasses is searched to see if a class
with the specified name has already been loaded. If not, the class is loaded.

e [f the from class does have a class loader, the class loader is called to determine if it has
already loaded in the class, or if a new class needs to be loaded.

6.8 Object Allocation

The link vector contains pointers to the following functions which are used to allocate instances
and arrays:
* HObject *ObjAlloc(ClassClass *cb, long n)

The first argument must point to the class block of a non-array class. The second argument
must currently always b@.

A space is allocatyped for the object, but the space is not initialized in any way. The contents of
the space is unpredictable.

* HObject *newobject(ClassClass *cb,
unsigned char *pc, struct execenv *ee)

The JIT Compiler API October 4, 1996 17

This method allocates space for the specified object by calind11oc, and then zeroes the
space. If any error occurSjignalError is called with appropriate arguments.

* HObject *ArrayAlloc(int type, int length)

Space is allocated for an array of the specified type and length. The possible values for type are
shown in the table below:

Array Type atype
T_CLASS 2
T_BOOLEAN 4
T_CHAR 5
T_FLOAT 6
T_DOUBLE 7
T_BYTE 8
T_SHORT 9
T_INT 10
T_LONG 11

The arrays are not initialized, except that for arrays of type T_CLASS, the slot that contains the
class type is initialized 0.

* sizearray(int type, int length).

The method returns the size of an array of the specified type and length. The type must be one
of the arguments given in the table aboveAforayAl1oc. Note that whertype is

T_CLASS, the value returned ks/i zearray doesnotinclude the extra word at the end

indicating to the type.

* HObject *MultiArrayAlloc(int dimensions,
ClassClass *array_cb, stack_item *sizes)

This function is used to allocate several dimensions of a multi-dimensional array
simultaneously. The dimensions given by the dimensagrggiment must be less than or
equal to the dimensions of the array class block specified arthay_cb argument.
For example, to createew int[5][4][],MultiArrayAlloc would be called with
int dimensions = 2;
ClassClass *array_cb = FindClass(“[[[I”, TRUE);
int sizes[2] = {5, 4};

6.9 Constant Pool Resolution

The link vector contains the addresses of several functions that are used to resolve entries in a
class’s constant pool.

* |n retrospect, this is probably a mistake. The extra word should have been included in the size.

The JIT Compiler API October 4, 1996 18

e bool_t
ResolveClassConstantFromClass(ClassClass *class,
unsigned 1index,
struct execenv *ee,
unsigned mask)

Theindex’th entry inclass’s constant pool is resolved if it has not already been resolved. If
the entry has not yet been resolved, its type must match one of the types specified by the
bitmask given imask. The possible types are given in the following table:

Constant Type Value
CONSTANT_CTlass 7
CONSTANT_Fieldref 9
CONSTANT_Methodref 10
CONSTANT_InterfaceMethodref 11

CONSTANT_String 8
CONSTANT_Integer 3
CONSTANT_Float 4
5
6

CONSTANT_Long

CONSTANT _Double
CONSTANT_NameAndType 12
CONSTANT_Utf8 1

If the index’th entry is of typex, then the value of
mask & (1 << x)

must not be zero. Specifying a mask(¢funsigned) -1) ensures that any constant pool
type can be resolved. More information on the constant pool and its types can be fbuad in
Java Virtual Machine

All entries in the constant pool are resolved with respect ta tas s argument. Any
references to other classes are resolved by cdlimglClassFromClass using the class as
the from argument.

This function return§RUE if the constant pool entry was successfully resoltréd;SE
otherwise.

* bool_t
ResolveClassConstant(cp_item_type *constant_pool,
unsigned index, struct execenv *ee,
unsigned mask)

This function is similar tResolveClassConstantFromClass. However the constant
pool is given directly, rather than being inferred fromdAass argument.

If the current execution environment’s current frame has a current method, then that method’s
class is used for resolving any other class references in the constant pool. If the current frame
has no current method, then other class reference are presumed to reside locally.

The JIT Compiler API October 4, 1996 19

This function return§ RUE if the constant pool entry was successfully resoltéd;SE
otherwise.

* GetClassConstantClassName(cp_item_type *constant_pool,
unsigned index)

This function can be used to get the name of the class or interfacei adie’th item in the
specified constant pool. This function does not resolve the entry at the constant pool.

* bool_t
VerifyClassAccess(ClassClass *current_class,
ClassClass *new_class,
bool_t classloaderOnly)

This function determines if the specifiedrrent_class is allowed to access the specified
new_class. If current_class isNULL, this function always returnERUE.

If the current_class has no E,Iass loader, and thkassToaderOnTy flag isTRUE, this
method also always returdi®UE.

Otherwise, a class can only access another class if at least one of the following conditions is
true:

* They are the same class.
e The second class is public.
* The two classes are in the same package.

6.10 Calling back into Java byte codes

* Tong execute_java_static_method(ExecEnv *ee, ClassClass *cb,
char* method_name,
char *signature®*, . . .)
The static method with the specified name and signature in the class specified by class block is
called. Method signatures are more fully describethia Java Virtual Machine

Theee argument must either be NULL or set to the execution environment of the current
thread. If it isNULL, the valu e oEE () is used instead (see §6.11).

If the signature specifies that this method takes arguments, then those arguments must
following the signature.

The return value for this function depends on the return type of the method called:
* If the method is declaredoid, then this function call returrés

* Ifthe method is declared to return an integer, a float, or an object, this function call returns
the “bits” of the result, as if they were a long value.

e If the method is declared to returd ang or doub1e, this method returns the bits of the
“first” word of the resulf’

If the method signals an error by setteg->exceptionKind to a non-zero value, then the
return value of this method is O.

* This misfeature is to work around a bug in the current Java compiler. Code compiled “-O” can inline calls
to methods to which the class shouldn’t normally have access. This will be fixed in a future release.

t The value returned is the valueda->current_frame->optop[0]. This is more fully
explained in 85.9 and in the footnotes to that section.

The JIT Compiler API October 4, 1996 20

This function is actually a convenient front enddor_execute_java_method_vararg,
which is more fully described below.

* long do_execute_java_method_vararg(ExecEnv *ee, void *obj,
char *method_name,
char *method_signature,
struct methodblock *mb,
bool_t isStaticCall,
va_list args,
Tong *otherBits,
bool_t shortFloats)

This function can be used to call any Java method or constructor.

Theee argument must either be NULL or set to the execution environment of the current
thread. If it isNULL, the valu e oEE () is used instead (see §6.11).

If calling a class (static) method, thbj argument must be set to the class block argument
specifying the class in which the method is found. If calling an instance methad the
argument specifies the object whose method is being invoked (i.e., the “this” in the method
being invoked). If calling a constructor, tbbj argument specifies the argument being
initialized.

The method must either be specified by specifying a method blockrb taeyument, or by
specifying a method name and signature imsehod_name andmethod_signature
arguments. If specifying a method using the name and signatuney Hrgument must be
NULL.

If calling a class (static) method, theStaticCall argument must be non-zero. Otherwise,
it must be zero.

If the signature specifies that this method takes argumen@srgseargument must point to
those arguments. The arguments are pulled froratiys by using C'sva_arg macro. If the
value of theshortFloats argument is non-zero, then floats are accessed using
va_arg(args, long); Otherwise, they are accessed usiagarg(args, double).

The return value of the method determines both the return value of the function and the value
pointed at byotherBits.

The return value for this function depends on the return type of the method called:

e |f the method is declaredoid, then this function call returr® If otherBits is not
NULL, then*otherBits is also set t@.

* Ifthe method is declared to return an integer, a float, or an object, this function call returns
the “bits” of the result, as if they were a long valuetherBits is notNULL, then
*otherBits is set tdd.

* If the method is declared to returdang or doube, this method returns the bits of the

“first” word of the resulf. If otherBits is notNULL, then*otherBits is set to the
“second” word of the result..

If the method signals an error by settagr>exceptionKind to a non-zero value, then the
return value of this method is 0.dtherB1i ts is notNULL, then*otherBits is also set
to 0.

* The “first” word is the value ire->current_frame->optop[0]. The “second” word is the
value inee->current_frame->optop[@]. This is more fully explained in 5.9 and in the
footnotes to that section.

The JIT Compiler API October 4, 1996 21

If the signature specifies that this method takes arguments, then those arguments must
following the signature.

FOs

* bool_t Executelava(unsigned char *pc, ExecEnv *ee)

This method is called bgo_execute_java_method_vararg after having set up the
execution frame. It begins executing the Java byte codes starting at gdrébs
ee->frame must already be set up before this method is executed.

Compiler writers, in general, should not call this function directly. If your application does
require calling this function, you should examine the source definition of
do_execute_java_method_vararg and carefully emulate its effect.

6.11 Miscellaneous Runtime Functions and Variables

The following are a set of miscellanous funcions and variables whose addresses are in the link
vector.

e struct execenv *EE(Q)
This function returns the execution environment for the current thread.

* void SignalError(struct execenv *ee, char *ename,
char *DetailMessage)

This function modifies the execution environment indicated by éhargument to indicate
than an error has occurred. Téwx@ame argument must be the name of a subclass of
Throwable.

If the ee argument iNULL, the value oEE () is used instead.

* exception_t exceptionInternalObject(int 1)

CallingexceptionInternalObject (1) returns a pre-allocated object of type
NoClassDefFoundError object.

CallingexceptionInternalObject(2) returns a pre-allocated object of type
OutOfMemoryError object

e bool_t is_subclass_of(ClassClass *cb, ClassClass *dcb,
struct execenv *ee)

The argumentb must point to class structure. The argument dcb must point to either a class or
to an interface structure. This function retuffdJE if the classch is a subclass of or
implements the interfaagchb.

o

* bool_t is_instance_of(JHandle *o, ClassClass *dcb,
struct execenv *ee)

This function return§RUE if the instance is a subclass of or implements the interfdcé.
This method always returdRUE if o is thenu1 object.

* char *classname2string(char *src, char *dst, int size)

This utility function converts a class name from “internal” form to “external” form. The class
name is passed as thec argument. The result is placed into a buffer pointed dtstiywhose
size issize. The result placed intds t is always null-terminated, even if the buffer size is too
small.

The JIT Compiler API October 4, 1996 22

void DumpThreads()

This function is useful for debugging. It prints out a full stack trace of every running thread in
the Java Virtual machine.

Tong now()
This function returns the current time in milliseconds.

bool_t java_monitor

If this variable is non-zero, it indicates that we are currently monitoring and profiling method
execution. The functiopava_mon (see below) should be called at the end of each method
execution.

void java_mon(struct methodblock *caller,

struct methodblock *callee,

int time)
If the variablejava_monitor is non-zero, this function should be called at the end of every
method execution. The three arguments are the calling method, the called method, and the total
amount of time spent in the called method.

int jio_snprintf(char *buf, int len, char *fmt, ...)

This function is identical to the C library routisprintf, except that it takes an additional
Ten argument giving the length of the buffer. The formatted arguments are written to the
buffer, but at most len bytes are written. The value is the buffer is atwalyk terminated.

The value returned is the total number of bytes that would be required to write out the specified
arguments in the specified format, not including the null terminating byte.

char *javaString2CString(Hjava_lang_String *s, char *buf,
int buflen)

The specified Java string is converted to a C string, and the results are put into the specified
buffer. At mostbuflen - 1 bytes are written to the buffer, followed byl 1 character.

Thebuf argument is returned as the value

6.12 Functions you don’t want to touch

JavaStack CreateNewJavaStack(ExecEnv *ee,
JavaStack *previous_stack)

This method creates a new Java stack chunk and appends it to the previous stack chunk. The
previous stack chunk must be the last chunk in its chain. The new stack chunk is created,
appended to the chain, and returned.

JavaStackSize

The value of this variable is the maximum stack size, in bytes, that a thread can use for its Java
stack.

7 Additional Information

The JIT Compiler API October 4, 1996 23

	The JIT Compiler API
	Frank Yellin
	1 Summary
	2 The class java.lang.Compiler
	3 Additional structures
	4 Start-up
	4.1 UseLosslessQuickOpcodes
	4.2 Static initialize of java.lang.Compiler
	4.3 CompiledCodeLinkVector

	5 JVM Hooks in the Link Vector
	5.1 void (* p_CompilerEnable)(), void (*p_Compiler...
	5.2 boolean (*p_CompilerCompileClass)(ClassClass *...
	5.3 JHandle *(* p_CompilerCommand)(JHandle *)
	5.4 void (*p_InitializeForCompiler)(ClassClass *cb...
	5.5 (void *)(*p_CompilerFreeClass)(ClassClass *)
	5.6 void (*p_CompiledCodeSignalHandler)(int sig, v...
	5.7 (void *)p_ReadInCompiledCode(. . .), ������ch...
	5.8 boolean (*p_PCinCompiledCode)(unsigned char *p...
	5.9 boolean (*p_invokeCompiledMethod)(. . .)

	6 Other Values in the Link Vector
	6.1 Version
	6.2 UseLosslessQuickOpcodes
	6.3 Important Class Files
	6.4 Generic memory allocation
	6.5 Invokers
	6.6 Monitors
	6.7 Class access
	6.8 Object Allocation
	6.9 Constant Pool Resolution
	6.10 Calling back into Java byte codes
	6.11 Miscellaneous Runtime Functions and Variables...
	6.12 Functions you don’t want to touch

	7 Additional Information

