INTEGER FUNCTION ignpoi(mu) C********************************************************************** C C INTEGER FUNCTION IGNPOI( MU ) C C GENerate POIsson random deviate C C C Function C C C Generates a single random deviate from a Poisson C distribution with mean MU. C C C Arguments C C C MU --> The mean of the Poisson distribution from which C a random deviate is to be generated. C REAL MU C JJV (MU >= 0.0) C C IGNPOI <-- The random deviate. C INTEGER IGNPOI (non-negative) C C C Method C C C Renames KPOIS from TOMS as slightly modified by BWB to use RANF C instead of SUNIF. C C For details see: C C Ahrens, J.H. and Dieter, U. C Computer Generation of Poisson Deviates C From Modified Normal Distributions. C ACM Trans. Math. Software, 8, 2 C (June 1982),163-179 C C********************************************************************** C**********************************************************************C C**********************************************************************C C C C C C P O I S S O N DISTRIBUTION C C C C C C**********************************************************************C C**********************************************************************C C C C FOR DETAILS SEE: C C C C AHRENS, J.H. AND DIETER, U. C C COMPUTER GENERATION OF POISSON DEVIATES C C FROM MODIFIED NORMAL DISTRIBUTIONS. C C ACM TRANS. MATH. SOFTWARE, 8,2 (JUNE 1982), 163 - 179. C C C C (SLIGHTLY MODIFIED VERSION OF THE PROGRAM IN THE ABOVE ARTICLE) C C C C**********************************************************************C C C INTEGER FUNCTION IGNPOI(IR,MU) C C INPUT: IR=CURRENT STATE OF BASIC RANDOM NUMBER GENERATOR C MU=MEAN MU OF THE POISSON DISTRIBUTION C OUTPUT: IGNPOI=SAMPLE FROM THE POISSON-(MU)-DISTRIBUTION C C C C MUPREV=PREVIOUS MU, MUOLD=MU AT LAST EXECUTION OF STEP P OR CASE B C TABLES: COEFFICIENTS A0-A7 FOR STEP F. FACTORIALS FACT C COEFFICIENTS A(K) - FOR PX = FK*V*V*SUM(A(K)*V**K)-DEL C C C C SEPARATION OF CASES A AND B C C .. Scalar Arguments .. REAL mu C .. C .. Local Scalars .. REAL a0,a1,a2,a3,a4,a5,a6,a7,b1,b2,c,c0,c1,c2,c3,d,del,difmuk,e, + fk,fx,fy,g,muold,muprev,omega,p,p0,px,py,q,s,t,u,v,x,xx C JJV I added a variable 'll' here - it is the 'l' for CASE A INTEGER j,k,kflag,l,ll,m C .. C .. Local Arrays .. REAL fact(10),pp(35) C .. C .. External Functions .. REAL ranf,sexpo,snorm EXTERNAL ranf,sexpo,snorm C .. C .. Intrinsic Functions .. INTRINSIC abs,alog,exp,float,ifix,max0,min0,sign,sqrt C .. C JJV added this for case: mu unchanged C .. Save statement .. SAVE s, d, l, ll, omega, c3, c2, c1, c0, c, m, p, q, p0, + a0, a1, a2, a3, a4, a5, a6, a7, fact, muprev, muold C .. C JJV end addition - I am including vars in Data statements C .. Data statements .. C JJV changed initial values of MUPREV and MUOLD to -1.0E37 C JJV if no one calls IGNPOI with MU = -1.0E37 the first time, C JJV the code shouldn't break DATA muprev,muold/-1.0E37,-1.0E37/ DATA a0,a1,a2,a3,a4,a5,a6,a7/-.5,.3333333,-.2500068,.2000118, + -.1661269,.1421878,-.1384794,.1250060/ DATA fact/1.,1.,2.,6.,24.,120.,720.,5040.,40320.,362880./ C .. C .. Executable Statements .. IF (mu.EQ.muprev) GO TO 10 IF (mu.LT.10.0) GO TO 120 C C C A S E A. (RECALCULATION OF S,D,LL IF MU HAS CHANGED) C C JJV This is the case where I changed 'l' to 'll' C JJV Here 'll' is set once and used in a comparison once muprev = mu s = sqrt(mu) d = 6.0*mu*mu C C THE POISSON PROBABILITIES PK EXCEED THE DISCRETE NORMAL C PROBABILITIES FK WHENEVER K >= M(MU). LL=IFIX(MU-1.1484) C IS AN UPPER BOUND TO M(MU) FOR ALL MU >= 10 . C ll = ifix(mu-1.1484) C C STEP N. NORMAL SAMPLE - SNORM(IR) FOR STANDARD NORMAL DEVIATE C 10 g = mu + s*snorm() IF (g.LT.0.0) GO TO 20 ignpoi = ifix(g) C C STEP I. IMMEDIATE ACCEPTANCE IF IGNPOI IS LARGE ENOUGH C IF (ignpoi.GE.ll) RETURN C C STEP S. SQUEEZE ACCEPTANCE - SUNIF(IR) FOR (0,1)-SAMPLE U C fk = float(ignpoi) difmuk = mu - fk u = ranf() IF (d*u.GE.difmuk*difmuk*difmuk) RETURN C C STEP P. PREPARATIONS FOR STEPS Q AND H. C (RECALCULATIONS OF PARAMETERS IF NECESSARY) C .3989423=(2*PI)**(-.5) .416667E-1=1./24. .1428571=1./7. C THE QUANTITIES B1, B2, C3, C2, C1, C0 ARE FOR THE HERMITE C APPROXIMATIONS TO THE DISCRETE NORMAL PROBABILITIES FK. C C=.1069/MU GUARANTEES MAJORIZATION BY THE 'HAT'-FUNCTION. C 20 IF (mu.EQ.muold) GO TO 30 muold = mu omega = .3989423/s b1 = .4166667E-1/mu b2 = .3*b1*b1 c3 = .1428571*b1*b2 c2 = b2 - 15.*c3 c1 = b1 - 6.*b2 + 45.*c3 c0 = 1. - b1 + 3.*b2 - 15.*c3 c = .1069/mu 30 IF (g.LT.0.0) GO TO 50 C C 'SUBROUTINE' F IS CALLED (KFLAG=0 FOR CORRECT RETURN) C kflag = 0 GO TO 70 C C STEP Q. QUOTIENT ACCEPTANCE (RARE CASE) C 40 IF (fy-u*fy.LE.py*exp(px-fx)) RETURN C C STEP E. EXPONENTIAL SAMPLE - SEXPO(IR) FOR STANDARD EXPONENTIAL C DEVIATE E AND SAMPLE T FROM THE LAPLACE 'HAT' C (IF T <= -.6744 THEN PK < FK FOR ALL MU >= 10.) C 50 e = sexpo() u = ranf() u = u + u - 1.0 t = 1.8 + sign(e,u) IF (t.LE. (-.6744)) GO TO 50 ignpoi = ifix(mu+s*t) fk = float(ignpoi) difmuk = mu - fk C C 'SUBROUTINE' F IS CALLED (KFLAG=1 FOR CORRECT RETURN) C kflag = 1 GO TO 70 C C STEP H. HAT ACCEPTANCE (E IS REPEATED ON REJECTION) C 60 IF (c*abs(u).GT.py*exp(px+e)-fy*exp(fx+e)) GO TO 50 RETURN C C STEP F. 'SUBROUTINE' F. CALCULATION OF PX,PY,FX,FY. C CASE IGNPOI .LT. 10 USES FACTORIALS FROM TABLE FACT C 70 IF (ignpoi.GE.10) GO TO 80 px = -mu py = mu**ignpoi/fact(ignpoi+1) GO TO 110 C C CASE IGNPOI .GE. 10 USES POLYNOMIAL APPROXIMATION C A0-A7 FOR ACCURACY WHEN ADVISABLE C .8333333E-1=1./12. .3989423=(2*PI)**(-.5) C 80 del = .8333333E-1/fk del = del - 4.8*del*del*del v = difmuk/fk IF (abs(v).LE.0.25) GO TO 90 px = fk*alog(1.0+v) - difmuk - del GO TO 100 90 px = fk*v*v* (((((((a7*v+a6)*v+a5)*v+a4)*v+a3)*v+a2)*v+a1)*v+a0) - + del 100 py = .3989423/sqrt(fk) 110 x = (0.5-difmuk)/s xx = x*x fx = -0.5*xx fy = omega* (((c3*xx+c2)*xx+c1)*xx+c0) IF (kflag) 40,40,60 C C C A S E B. (START NEW TABLE AND CALCULATE P0 IF NECESSARY) C C JJV changed MUPREV assignment from 0.0 to initial value 120 muprev = -1.0E37 IF (mu.EQ.muold) GO TO 130 C JJV added argument checker here IF (mu.GE.0.0) GO TO 125 WRITE (*,*) 'MU < 0 in IGNPOI - ABORT' WRITE (*,*) 'Value of MU: ',mu STOP 'MU < 0 in IGNPOI - ABORT' C JJV added line label here 125 muold = mu m = max0(1,ifix(mu)) l = 0 p = exp(-mu) q = p p0 = p C C STEP U. UNIFORM SAMPLE FOR INVERSION METHOD C 130 u = ranf() ignpoi = 0 IF (u.LE.p0) RETURN C C STEP T. TABLE COMPARISON UNTIL THE END PP(L) OF THE C PP-TABLE OF CUMULATIVE POISSON PROBABILITIES C (0.458=PP(9) FOR MU=10) C IF (l.EQ.0) GO TO 150 j = 1 IF (u.GT.0.458) j = min0(l,m) DO 140 k = j,l IF (u.LE.pp(k)) GO TO 180 140 CONTINUE IF (l.EQ.35) GO TO 130 C C STEP C. CREATION OF NEW POISSON PROBABILITIES P C AND THEIR CUMULATIVES Q=PP(K) C 150 l = l + 1 DO 160 k = l,35 p = p*mu/float(k) q = q + p pp(k) = q IF (u.LE.q) GO TO 170 160 CONTINUE l = 35 GO TO 130 170 l = k 180 ignpoi = k RETURN END