/* classes: h_files */ #ifndef __SCMH #define __SCMH /* Copyright (C) 1995, 1996, 1998, 1999 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this software; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, MA 02111-1307 USA * * As a special exception, the Free Software Foundation gives permission * for additional uses of the text contained in its release of GUILE. * * The exception is that, if you link the GUILE library with other files * to produce an executable, this does not by itself cause the * resulting executable to be covered by the GNU General Public License. * Your use of that executable is in no way restricted on account of * linking the GUILE library code into it. * * This exception does not however invalidate any other reasons why * the executable file might be covered by the GNU General Public License. * * This exception applies only to the code released by the * Free Software Foundation under the name GUILE. If you copy * code from other Free Software Foundation releases into a copy of * GUILE, as the General Public License permits, the exception does * not apply to the code that you add in this way. To avoid misleading * anyone as to the status of such modified files, you must delete * this exception notice from them. * * If you write modifications of your own for GUILE, it is your choice * whether to permit this exception to apply to your modifications. * If you do not wish that, delete this exception notice. */ /* {Supported Options} * * These may be defined or undefined. */ /* #define GUILE_DEBUG_FREELIST */ /* If the compile FLAG `SCM_CAUTIOUS' is #defined then the number of * arguments is always checked for application of closures. If the * compile FLAG `SCM_RECKLESS' is #defined then they are not checked. * Otherwise, number of argument checks for closures are made only when * the function position (whose value is the closure) of a combination is * not an ILOC or GLOC. When the function position of a combination is a * symbol it will be checked only the first time it is evaluated because * it will then be replaced with an ILOC or GLOC. */ #undef SCM_RECKLESS #define SCM_CAUTIOUS /* After looking up a local for the first time, rewrite the * code graph, caching its position. */ #define MEMOIZE_LOCALS /* All the number support there is. */ #define SCM_FLOATS #define BIGNUMS /* GC should relinquish empty cons-pair arenas. */ #define GC_FREE_SEGMENTS /* Provide a scheme-accessible count-down timer that * generates a pseudo-interrupt. */ #define TICKS /* Use engineering notation when converting numbers strings? */ #undef ENGNOT #undef SCM_CAREFUL_INTS /* {Unsupported Options} * * These must be defined as given here. */ #define CCLO /* Guile Scheme supports the #f/() distinction; Guile Lisp won't. We have horrible plans for their unification. */ #undef SICP /* Random options (not yet supported or in final form). */ #define STACK_CHECKING #undef NO_CEVAL_STACK_CHECKING /* Some auto-generated .h files contain unused prototypes * that need these typedefs. */ typedef long long long_long; typedef unsigned long long ulong_long; /* What did the configure script discover about the outside world? */ #include "libguile/scmconfig.h" /* Write prototype declarations like this: int foo SCM_P ((int a, int b)); At definitions, use K&R style declarations, but make sure there's a declarative prototype (as above) in scope. This will give you argument type checking, when available, and be harmless otherwise. */ #ifdef __STDC__ # define SCM_P(x) x #else # define SCM_P(x) () #endif /* Define * * SCM_CHAR_CODE_LIMIT == UCHAR_MAX + 1 * SCM_MOST_POSITIVE_FIXNUM (LONG_MAX>>2) * SCM_MOST_NEGATIVE_FIXNUM == SCM_SRS((long)LONG_MIN, 2) */ #ifdef HAVE_LIMITS_H # include # ifdef UCHAR_MAX # define SCM_CHAR_CODE_LIMIT (UCHAR_MAX+1L) # else # define SCM_CHAR_CODE_LIMIT 256L # endif /* def UCHAR_MAX */ # define SCM_MOST_POSITIVE_FIXNUM (LONG_MAX>>2) # ifdef _UNICOS /* Stupid cray bug */ # define SCM_MOST_NEGATIVE_FIXNUM ((long)LONG_MIN/4) # else # define SCM_MOST_NEGATIVE_FIXNUM SCM_SRS((long)LONG_MIN, 2) # endif /* UNICOS */ #else # define SCM_CHAR_CODE_LIMIT 256L # define SCM_MOST_POSITIVE_FIXNUM ((long)((unsigned long)~0L>>3)) # if (0 != ~0) # define SCM_MOST_NEGATIVE_FIXNUM (-SCM_MOST_POSITIVE_FIXNUM-1) # else # define SCM_MOST_NEGATIVE_FIXNUM (-SCM_MOST_POSITIVE_FIXNUM) # endif /* (0 != ~0) */ #endif /* def HAVE_LIMITS_H */ #ifdef STDC_HEADERS # include # ifdef AMIGA # include # endif /* def AMIGA */ # define scm_sizet size_t #else # ifdef _SIZE_T # define scm_sizet size_t # else # define scm_sizet unsigned int # endif /* def _SIZE_T */ #endif /* def STDC_HEADERS */ #include "libguile/tags.h" #ifdef vms # ifndef CHEAP_CONTINUATIONS typedef int jmp_buf[17]; extern int setjump(jmp_buf env); extern int longjump(jmp_buf env, int ret); # define setjmp setjump # define longjmp longjump # else # include # endif #else /* ndef vms */ # ifdef _CRAY1 typedef int jmp_buf[112]; extern int setjump(jmp_buf env); extern int longjump(jmp_buf env, int ret); # define setjmp setjump # define longjmp longjump # else /* ndef _CRAY1 */ # include # endif /* ndef _CRAY1 */ #endif /* ndef vms */ /* James Clark came up with this neat one instruction fix for * continuations on the SPARC. It flushes the register windows so * that all the state of the process is contained in the stack. */ #ifdef sparc # define SCM_FLUSH_REGISTER_WINDOWS asm("ta 3") #else # define SCM_FLUSH_REGISTER_WINDOWS /* empty */ #endif /* If stack is not longword aligned then */ /* #define SHORT_ALIGN */ #ifdef THINK_C # define SHORT_ALIGN #endif #ifdef MSDOS # define SHORT_ALIGN #endif #ifdef atarist # define SHORT_ALIGN #endif #ifdef SHORT_ALIGN typedef short SCM_STACKITEM; #else typedef long SCM_STACKITEM; #endif #ifndef USE_THREADS #define SCM_THREAD_DEFER #define SCM_THREAD_ALLOW #define SCM_THREAD_REDEFER #define SCM_THREAD_REALLOW_1 #define SCM_THREAD_REALLOW_2 #define SCM_THREAD_SWITCHING_CODE #endif extern unsigned int scm_async_clock; #define SCM_ASYNC_TICK \ do { \ if (0 == --scm_async_clock) \ scm_async_click (); \ } while(0) #ifdef SCM_CAREFUL_INTS #define SCM_CHECK_NOT_DISABLED \ if (scm_ints_disabled) \ fputs("ints already disabled\n", stderr); \ #define SCM_CHECK_NOT_ENABLED \ if (!scm_ints_disabled) \ fputs("ints already enabled\n", stderr); \ #else #define SCM_CHECK_NOT_DISABLED #define SCM_CHECK_NOT_ENABLED #endif /* Anthony Green writes: When the compiler sees... DEFER_INTS; [critical code here] ALLOW_INTS; ...it doesn't actually promise to keep the critical code within the boundries of the DEFER/ALLOW_INTS instructions. It may very well schedule it outside of the magic defined in those macros. However, GCC's volatile asm feature forms a barrier over which code is never moved. So if you add... asm (""); ...to each of the DEFER_INTS and ALLOW_INTS macros, the critical code will always remain in place. asm's without inputs or outputs are implicitly volatile. */ #ifdef __GNUC__ #define SCM_FENCE asm /* volatile */ ("") #else #define SCM_FENCE #endif #define SCM_DEFER_INTS \ do { \ SCM_FENCE; \ SCM_CHECK_NOT_DISABLED; \ SCM_THREAD_DEFER; \ SCM_FENCE; \ scm_ints_disabled = 1; \ SCM_FENCE; \ } while (0) #define SCM_ALLOW_INTS_ONLY \ do { \ SCM_THREAD_ALLOW; \ scm_ints_disabled = 0; \ } while (0) #define SCM_ALLOW_INTS \ do { \ SCM_FENCE; \ SCM_CHECK_NOT_ENABLED; \ SCM_THREAD_SWITCHING_CODE; \ SCM_FENCE; \ scm_ints_disabled = 0; \ SCM_FENCE; \ SCM_THREAD_ALLOW; \ SCM_ASYNC_TICK; \ SCM_FENCE; \ } while (0) #define SCM_REDEFER_INTS \ do { \ SCM_FENCE; \ SCM_THREAD_REDEFER; \ ++scm_ints_disabled; \ SCM_FENCE; \ } while (0) #define SCM_REALLOW_INTS \ do { \ SCM_FENCE; \ SCM_THREAD_REALLOW_1; \ SCM_THREAD_SWITCHING_CODE; \ SCM_FENCE; \ --scm_ints_disabled; \ if (!scm_ints_disabled) \ { \ SCM_THREAD_REALLOW_2; \ SCM_ASYNC_TICK; \ } \ SCM_FENCE; \ } while (0) #define SCM_TICK \ do { \ SCM_DEFER_INTS; \ SCM_ALLOW_INTS; \ } while (0) /* Classification of critical sections * * When Guile moves to POSIX threads, it won't be possible to prevent * context switching. In fact, the whole idea of context switching is * bogus if threads are run by different processors. Therefore, we * must ultimately eliminate all critical sections or enforce them by * use of mutecis. * * All instances of SCM_DEFER_INTS and SCM_ALLOW_INTS should therefore * be classified and replaced by one of the delimiters below. If you * understand what this is all about, I'd like to encourage you to * help with this task. The set of classes below must of course be * incrementally augmented. * * MDJ 980419 */ /* A sections * * Allocation of a cell with type tag in the CAR. * * With POSIX threads, each thread will have a private pool of free * cells. Therefore, this type of section can be removed. But! It * is important that the CDR is initialized first (with the CAR still * indicating a free cell) so that we can guarantee a consistent heap * at all times. */ #ifdef SCM_POSIX_THREADS #define SCM_ENTER_A_SECTION #define SCM_EXIT_A_SECTION #else #define SCM_ENTER_A_SECTION SCM_DEFER_INTS #define SCM_EXIT_A_SECTION SCM_ALLOW_INTS #endif /** SCM_ASSERT ** **/ #ifdef SCM_RECKLESS #define SCM_ASSERT(_cond, _arg, _pos, _subr) #define SCM_ASRTGO(_cond, _label) #else #define SCM_ASSERT(_cond, _arg, _pos, _subr) \ if (!(_cond)) \ scm_wta(_arg, (char *)(_pos), _subr) #define SCM_ASRTGO(_cond, _label) \ if (!(_cond)) \ goto _label #endif /* * SCM_WTA_DISPATCH */ extern SCM scm_call_generic_0 (SCM gf); #define SCM_WTA_DISPATCH_0(gf, arg, pos, subr) \ return ((gf) \ ? scm_call_generic_0 ((gf)) \ : scm_wta ((arg), (char *) (pos), (subr))) #define SCM_GASSERT0(cond, gf, arg, pos, subr) \ if (!(cond)) SCM_WTA_DISPATCH_0((gf), (arg), (pos), (subr)) extern SCM scm_call_generic_1 (SCM gf, SCM a1); #define SCM_WTA_DISPATCH_1(gf, a1, pos, subr) \ return ((gf) \ ? scm_call_generic_1 ((gf), (a1)) \ : scm_wta ((a1), (char *) (pos), (subr))) #define SCM_GASSERT1(cond, gf, a1, pos, subr) \ if (!(cond)) SCM_WTA_DISPATCH_1((gf), (a1), (pos), (subr)) extern SCM scm_call_generic_2 (SCM gf, SCM a1, SCM a2); #define SCM_WTA_DISPATCH_2(gf, a1, a2, pos, subr) \ return ((gf) \ ? scm_call_generic_2 ((gf), (a1), (a2)) \ : scm_wta ((pos) == SCM_ARG1 ? (a1) : (a2), (char *) (pos), (subr))) #define SCM_GASSERT2(cond, gf, a1, a2, pos, subr) \ if (!(cond)) SCM_WTA_DISPATCH_2((gf), (a1), (a2), (pos), (subr)) extern SCM scm_apply_generic (SCM gf, SCM args); #define SCM_WTA_DISPATCH_n(gf, args, pos, subr) \ return ((gf) \ ? scm_apply_generic ((gf), (args)) \ : scm_wta (scm_list_ref ((args), SCM_MAKINUM ((pos) - 1)), \ (char *) (pos), \ (subr))) #define SCM_GASSERTn(cond, gf, args, pos, subr) \ if (!(cond)) SCM_WTA_DISPATCH_n((gf), (args), (pos), (subr)) #ifndef SCM_MAGIC_SNARFER /* Let these macros pass through if we are snarfing; thus we can tell the difference between the use of an actual number vs. the use of one of these macros -- actual numbers in SCM_VALIDATE_* and SCM_ASSERT constructs must match the formal argument name, but using SCM_ARG* avoids the test */ #define SCM_ARGn 0 #define SCM_ARG1 1 #define SCM_ARG2 2 #define SCM_ARG3 3 #define SCM_ARG4 4 #define SCM_ARG5 5 #define SCM_ARG6 6 #define SCM_ARG7 7 /* #define SCM_ARGERR(X) ((X) < SCM_WNA \ ? (char *)(X) \ : "wrong type argument") */ /* Following must match entry indexes in scm_errmsgs[]. * Also, SCM_WNA must follow the last SCM_ARGn in sequence. */ #define SCM_WNA 8 /* #define SCM_OVSCM_FLOW 9 */ #define SCM_OUTOFRANGE 10 #define SCM_NALLOC 11 /* #define SCM_STACK_OVFLOW 12 */ /* #define SCM_EXIT 13 */ #endif /* SCM_MAGIC_SNARFER */ /* (...still matching scm_errmsgs) These * are signals. Signals may become errors * but are distinguished because they first * try to invoke a handler that can resume * the interrupted routine. */ #define SCM_HUP_SIGNAL 14 #define SCM_INT_SIGNAL 15 #define SCM_FPE_SIGNAL 16 #define SCM_BUS_SIGNAL 17 #define SCM_SEGV_SIGNAL 18 #define SCM_ALRM_SIGNAL 19 #define SCM_GC_SIGNAL 20 #define SCM_TICK_SIGNAL 21 #define SCM_SIG_ORD(X) ((X) - SCM_HUP_SIGNAL) #define SCM_ORD_SIG(X) ((X) + SCM_HUP_SIGNAL) #define SCM_NUM_SIGS (SCM_SIG_ORD (SCM_TICK_SIGNAL) + 1) #if 0 struct errdesc { char *msg; char *s_response; short parent_err; }; extern struct errdesc scm_errmsgs[]; #endif /* SCM_EXIT_SUCCESS is the default code to return from SCM if no errors * were encountered. SCM_EXIT_FAILURE is the default code to return from * SCM if errors were encountered. The return code can be explicitly * specified in a SCM program with (scm_quit ). */ #ifndef SCM_EXIT_SUCCESS #ifdef vms #define SCM_EXIT_SUCCESS 1 #else #define SCM_EXIT_SUCCESS 0 #endif /* def vms */ #endif /* ndef SCM_EXIT_SUCCESS */ #ifndef SCM_EXIT_FAILURE #ifdef vms #define SCM_EXIT_FAILURE 2 #else #define SCM_EXIT_FAILURE 1 #endif /* def vms */ #endif /* ndef SCM_EXIT_FAILURE */ #endif /* __SCMH */