REAL FUNCTION genbet(aa,bb) C********************************************************************** C C REAL FUNCTION GENBET( A, B ) C GeNerate BETa random deviate C C C Function C C C Returns a single random deviate from the beta distribution with C parameters A and B. The density of the beta is C x^(a-1) * (1-x)^(b-1) / B(a,b) for 0 < x < 1 C C C Arguments C C C A --> First parameter of the beta distribution C REAL A C JJV (A > 1.0E-37) C C B --> Second parameter of the beta distribution C REAL B C JJV (B > 1.0E-37) C C C Method C C C R. C. H. Cheng C Generating Beta Variates with Nonintegral Shape Parameters C Communications of the ACM, 21:317-322 (1978) C (Algorithms BB and BC) C C********************************************************************** C .. Parameters .. C Close to the largest number that can be exponentiated REAL expmax C JJV changed this - 89 was too high, and LOG(1.0E38) = 87.49823 PARAMETER (expmax=87.49823) C Close to the largest representable single precision number REAL infnty PARAMETER (infnty=1.0E38) C JJV added the parameter minlog C Close to the smallest number of which a LOG can be taken. REAL minlog PARAMETER (minlog=1.0E-37) C .. C .. Scalar Arguments .. REAL aa,bb C .. C .. Local Scalars .. REAL a,alpha,b,beta,delta,gamma,k1,k2,olda,oldb,r,s,t,u1,u2,v,w,y, + z LOGICAL qsame C .. C .. External Functions .. REAL ranf EXTERNAL ranf C .. C .. Intrinsic Functions .. INTRINSIC exp,log,max,min,sqrt C .. C .. Save statement .. C JJV added a,b SAVE olda,oldb,alpha,beta,gamma,k1,k2,a,b C .. C .. Data statements .. C JJV changed these to ridiculous values DATA olda,oldb/-1.0E37,-1.0E37/ C .. C .. Executable Statements .. qsame = (olda.EQ.aa) .AND. (oldb.EQ.bb) IF (qsame) GO TO 20 C JJV added small minimum for small log problem in calc of W IF (.NOT. (aa.LT.minlog.OR.bb.LT.minlog)) GO TO 10 WRITE (*,*) ' AA or BB < ',minlog,' in GENBET - Abort!' WRITE (*,*) ' AA: ',aa,' BB ',bb STOP ' AA or BB too small in GENBET - Abort!' 10 olda = aa oldb = bb 20 IF (.NOT. (min(aa,bb).GT.1.0)) GO TO 100 C Alborithm BB C C Initialize C IF (qsame) GO TO 30 a = min(aa,bb) b = max(aa,bb) alpha = a + b beta = sqrt((alpha-2.0)/ (2.0*a*b-alpha)) gamma = a + 1.0/beta 30 CONTINUE 40 u1 = ranf() C C Step 1 C u2 = ranf() v = beta*log(u1/ (1.0-u1)) C JJV altered this IF (v.GT.expmax) GO TO 55 C JJV added checker to see if a*exp(v) will overflow C JJV 50 _was_ w = a*exp(v); also note here a > 1.0 50 w = exp(v) IF (w.GT.infnty/a) GO TO 55 w = a*w GO TO 60 55 w = infnty 60 z = u1**2*u2 r = gamma*v - 1.3862944 s = a + r - w C C Step 2 C IF ((s+2.609438).GE. (5.0*z)) GO TO 70 C C Step 3 C t = log(z) IF (s.GT.t) GO TO 70 C C Step 4 C C JJV added checker to see if log(alpha/(b+w)) will C JJV overflow. If so, we count the log as -INF, and C JJV consequently evaluate conditional as true, i.e. C JJV the algorithm rejects the trial and starts over C JJV May not need this here since ALPHA > 2.0 IF (alpha/(b+w).LT.minlog) GO TO 40 IF ((r+alpha*log(alpha/ (b+w))).LT.t) GO TO 40 C C Step 5 C 70 IF (.NOT. (aa.EQ.a)) GO TO 80 genbet = w/ (b+w) GO TO 90 80 genbet = b/ (b+w) 90 GO TO 230 C Algorithm BC C C Initialize C 100 IF (qsame) GO TO 110 a = max(aa,bb) b = min(aa,bb) alpha = a + b beta = 1.0/b delta = 1.0 + a - b k1 = delta* (0.0138889+0.0416667*b)/ (a*beta-0.777778) k2 = 0.25 + (0.5+0.25/delta)*b 110 CONTINUE 120 u1 = ranf() C C Step 1 C u2 = ranf() IF (u1.GE.0.5) GO TO 130 C C Step 2 C y = u1*u2 z = u1*y IF ((0.25*u2+z-y).GE.k1) GO TO 120 GO TO 170 C C Step 3 C 130 z = u1**2*u2 IF (.NOT. (z.LE.0.25)) GO TO 160 v = beta*log(u1/ (1.0-u1)) C JJV instead of checking v > expmax at top, I will check C JJV if a < 1, then check the appropriate values IF (a.GT.1.0) GO TO 135 C JJV A < 1 so it can help out if EXP(V) would overflow IF (v.GT.expmax) GO TO 132 w = a*exp(v) GO TO 200 132 w = v + log(a) IF (w.GT.expmax) GO TO 140 w = exp(w) GO TO 200 C JJV in this case A > 1 135 IF (v.GT.expmax) GO TO 140 w = exp(v) IF (w.GT.infnty/a) GO TO 140 w = a*w GO TO 200 140 w = infnty GO TO 200 160 IF (z.GE.k2) GO TO 120 C C Step 4 C C C Step 5 C 170 v = beta*log(u1/ (1.0-u1)) C JJV same kind of checking as above IF (a.GT.1.0) GO TO 175 C JJV A < 1 so it can help out if EXP(V) would overflow IF (v.GT.expmax) GO TO 172 w = a*exp(v) GO TO 190 172 w = v + log(a) IF (w.GT.expmax) GO TO 180 w = exp(w) GO TO 190 C JJV in this case A > 1 175 IF (v.GT.expmax) GO TO 180 w = exp(v) IF (w.GT.infnty/a) GO TO 180 w = a*w GO TO 190 180 w = infnty C JJV here we also check to see if log overlows; if so, we treat it C JJV as -INF, which means condition is true, i.e. restart 190 IF (alpha/(b+w).LT.minlog) GO TO 120 IF ((alpha* (log(alpha/ (b+w))+v)-1.3862944).LT.log(z)) GO TO 120 C C Step 6 C 200 IF (.NOT. (a.EQ.aa)) GO TO 210 genbet = w/ (b+w) GO TO 220 210 genbet = b/ (b+w) 220 CONTINUE 230 RETURN END