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1 Introduction

A group satis�es the Tits Alternative if each of its subgroups either contains a free
group of rank two or is virtually solvable. The Tits Alternative derives its name
from the result of J. Tits [Tit72] that �nitely generated linear groups satisfy this
alternative. N. Ivanov [Iva84] and J. McCarthy [McC85] have shown that mapping
class groups of compact surfaces also satisfy this alternative. J. Birman, A. Lubotzky,
and J. McCarthy [BLM83] and N. Ivanov [Iva84] complement the Tits Alternative for
surface mapping class groups by showing that solvable subgroups of such are virtually
�nitely generated free abelian of bounded index. The analogue fails for linear groups
since, for example, GL(3;Z) contains the Heisenberg group.

The outer automorphism group Out(Fn) of a free group Fn of �nite rank n reects
the nature of both linear and mapping class groups. Indeed, it maps onto GL(n;Z)
and contains the mapping class group MCG(S) of a compact surface S with funda-
mental group Fn. E. Formanek and C. Procesi [FP92] have shown that Out(Fn) is
not linear if n > 3. It is unknown if mapping class groups of compact surfaces are all
linear. In a series of two papers we prove:

Theorem 1.0.1. The group Out(Fn) satis�es the Tits Alternative.

In a third paper [BFH96], we prove the following complementary result.

Theorem 1.0.2. A solvable subgroup of Out(Fn) has a �nitely generated free abelian
subgroup of index at most 35n

2

.

The rank of an abelian subgroup of Out(Fn) is bounded by vcd(Out(Fn)) = 2n � 3
for n > 1 [CV86]. With regard to the relationship between solvable and abelian
subgroups, Out(Fn) behaves like MCG(S). H. Bass and A. Lubotzky [BL] showed
that solvable subgroups of Out(Fn) are virtually polycyclic.

Theorem 1.0.1 is divided into two parts according to the growth rate of the auto-
morphisms being considered. An element O of Out(Fn) has polynomial growth if for
each conjugacy class [] of an element in Fn the word length of Oi([]) with respect
to some �xed �nite generating set for Fn grows at most polynomially in i. An ele-
ment O of Out(Fn) has exponential growth if for some conjugacy class this sequence
grows at least exponentially in i. An element of Out(Fn) has either polynomial or
exponential growth (see for example [BH92]). The set of outer automorphisms that
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have polynomial growth is denoted PG(Fn); the set that have polynomial growth
and unipotent image in GL(n;Z) is denoted UPG(Fn). A subgroup of Out(Fn) is
said to be PG [respectively UPG] if all of its elements are contained in PG(Fn) [re-
spectively UPG(Fn)]. Every PG subgroup contains a �nite index UPG subgroup
(Corollary 5.7.6).

Every UPG subgroup of MCG(S) is abelian. In fact, each UPG subgroup of
MCG(S) is contained in a group generated by Dehn twists in a set of pairwise disjoint
simple closed curves [Iva84][BLM83]. The structure of UPG subgroups of Out(Fn)
is richer. In particular, they may contain free subgroups of rank 2; see Remark 1.2
of [BFH]. The second paper in this series [BFH] is a study of UPG subgroups of
Out(Fn). It contains a proof of the following theorem.

Theorem 1.0.3. A UPG subgroup of Out(Fn) that does not contain a free subgroup
of rank 2 is solvable.

This, the �rst paper in this series, culminates in the following theorem. Theo-
rem 1.0.1 is an immediate consequence of it and Theorem 1.0.3.

Theorem 7.0.1 Suppose that H is a subgroup of Out(Fn) that does not contain a
free subgroup of rank 2. Then there is a �nite index subgroup H0 of H, a �nitely
generated free abelian group A, and a map

� : H0 ! A

such that Ker(�) is UPG.

In [BFH95] which is independent of the current series, there is a proof of the Tits
Alternative for a special class of subgroups of Out(Fn).

Although our work focuses on the Tits Alternative, our approach has always
been toward developing a general understanding of subgroups of Out(Fn) and their
dynamics on certain spaces of trees and bi-in�nite paths. In the remainder of this
section and in the introduction to [BFH], we take up this general viewpoint.

We establish our dynamics point of view by recalling an experiment described by
Thurston. Suppose that S is a compact surface equipped with a complete hyperbolic
metric and that � is an element of the mapping class group MCG(S). Each free
homotopy class of closed curves in S is represented by a unique closed geodesic. This
determines a natural action of � on the set of closed geodesics in S and we denote
the image of the geodesic � under this action by �#(�).

Choose a closed geodesic � and positive integer k. Using a �ne point, draw �k#(�)
on S and step back so that you can no longer see individual drawn lines but only the
places where lines accumulate. If � is periodic under the action of �, then you will
not see anything. In all other cases, as k increases the image will stabilize and you
will see a non-empty closed set V (�) of disjoint simple geodesics. Most � produce the
same stabilized image and we denote this by V (�). The exceptional cases produce
V (�) that are subsets of V (�).
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This experiment neatly captures the essential features of Thurston's normal form
for elements of MCG(S) ([Thu88]; see also [FLP79] and [CB88]). For each � 2
MCG(S), there is a canonical decomposition of S along a (possibly empty) set of
disjoint annuli Aj into subsurfaces Si of negative Euler characteristic. The mapping
class � restricts to a mapping class on each Si that either has �nite order or is
pseudo-Anosov. On each Aj, � restricts to a (possibly trivial) Dehn twist. If �jSi is
pseudo-Anosov, denote the associated attracting geodesic lamination by �+i ; if �jAj

is a non-trivial Dehn twist, denote the core geodesic of Aj by �j. Then V (�) is the
union of the �+i 's and �j's. Each V (�) is a union of �+i 's and �j's; more precisely, �+i
[respectively �j] is contained in V (�) if and only if �

+
i [respectively �j] has non-empty

transverse intersection with �.
Relative train track maps f : G ! G were introduced in [BH92] as the Out(Fn)

analogue of Thurston normal form. An outer automorphism O is represented by a
homotopy equivalence f : G! G of a marked graph and a �ltration ; = G0 � G1 �
� � � � GK = G by f -invariant subgraphs. Thus we view O as being built up in
stages. The marked graph G is broken up into strata Hi (the di�erence between Gi

and Gi�1) that are, in some ways, analogous to the Si's and Aj's that are part of the
Thurston normal form for � 2MCG(S).

Irreducible strata are said to be non-exponentially-growing or exponentially grow-
ing according to whether their associated Perron-Frobenius eigenvalues are, respec-
tively, equal to one or greater than one. (There is a third type of stratum called a zero
stratum which plays a lesser role in the theory.) Exponentially growing strata cor-
respond to pseudo-Anosov components. There are three types of non-exponentially-
growing strata. If f acts periodically on the edges of Hi, then Hi corresponds to a
subsurface Si on which � acts periodically. If the length of the edges of Hi grows
linearly under iteration by f , then Hi corresponds to an annulus with non-trivial
Dehn twisting. If the length of the edges of Hi has a faster than linear growth rate,
then Hi has no surface counterpart.

The space B(G) (see section 2) of bi-in�nite unoriented paths (hereafter referred
to as lines) in a marked graph G is the Fn analogue of the space G(S) of complete
geodesics in S. Periodic lines are called circuits and correspond to closed geodesics.
There is a natural action of O on B(G). Since one can not directly `see' lines in G,
we pose the analogy for the experiment as follows. Given a circuit , what are the
accumulation points in B(G) of the forward O-orbit of ? This is not a completely
faithful translation. Geodesics that are contained in Si n �

+
i occur as accumulation

points for the forward �#-orbit of certain � but are not contained in V (�).
An exhaustive study of the action of O on B(G) is beyond the scope of any single

paper. Our goal is to build a general framework for the subject with su�cient detail
to prove Theorem 7.0.1. In some cases we develop an idea beyond what is required
for the Tits Alternative and in some cases we do not. Our decisions are based not
only on the relative importance of the idea but also on the number of pages required
to do the extra work.
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The key dynamical invariant introduced in this paper is the attracting lamination
associated to an exponentially growing strata of a relative train track map f : G! G.
It is the analogue of the unstable measured geodesic lamination �+i associated to a
pseudo-Anosov component of a mapping class element. We take a purely topological
point of view and de�ne these laminations to be closed sets in B(G); measures are
not considered in this paper. To remind the reader that we are not working in a more
structured space (and in fact are working in a non-Hausdor� space), we use the term
weak attraction when describing limits in B(G). Thus a line L1 is weakly attracted
to a line L2 under the action of O if for all neighborhoods U of L2 in B(G), there is
a positive integer K so that Ok

#(L1) 2 U for all k > K.
The set L(O) of attracting laminations associated to the exponentially growing

strata of a relative train track map f : G! G representing O is �nite (Lemma 3.1.13)
and is independent of the choice of f : G ! G. After passing to an iterate if
necessary, we may assume that each element of L(O) is O-invariant. There is a
pairing (subsection 3.2) between elements of L(O) and elements of L(O�1) that is
analogous to the pairing between stable and unstable pseudo-Anosov laminations.

An attracting lamination �+ has preferred lines, called generic lines, that are
dense in �+ (Lemma 3.1.15). All generic lines have the same neighborhoods in B(G)
(Corollary 3.1.11) and so weakly attract the same lines. We refer to this common set
of weakly attracted lines as the basin of weak attraction for �+. An element of L(O)
is topmost if it is not contained in any other element of L(O).

Of central importance to our study is the following question. Which circuits (and
more generally which birecurrent lines ( De�nition 3.1.3)) are contained in the basin
of weak attraction for a topmost �+?

A �rst guess might be that a circuit  is weakly attracted to �+ if and only if it
intersects the stratum Hr that determines �+. This fails in two ways. First, strata
are not invariant; the f -image of an edge in Hi, i > r, may contain edges in Hr.
Thus �+ may attract circuits that do not intersect Hr. For the second, suppose
that � : S ! S is a pseudo-Anosov homeomorphism of a compact surface with one
boundary component. If �1(S) is identi�ed with Fn, then the outer automorphism
determined by � is represented by a relative train track map with a single stratum.
This stratum is exponentially growing and so determines an attracting lamination
�+. The only circuit not attracted to �+ is the one, say �, determined by @S. Since
� crosses every edge in G twice, one can not expect to completely characterize the
basin of weak attraction in terms of a subgraph of G.

For any subgraph X of G and �nite path � � G, de�ne < X; � > to be the
groupoid of paths that can be decomposed into a concatenation of subpaths that are
either entirely contained in X or are equal to � or ��.

The following theorem is one of the two main results in this paper.

Theorem 6.0.1 (Weak Attraction Theorem) Suppose that �+ is a topmost ele-
ment of L(O), that f : G! G is an improved relative train track map representing
O and that Hr is the exponentially growing stratum that determines �+. Then there
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exists a subgraph Z such that Z \ Gr = Gr�1 and such that every birecurrent path
 � G satis�es exactly one of the following.

1.  is a generic line for ��.

2.  2< Z; �r >

3.  is weakly attracted to �+.

Although the statement of the Weak Attraction Theorem is completely analogous
to the corresponding result in the mapping class group, the proof is entirely di�er-
ent. The key ingredient in analyzing the basin of attraction for a pseudo-Anosov
lamination �+ is intersection of geodesics: a circuit is attracted to �+ if and only if
it intersects the dual lamination ��. Unfortunately, intersection of geodesics has no
analogue in Out(Fn). Indeed, this is a frequently encountered stumbling block in gen-
eralizing from MCG(S) to Out(Fn). We overcome this by modifying and improving
the relative train track methods of [BH92] and by a detailed analysis of the action
of f on paths in G. Most of this analysis is contained in section 5. A very detailed
statement of our improved relative train track maps is given in Theorem 5.1.5 and we
refer the reader to the introduction of section 5 for an overview of its contents. We
believe that improved relative train tracks are important in their own right and will
be useful in solving other problems (see, for example, [Macb] and [Maca]).

To study the iterated images of a bi-in�nite path , we subdivide it into `non-
interacting' subpaths whose behavior under iteration is largely determined by a single
stratum. This splitting is the subject of section 4.1 and parts of section 5. Roughly
speaking, one can view this as the analogue of subdividing a geodesic in S according
to its intersections with the Si's and Aj's that are part of Thurston normal form.

There are three parts to our proof of Theorem 7.0.1. First, we use the well known
`ping-pong' method of Tits (Proposition 1.1 of [Tit72]) to establish a criterion for
proving that a subgroup H of Out(Fn) contains a free subgroup of rank two.

Corollary 3.4.3 Suppose that �+ 2 L(O) and �� 2 L(O�1) are paired and O-
invariant, that H is a subgroup of Out(Fn) containing O and that there is an element
 2 H such that generic lines of the four laminations  �1(��) are weakly attracted
to �+ under the action of O and are weakly attracted to �� under the action of O�1.
Then H contains a free subgroup of rank two.

In section 7, we combine this criterion with the Weak Attraction Theorem and a
homology argument to prove the following.

Lemma 7.0.10 If H � Out(Fn) does not contain a free subgroup of rank two, then
there is a �nite collection L of attracting laminations for elements of H and a �nite
index subgroup H0 of H that stabilizes each element of L and that satis�es the fol-
lowing property. If  2 H0 and if �+ 2 L( ) and �� 2 L( �1) are paired topmost
laminations, then at least one of �+ and �� is in L.
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The last ingredient of the proof of Theorem 7.0.1 is contained in subsection 3.3.
Denote the stabilizer in Out(Fn) of an attracting lamination �+ by Stab(�+).

Corollary 3.3.1 There is a homomorphism PF�+ : Stab(�+) ! Z such that 	 2
Ker(PF�+) if and only if �+ 62 L(	) and �+ 62 L(	�1).

The analogous result for the mapping class group is an immediate corollary of
the fact (expos�e 12 of [FLP79]) that the measured foliations associated to a pseudo-
Anosov homeomorphism are uniquely ergodic. Any mapping class that topologically
preserves the measured foliation must projectively �x its invariant transverse measure
and so multiplies this transverse measure by some scalar factor. The assignment
of the logarithm of this scalar factor to the mapping class de�nes the analogous
homomorphism.

Because we are working in B and not a more structured space that takes measures
into account, we can not measure the attraction factor directly. Instead of an invariant
measure de�ned on the lamination itself, we use a length function on paths in a marked
graph. The length function depends on the choice of marked graph but the factor by
which an element of Stab(�+) expands this length does not.

The three parts to the proof of Theorem 7.0.1 are tied together at the end of
section 7.

2 Preliminaries

2.1 Marked Graphs and Topological Representatives

A marked graph is a graph G along with a homotopy equivalence � : Rn ! G from the
rose Rn with n petals and vertex �. We assume that Fn is identi�ed with �1(Rn; �)
and hence also with �1(G; �(�)). A homotopy equivalence f : G ! G induces an
outer automorphism of �1(G; �(�)) and so an outer automorphism O of Fn. The set
of vertices of G is denoted V. If f(V) � V and if the restriction of f to each edge of
G is an immersion, then we say that f : G! G is a topological representative of O.

A �ltration for a topological representative f : G ! G is an increasing sequence
of (not necessarily connected) f -invariant subgraphs ; = G0 � G1 � � � � � GK = G.
The closure Hr of (Gr nGr�1) is a subcomplex called the rth stratum.

Throughout this paper, G will be a marked graph, f : G! G will be a topological
representative, Gr will be a �ltration element and Hr will be a �ltration stratum. The
universal cover of G is a tree denoted by �.

2.2 Paths, Circuits and Lines

In this subsection we set notation for our treatment of `geodesics'.
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Let � be the universal cover of a marked graph G and let pr : � ! G be the
covering projection. A map ~� : J ! � with domain a (possibly in�nite) interval J
will be called a path in � if it is an embedding or if J is �nite and the image is a
single point; in the latter case we say that ~� is a trivial path. If J is �nite, then every
map ~� : J ! � is homotopic rel endpoints to a unique (possibly trivial) path [~�]; we
say that [~�] is obtained from ~� by tightening. If ~f : �! � is a lift of f : G! G , we
denote [ ~f(~�)] by ~f#(~�).

We will not distinguish between paths in � that di�er only by an orientation
preserving change of parametrization. Thus we are interested in the oriented image
of ~� and not ~� itself. If the domain of ~� is �nite, then the image of ~� has a natural
decomposition as a concatenation ~E 0

1
~E2 � � � ~Ek�1

~E 0
k where

~Ei, 1 < i < k, is an edge of
�, ~E 0

1 is the terminal segment of an edge ~E1 and ~E 0
k is the initial segment of an edge

~Ek. If the endpoints of the image of ~� are vertices, then ~E 0
1 = ~E1 and ~E 0

k =
~Ek. The

sequence ~E 0
1
~E2 � � � ~E 0

k is called the edge path associated to ~�. This notation extends
naturally to the case that the interval of domain is half-in�nite or bi-in�nite. In the
former case, an edge path has the form ~E 0

1
~E2 � � � or � � � ~E�2

~E 0
�1 and in the latter case

has the form � � � ~E�1
~E0

~E1
~E2 � � � .

A path in G is the composition of the projection map pr with a path in �. Thus
a map � : J ! G with domain a (possibly in�nite) interval will be called a path if
it is an immersion or if J is �nite and the image is a single point; paths of the latter
type are said to be trivial. If J is �nite, then every map � : J ! G is homotopic rel
endpoints to a unique (possibly trivial) path [�]; we say that [�] is obtained from �
by tightening. For any lift ~� : J ! � of �, [�] = pr[~�]. We denote [f(�)] by f#(�).

We do not distinguish between paths in G that di�er by an orientation preserving
change of parametrization. The edge path associated to � is the projected image of
the edge path associated to a lift ~�. Thus the edge path associated to a path with
�nite domain has the form E 0

1E2 � � �Ek�1E
0
k where Ei, 1 < i < k, is an edge of G, E 0

1

is the terminal segment of an edge E1 and E
0
k is the initial segment of an edge Ek.

We reserve the word circuit for an immersion � : S1 ! G. Any homotopically
non-trivial map � : S1 ! G is homotopic to a unique circuit [�]. As was the case
with paths, we do not distinguish between circuits that di�er only by an orientation
preserving change in parametrization and we identify a circuit � with a cyclically
ordered edge path E1E2 : : : Ek.

Throughout this paper we will identify paths and circuits with their associated edge
paths.

For any path � in G de�ne �� to be `� with its orientation reversed'. To make this
precise choose an orientation reversing homeomorphism inv as follows. If J is either
�nite or bi-in�nite, then inv : J ! J ; if J = (�1; b] , then inv : [b;1) ! (�1; b];
if J = [a;1)] then inv : (�1; a]! [a;1). De�ne �� = � � inv. We sometimes refer
to �� as the inverse of �. The inverse of a path in � is de�ned similarly.

There are times when we want to ignore a path's orientation. In these cases we
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will refer to � or ~� as an unoriented path. We reserve the word line for an unoriented
bi-in�nite path. If ~� contains ~�0 or its inverse as a subpath, then we say that ~�0 is an
unoriented subpath of ~�. If ~� is a line, then we sometimes simply write that ~�0 is a
subpath of ~� since the lack of orientation is implicit in the fact that ~� is unoriented.
Similar notation is used for unoriented subpaths in G.

The space of lines in � is denoted ~B(�) and is equipped with what amounts to
the compact-open topology. Namely, for any �nite path ~�0 � � (with endpoints at
vertices if desired), de�ne N(~�0) � ~B(�) to be the set of lines in � that contain ~�0
as a subpath. The sets N(~�0) de�ne a basis for the topology on B(�).

The space of lines in G is denoted B(G). There is a natural projection map from
~B(�) to B(G) and we equip B(G) with the quotient topology. A basis for the topology
is constructed by considering �nite paths �0 (with endpoints at vertices if desired)
and de�ning N(�0) � B(G) to be the set of lines in G that contain �0 as a subpath.

In the analogy with the mapping class group, B(G) corresponds to the space of
complete geodesics in a closed surface S equipped with a particular hyperbolic metric;
~B(�) corresponds to the space of complete geodesics in the universal cover ~S.

Nielsen's approach to the mapping class group (see [HT89] for example) begins
with the fact that each mapping class � determines a homeomorphism �# on the
space of complete geodesics in S. This can be briey described as follows. The
universal cover ~S is compacti�ed by a `circle at in�nity' S1 in such a way that
complete geosesics in ~S correspond to distinct pairs of points in S1. One proves
that if ~h : ~S ! ~S is any lift of a homeomorphism h : S ! S representing �, then ~h
extends to a homeomorphism of S1. Since ~h induces an equivariant homeomorphism
on pairs of points in S1, it induces an equivariant homeomorphism ~h# on the space
of geodesics in S1 and a homeomorphism h# on the space of complete geodesics in
S. One then checks that h# depends only on � and not on the choices of h and ~h.

There are analogous results for Out(Fn). The circle at in�nity is replaced by the
Cantor set @Fn of ends of Fn. We assume from now on that the basepoint in G has
been lifted to a basepoint in �. The marking on G then determines a homeomorphism
between the space of ends of � and @Fn (see, for example, [Flo80]). We use this
identi�cation and treat @Fn as the space of ends of �.

De�nition 2.2.1. De�ne ~B = (@Fn�@Fnn�)=Z2, where � is the diagonal and where
Z2 acts on @Fn�@Fn by interchanging the factors. For any unordered pair of distinct
elements (c1; c2) 2 @Fn � @Fn and for any �, there is a unique line ~� � � connecting
the ends c1 and c2. This process is reversible and de�nes a homeomorphism between
~B and ~B(�). We will often use this homeomorphism implicitly to identify ~B and ~B(�).

The diagonal action of Fn on @Fn�@Fn de�nes an action of Fn on ~B. De�ne B to
be the quotient space of this action. The action of Fn on � by covering translations
de�nes an action of Fn on ~B(�). The homeomorphism between ~B and ~B(�) is Fn-
equivariant and so projects to a homeomorphism between B and B(G). We will often
use this homeomorphism implicitly to identify B and B(G). If  2 B(G) corresponds
to � 2 B then we say that  realizes � in G. In the analogy with the mapping
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class group, B corresponds to an abstract space of complete geodesics in S that is
independent of the choice of metric.

De�nition 2.2.2. Assume that the space of ends of � and the space of ends of �0 have
been identi�ed with @Fn. If ~h : �! �0 is a lift of a homotopy equivalence h : G! G0

then (page 208 of [Flo80]) ~h determines a homeomorphism ~h : @Fn ! @Fn. There
are induced homeomorphisms ~h# : ~B(�) ! ~B(�0) and h# : B(G) ! B(G0). If ~� is
a line in � with endpoints P;Q 2 @Fn, then ~h#(~�) is the line in �0 with endpoints
~h(P ); ~h(Q).

Circuits correspond to periodic bi-in�nite paths in G. We sometimes use this
correspondence to think of the circuits as a subset of B. Since every �nite path
�0 � Rn extends to a circuit, the circuits form a dense set in B. One may also
identify the circuits with the set of conjugacy classes [[a]] in Fn. (This is analogous
to the fact that every free homotopy class of closed curves in a hyperbolic surface
contains a unique geodesic.) An outer automorphism O determines an action O# on
conjugacy classes in Fn and hence on the set of circuits.

Our various de�nitions are tied together by the following lemma.

Lemma 2.2.3. Suppose that h : G! G0 is a homotopy equivalence of marked graphs
and that O is the outer automorphism determined by h. Then

1. The action induced by h# : B(G)! B(G0) on circuits is given by � 7! [h(�)].

2. The action induced by h# : B ! B on conjugacy classes in Fn is given by
[[a]] 7! O#([[a]]).

3. h# : B ! B is determined by the action of O on circuits.

Proof of Lemma 2.2.3 Let ~� � � be a lift of a circuit � � G and let ~h : �! �0 be
a lift of h : G ! G0. A homotopy between h(�) and �0 = [h(�)] lifts to a bounded
homotopy between ~h(~�) and a lift ~�0 of �0. This implies that ~h(~�) and ~�0 have the
same endpoints in @Fn and hence that ~h#(~�) = ~�0. Part 1 follows immediately.

Part 2 follows immediately from part 1 and the de�nitions. Part 3 follows from
part 2 and the denseness of circuits in B.

2.3 Bounded Cancellation Lemma

In this section we state the bounded cancellation lemma of [Coo87] in the forms
used in this paper. A generalization of the bounded cancellation lemma is given in
[BFH95].

Lemma 2.3.1. For any homotopy equivalence h : G! G0 of marked graphs there is
a constant C with the following properties.
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1. If � = �� is a path in G, then h#(�) is obtained from h#(�) and h#(�) by
concatenating and by cancelling c � C edges from the terminal end of h#(�)
with c edges from the initial end of h#(�).

2. If ~h : � ! �0 is a lift to the universal covers, ~� is a line in � and ~x 2 ~�, then
~h(~x) can be connected to ~h#(~�) by a path with c � C edges.

3. Suppose that ~h : � ! �0 is a lift to the universal covers and that ~� � � is a
�nite path. De�ne ~� � �0 by removing C initial and C terminal edges from
~h#(~�). Then ~h#(N(~�)) � N( ~�). (In other words, if ~ 2 ~B(�) contains ~� as a
subpath, then h#(~) 2 ~B(�0) contains ~� as a subpath.)

2.4 Folding

We now recall the folding construction of Stallings [Sta83]. Suppose that f : G! G
is a topological representative of O. If f is not an immersion, then there is a pair
of distinct oriented edges E1 and E2 with the same initial endpoint and there are
non-trivial initial segments E�

1 � E1 and E�
2 � E2 such that f(E�

1) = f(E�
2) is a

path with endpoints at vertices. Let p : G! G1 be the quotient or folding map that
identi�es E�

1 with E�
2 ; we assume that the identi�cation is done so that there is an

induced map g : G1 ! G satisfying gp = f .
Since f is a homotopy equivalence and f#( �E

�
1E

�
2) is trivial, �E�

1E
�
2 is not a closed

path. Let T be a triangle �bered by lines parallel to its base. Attach T to G so that
the non-base sides are identi�ed with E�

1 and E�
2 and so that the endpoints of each

�ber are identi�ed by p1. The resulting space X deformation retracts toG. Collapsing
the �bers of T to points de�nes a homotopy equivalence of X to G1. Moreover, the
inclusion of G into X followed by the collapsing of the �bers agrees with p. Thus
p : G! G1 is a homotopy equivalence.

We will apply this construction in two ways. In the �rst, we produce a new
topological representative of O as follows. De�ne f1 : G1 ! G1 by `tightening'
pg : G1 ! G1; i.e. by de�ning f1(e) = (pg)#(e) for each edge e of G1. If each
f1(e) is non-trivial, we are done. If not, the set of edges with trivial f1-image form
a tree and we collapse each component of the tree to a point. After repeating this
tighten and collapse procedure �nitely many times, we arrive at the desired topological
representation.

For the second application, the folding operation is repeated with g : G1 ! G
replacing f : G ! G and so on to conclude that f = �pk : : : p1 where G0 = G,
pi : G

i�1 ! Gi is a folding map and where � : Gk ! G is an immersion. Since � is an
immersion, it extends to a covering �̂ : Ĝ ! G . Since � is a homotopy equivalence,
�̂ must be degree one and G � Ĝ is a homotopy equivalence. In other words � is an
embedding and is a homeomorphism if G has no valence one vertices [Sta83].

We also need a slight generalization of folding. Suppose that E2 = �1�2 is a
decomposition into subpaths and that � � G is a path satisfying the following prop-
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erties : � and E2 have a common initial endpoint; � does not intersect the interior
of E2; and f(�1) = f#(�) is a path with endpoints at vertices. De�ne G0 to be the
graph obtained from G by identifying �1 with � and let p : G! G0 be the quotient
map. We may think of GnE2 as a subcomplex of both G and G0. Thus G is obtained
from G nE2 by adding E2 and G

0 is obtained from G nE2 by adding an edge E 0
2 with

terminal endpoint equal to the terminal endpoint of E2 and initial endpoint equal to
the terminal endpoint of �. With this notation, pj(G n E2) is the identity, p(�1) = �
and p(�2) = E 0

2. De�ne g : G
0 ! G by gj(GnE2) = f j(GnE2) and by g(E 0

2) = f(�2).
Then gpj(G n E2) = f j(G n E2) and (gp)#(E2) = f(E2). In particular, gp ' f rel V
(= the vertex set of G). We refer to p : G! G0 as a generalized fold.

2.5 Relative Train Track Maps

We study an outer automorphism by analyzing the dynamical properties of its topo-
logical representatives. To facilitate this analysis we restrict our attention to topo-
logical representatives with special properties. In this subsection we recall some basic
de�nitions and results from [BH92]. In section 5 we extend these ideas to meet our
current needs.

A turn in G is an unordered pair of oriented edges of G originating at a common
vertex. A turn is nondegenerate if it is de�ned by distinct oriented edges, and is
degenerate otherwise. A turn (E1; E2) is contained in the �ltration element Gr [re-
spectively the stratum Hr] if both E1 and E2 are contained in Gr [respectively Hr]. If
E 0
1 �E2 � � �Ek�1E

0
k is the edge path associated to a path �, then we say that � contains

the turns (Ei; �Ei+1) for 0 � i � k � 1. This is consistent with our identi�cation of
a path with its associated edge path. Similarly, we say that � crosses or contains
each edge that occurs in its associated edge path and we say that � is contained in a
subgraph K, written � � K, if each edge in its edge path is contained in K.

If f : G ! G is a topological representative and E is an edge of G, then we
de�ne Tf(E) to be the �rst edge in (the edge path associated to) f(E); for each turn
(Ei; Ej), de�ne Tf((Ei; Ej)) = (Tf(Ei); T f(Ej)). An important observation is that
if � is a path and if the Tf -image of each turn in � is non-degenerate, then f(�) is
a path.

Since Tf sends edges to edges and turns to turns, it makes sense to iterate Tf .
We say that a turn is illegal with respect to f : G! G if its image under some iterate
of Tf is degenerate; a turn is legal if it is not illegal. We say that a path � � G is
legal if it contains only legal turns and that a path � � Gr is r-legal if all of its illegal
turns are contained in Gr�1.

To each stratum Hr, we associate a square matrix Mr called the transition sub-
matrix for Hr; the ij

th entry ofMr is the number of times that the f -image of the jth

edge crosses the ith edge in either direction. A non-negative matrix M is irreducible
if for each i and j there exists n > 0 so that the ijth entry of Mn is positive. By
enlarging the �ltration if necessary, we may assume that each Mr is either the zero
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matrix or is irreducible. This gives us three kinds of strata. If Mr is the zero ma-
trix, then Hr is a zero stratum . (These arise in the `core subdivision' operation of
[BH92].) If Mr is irreducible, then it has an associated Perron-Frobenius eigenvalue
�r � 1 [Sen81]. If �r > 1, then we say that Hr is an exponentially growing stratum;
if �r = 1, then we say that Hr is a non-exponentially-growing stratum.

A topological representative f : G ! G of O is a relative train track map with
respect to the �ltration � = G0 � G1 � � � � Gm = G if G has no valence one vertices,
if each non-zero Mr is irreducible and if each exponentially growing stratum satis�es
the following conditions.

1. If E is an edge in Hr, then Tf(E) is an edge in Hr.

2. If � � Gr�1 is a non-trivial path with endpoints in Gr�1 \ Hr, then f#(�) is
non-trivial.

3. If � � Hr is a legal path, then f(�) � Gr is an r-legal path.

Complete details about relative train track maps can be found in [BH92].

The most important consequence of being a relative train track map is Lemma
5.8 of [BH92]. We repeat it here for the reader's convenience. A key point is that no
cancellation of edges in Hr occurs when the image fk(�) of an r-legal path � � Gr is
tightened to fk#(�).

Lemma 2.5.1. Suppose that f : G ! G is a relative train track map, that Hr is
an exponentially growing stratum and that � = a1b1a2 : : : bl is a decomposition of
an r-legal path into subpaths where each ai � Hr and each bj � Gr�1. (Allow the
possibility that a1 or bl is trivial, but assume that the other subpaths are nontrivial.)
Then f#(�) = f(a1)f#(b1)f(a2) : : : f#(bl) and f#(�)is r-legal.

2.6 Free Factor Systems

Many of the arguments in this paper proceed by induction up through a �ltration.
In this subsection we consider �ltrations from a group theoretic point of view and we
show how to choose relative train track maps in which the steps between �ltration
elements are as small as possible.

We begin with the main geometric example.

Example 2.6.1. Suppose that G is a marked graph and that K is a subgraph whose
non-contractible components are labeled C1; : : : ; Cl. Choose vertices vi 2 Ci and a
maximal tree T � G such that each T \ Ci is a maximal tree in Ci. The tree T
determines inclusions �1(Ci; vi) ! �1(G; v). Let F i � Fn be the free factor of Fn
determined by �1(Ci; vi) under the identi�cation of �1(G; v) with Fn. Then F

1 �F 2 �
� � � � F l is a free factor of Fn. Without a speci�c choice of T , the Ci's only determine
the Fi's up to conjugacy.
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We reserve the notation F i for free factors of Fn. We use superscripts for the
index so as to distinguish the index from the rank. The conjugacy class of F i is
denoted [[F i]]. If F 1 � F 2 � � � � F k is a free factor, then we say that the collection
F = f[[F 1]]; : : : ; [[F k]]g is a free factor system. We refer to f[[< 1 >]]g as the trivial
free factor system. We will assume throughout that if F is non-trivial, then each F i

is non-trivial and so has positive rank.
Returning to Example 2.6.1, we write F(K) for the free factor system

f[[�1(C1)]]; : : : ; [[�1(Cl)]]g and say that F(K) is realized by K.
We de�ne the complexity of the free factor system F = f[[F 1]]; : : : ; [[F k]]g, written

cx(F), to be 0 if F is trivial and to be the non-increasing sequence of positive integers
that is obtained by rearranging the elements of frank(F 1); : : : ;rank(F k)g if F is non-
trivial. For any �xed Fn, there are only �nitely many such complexities and we order
them lexicographically. Thus 5; 3; 3; 1 > 4; 4; 4; 4; 4; 4 > 4 > 0; f[[Fn]]g has the highest
complexity and f[[< 1 >]]g has the smallest.

The intersection of free factors is a free factor [DS75]. More generally, we have
the following result (Subgroup Theorem 3.14 of [SW79]).

Lemma 2.6.2. Suppose that Fn = F 1 � F 2 � � � � F k, that H is a subgroup of Fn and
that H(1); : : : ; H(l) are the non-trivial elements of fH \ (F j)c : c 2 Fng. Then
H(1) � � � � �H(l) is a free factor of H.

For any free factor systems F1 and F2, de�ne F1 ^ F2 to be the set of non-trivial
elements of f[[F i \ (F j)c]] : [[Fi]] 2 F1; [[Fj]] 2 F2; c 2 Fng if there are any, and to be
the trivial free factor system otherwise. Lemma 2.6.2 implies that F1 ^ F2 is a free
factor system.

Lemma 2.6.3. If F1 ^ F2 6= F1, then cx(F1 ^ F2) < cx(F1)

Proof of Lemma 2.6.3 Each non-trivial F i\(F j)c is a free factor of F i and so either
equals F i or has strictly smaller rank than F i. Thus the set of ranks that occur for
elements of F1 ^ F2 is obtained from the set of ranks that occur for elements of F1

by (perhaps more than once) replacing a positive integer with a �nite collection of
strictly smaller integers.

An outer automorphism O induces an action on the set of conjugacy classes of
free factors. If F i is a free factor and [[F i]] is �xed by O, then we say that [[F i]]
is O-invariant. Sometimes, we will abuse notation and say that F i is O-invariant
when we really mean that its conjugacy class is. We say that F is O-invariant if
each [[F i]] 2 F is O-invariant. If [[F i]] is O-invariant, then there is an automorphism
� representing O such that �(F i) = F i. Since � is well de�ned up to composition
with an inner automorphism determined by an element of F i, � determines an outer
automorphism of F i that we refer to as the restriction of O to F i. Note that if F(K)
is realized by K and if f : G ! G is a topological representative of O that setwise
�xes each non-contractible component Ci of K, then F(K) is O-invariant.
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We say that � 2 B is carried by [[F i]] if it is in the closure of the circuits in
B determined by conjugacy classes in Fn of elements of F i. It is an immediate
consequence of the de�nitions that if G is a marked graph and K is a connected
subgraph such that [[�1(K)]] = [[F i]], then � is carried by [[F i]] if and only if the
realization of � in G is contained in K.

Lemma 2.6.4. If � 2 B is carried by both [[F 1]] and [[F 2]] then � is carried by
[[F 1 \ (F 2)c]] for some c 2 Fn.

Proof of Lemma 2.6.4 For i = 1; 2, choose a marked graph Gi with one vertex
vi and a subgraph Ki so that the marking identi�es �1(Ki; vi) with F i. Choose a
homotopy equivalence h : G1 ! G2 that induces (via the the markings on G1 and
G2) the identity on Fn. Let �1 � K1 � G1 and �2 = h#(�1) � K2 � G2 be bi-in�nite
paths that realize �. Part 2 of Lemma 2.3.1 implies that for each subpath �k of �1,
h#(�k) = ck�kdk where �k � �2 � K2 and ck and dk have uniformly bounded length.
We may choose the �k's to be an increasing collection whose union covers �1 and so
that ck = c and dk = d are independent of k. The union of the �k's cover �2. Let
wk = �k��1 and note that h#(wk) = [c�k��1�c] contains all but a uniformly bounded
amount of �k as a subpath. The lemma now follows from the fact that the element
of Fn determined by both wk and h#(wk) is contained in F 1 \ (F 2)c.

Corollary 2.6.5. For any subset B � B there is a unique free factor system F(B)
of minimal complexity that carries every element of B. If B has a single element,
then F(B) has a single element.

Proof of Corollary 2.6.5 Since [[Fn]] carries every element of B, there is at least one
free factor system F1 of minimal complexity that carries every element of B. Suppose
that F2 also carries every element of B and that cx(F1) = cx(F2). Lemma 2.6.4
implies that F1^F2 carries every element ofB. Minimality and Lemma 2.6.3 therefore
imply that F1 = F2. This proves that F(B) is well de�ned.

Every element of B is carried by some element of F(B). If B has only one element
but F(B) has more than one element, then we can reduce cx(F(B)) by reducing the
number or elements in F(B). This proves the second part of the corollary.

We write [[F 1]] @ [[F 2]] if F 1 is conjugate to a free factor of F 2 and write F1 @

F2 if for each [[F i]] 2 F1 there exists (a necessarily unique) [[F j]] 2 F2 such that
[[F i]] @ [[F j]]. The reader will easily check that if K1 � K2 are subgraphs of G, then
F(K1) @ F(K2).

In many of our induction arguments, it is important that the step between one
�ltration element and the next be as small as possible. This, and the fact that we
sometimes replace f : G ! G by an iterate, motivates the following de�nition and
lemma.

De�nition 2.6.6. A topological representative f : G ! G and �ltration ; = G0 �
G1 � � � � � GK = G are reduced if each stratum Hr has the following property : If
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a free factor system F 0 is invariant under the action of an iterate of O and satis�es
F(Gr�1) @ F 0

@ F(Gr), then either F 0 = F(Gr�1) or F 0 = F(Gr).

Lemma 2.6.7. For any O-invariant free factor system F , there exists a relative train
track map f : G ! G representing O and �ltration ; = G0 � G1 � � � � � GK = G
such that :

� F = F(Gr) for some �ltration element Gr.

� If C is a contractible component of some Gi, then f
j(C) � Gi�1 for some j > 0.

If we replace O by an iterate Os then we may choose f : G! G to be reduced.

Proof of Lemma 2.6.7 The �rst step in the proof is to show that for any nested
sequence F1 @ � � � @ Fl = f[[Fn]]g of O-invariant free factor systems, there is a
topological representative f : G ! G of O and a �ltration ; � G1 � : : : Gl = G so
that each Fi is realized by Gi. The construction of f : G! G is very similar to the
one in Lemma 1.16 of [BH92].

We argue by induction on l, the l = 1 case following from the fact that every O is
represented by a homotopy equivalence of Rn. Let Fl�1 = f[[F 1]]; : : : ; [[F k]]g. Choose
automorphisms �i : Fn ! Fn representing O such that �i(F

i) = F i.
For 1 � i � k and 1 � j � l � 2, de�ne F i

j = f[[F i]]g ^ Fj. Equivalently F i
j

consists of those elements of Fj that are contained (in the sense of @) in [[F i]]. Then
F i
1 @ � � � @ F i

l�2 @ f[[F i]]g and Fj = [ki=1F
i
j. By induction on l, there are topological

representatives fi : K
i ! Ki of the restriction of O to F i and there are �ltrations

; = Ki
0 � Ki

1 � : : :Ki
l�1 = Ki so that each F i

j is realized by Ki
j. We may assume

inductively that fi �xes a vertex vi ofK
i and that the marking onKi identi�es F i with

�1(K
i; vi) and identi�es �i with the automorphism (fi)# : �1(K

i; vi)! �1(K
i; vi).

Let F k+1 �= Fnk+1 be a free factor such that F 1 � � � � � F k+1 �= Fn. De�ne G to be
the graph obtained from the disjoint union of the Ki's by adding edges Ei, 2 � i � k,
connecting v1 to vi, and by adding nk+1 loops fLjg based at v1. Collapsing the Ei's
to v1 gives a homotopy equivalence of (G; v1) onto a graph (G0; v0) whose fundamental
group is naturally identi�ed with F 1 � � � � � F k+1 �= Fn. This provides a marking on
G.
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The �ltration � = G0 � G1 � � � � � Gl = G is de�ned by Gj = [ki=1K
i
j. It is

immediate from the de�nitions that Fj = F(Gj).
There exists ci 2 Fn, 2 � i � k, such that �1(x) = ci�i(x)�ci for all x 2 Fn.

Let i � G be the loops based at v1 that are identi�ed, under the marking, with ci.
Extend [fi : [Ki ! [Ki to a topological representative f : G ! G by de�ning
f(Ei) = iEi and by de�ning f(Lj) according to �1. Then f# : �1(G; v1)! �1(G; v1)
induces �1 : Fn ! Fn and so represents O. This completes the �rst part of the proof.

The second step in the proof is to promote f : G ! G to a relative train track
map. This may cause the �ltration to be expanded but we will maintain the property
that each Fj is realized by some �ltration element. Applying this with F1 = F and
l = 2 will complete the proof of the �rst part of the lemma.

In section 5 of [BH92], there is an algorithm that begins with an arbitrary topo-
logical representative of O and �ltration and produces a relative train track map and
�ltration that represents O. The algorithm uses only the operations of : subdivision;
folding; tightening; collapsing pre-trivial forests; valence one homotopy; and (with
some restrictions) valence two homotopy. (See [BH92] for de�nitions.) It su�ces to
work one step at a time and show that if f̂ : Ĝ! Ĝ is obtained from f : G! G by
performing one of these operations and if each Fi is realized by a �ltration element
of G, then each Fi is realized by a �ltration element of Ĝ.

Let p : G! Ĝ be the natural homotopy equivalence. We will show that if C1 and
C2 are non-contractible components of a �ltration element Gk in G, then Ĉ1 = p(C1)
and Ĉ2 = p(C2) are disjoint f̂ -invariant subgraphs and [[�1(Ci)]] = [[�1(Ĉi)]]. Since
p(Gk) is a �ltration element in the induced �ltration on Ĝ, this will complete the
second step.

We consider �rst the case that Ĝ is obtained from G by collapsing a pre-trivial
forest X. (A forest is pre-trivial if its image under some iterate of f is a �nite union
of points.) Since a component of X can not intersect both C1 and C2, Ĉ1 and Ĉ2
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are disjoint. Let X0 be a component of X. If Ci \X0 has more than one component
then there is a circuit that is not contained in Ci but whose image under some iterate
of f is contained in Ci. This contradicts the fact that f and f jCi are homotopy
equivalences. Thus Ci \X is connected and [[�1(Ci)]] = [[�1(Ĉi)]].

The operations of subdivision, folding, tightening and valence one homotopy are
straightforward to check and we leave this to the reader. Suppose that v is a valence
two vertex with incident edges Er and Es. If Er and Es are disjoint from C1[C2 then
the valence two homotopy does not e�ect C1 or C2. If Er and Es are both contained
in C1 [ C2, then they are both contained in C1 or both contained in C2, say C1. In
this case, C2 is unchanged by the valence two homotopy and it follows immediately
from the de�nitions that Ĉ1 \ Ĉ2 = ; and that [[�1(C1)]] = [[�1(Ĉ1)]]. If one edge,
say Er, is contained in C1 [ C2 but Es is not, then Es is not contained in Gk. In
particular, Es belongs to a higher stratum than does Er so the valence two homotopy
is performed by sliding v across Er. From the point of view of Gk, a valence one
homotopy is being performed on one of its components. The desired properties now
follow immediately from the de�nitions. This completes the second step.

If C is a contractible component of Gi and no f j(C) is contained in Gi�1, then
there is a collection of components of Gi that form an invariant forest. Collapse each
of these components to points. After tightening the images of the remaining edges
and possibly collapsing edges in other zero strata to points, there is a quotient map
q : G! G0, an induced topological representative f 0 : G0 ! G0 and a �ltration with
elements of the form q(Gj). By construction, each F(Gj) = F(q(Gj)) so it is still true
that each Fj is realized by some �ltration element. We will show that f 0 : G0 ! G0 is
a relative train track map. Thus, after repeating this operation �nitely many times,
we establish the �rst statement in the lemma.

Assume that the edges in G0 have the same labels as they did in G. The key
point is that for any path � � G, the edge path associated to �0 = q#(�) is obtained
from the edge path associated to � by removing all occurrences of the collapsed
edges. In particular, if E is an edge of G that does not collapse, then f 0(E) is
obtained from f(E) by removing occurrences of collapsed edges. It is straightforward
to check that q induces a one to one correspondence between the exponentially growing
[respectively non-exponentially-growing] strata of f : G ! G and the exponentially
growing [respectively non-exponentially-growing] strata of f 0 : G0 ! G0. If Hs is
exponentially growing, then conditions 1 and 3 in the de�nition of relative train track
map for q(Hs) follow immediately from conditions 1 and 3 for Hs. Condition 2 for
q(Hs) follows from condition 2 for Hs and the observation that if � � G is non-trivial,
then �0 is trivial if and only if some fk(�) is entirely contained in a component of Gi

that is collapsed by q. In particular if �0 and each fk#(�) are non-trivial, then each

(f 0)k#(�) is non-trivial. The remaining details are left to the reader.
For the last statement of the lemma, extend F to a maximal (with respect to @)

nested sequence C of distinct free factor systems Fi such that each Fi is invariant
under the action of some iterate of O. Choose s > 0 so that each Fi is O

s-invariant.
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Let f : G! G be a relative train track map representing Os and let ; = G0 � G1 �
� � � � Gm be a �ltration for f : G ! G such that each Fi is realized by a �ltration
element. In other words, C is a nested subsequence of [[< 1 >]] @ F(G1) @ � � � @
F(Gm) = f[[Fn]]g. Since C is maximal, f : G! G is reduced.

3 Attracting Laminations

3.1 Attracting laminations associated to exponentially grow-

ing strata

Measured foliations play a central role in Thurston's classi�cation of the mapping
class group. When working in Out(Fn), one's method of attack is determined, to a
great extent, by how one chooses to generalize measured foliations. In this paper,
we adopt a Nielsen-like point of view similar to that of [HT89]. In particular, we
work with laminations rather than foliations, we make extensive use of the space of
ends (in this case @Fn) and we restrict our considerations to topological rather than
measure theoretic properties.

An important feature of our approach is that we work directly in B. Thus an
attracting lamination �+, de�ned below, is a closed set of lines and not a single
point in a space of (measured) laminations. This makes certain arguments longer and
perhaps less transparent but it has an essential advantage: it enlarges the basin of
attraction for the attracting laminations (see Theorem 6.0.1 and Remark 6.0.2). This
is crucial for our application of the `Tits ping-pong' argument via Corollary 3.4.3.

In this subsection we de�ne attracting laminations in terms of the action of an
outer automorphism O on the space of lines B and then begin to develop their prop-
erties in terms of relative train track maps f : G ! G that represent O. A di�erent
approach to laminations may be found in [Lus].

De�nitions 3.1.1. We say that � 0 2 B is weakly attracted to � 2 B under the action
of O if Ok

#(�
0) ! �. (We describe the attraction as weak to emphasize that we

are working in a non-Hausdor� space that ignores measure.) A subset U � B is an
attracting neighborhood of � 2 B for the action of O if O#(U) � U and if fOk

#(U) :
k � 0g is a neighborhood basis for � in B. If U is an attracting neighborhood of �
for the action of O, then � 0 is weakly attracted to � under the action of O if and
only if some Ok

#(�
0) 2 U . The reader will easily check that if � � G realizes � 0 and

 � G realizes �, then � 0 is weakly attracted to � if and only if each subpath of 
is contained in fk#(�) for all su�ciently large k. We sometimes say that  is weakly
attracted to � under the action of f#.

Remark 3.1.2. Since B is not Hausdor�, limits are not unique. For example, work-
ing by analogy in the mapping class group of a closed surface S, suppose that
� : S ! S is a homeomorphism in Thurston normal form and that there are two
pseudo-Anosov components S1 and S2. Denote the stable and unstable laminations
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of �jSi by ��
i and �+

i respectively; let �+i be a leaf of �+
i . Every complete geodesic

 � S that intersects the interior of Si and is not a leaf of ��
i is weakly attracted to

�+i . Thus most complete geodesics in S are weakly attracted to both �+1 and �+2 .

De�nitions 3.1.3. A bi-in�nite path � in a marked graph G is birecurrent if every
�nite subpath of � occurs in�nitely often as an unoriented subpath of each end of �. A
line in G is birecurrent if the path representing it, with either choice of orientation, is
birecurrent. An element of B is birecurrent if some, and hence any (see Lemma 3.1.4),
realization in a marked graph is birecurrent.

Lemma 3.1.4. If some realization of � 2 B in a marked graph is birecurrent then
every realization of � 2 B in a marked graph is birecurrent. If � is birecurrent, then
	#(�) is birecurrent for all 	 2 Out(Fn).

Proof of Lemma 3.1.4 Suppose that � � G and �0 � G0 are realizations of � and
that � is birecurrent. Let h : G ! G0 be a homotopy equivalence that respects the
markings and let C be the bounded cancellation constant for h . Choose lifts ~� � ~G,
~�0 � ~G0 and ~h : ~G! ~G0 such that ~h#(~�) = ~�0.

Given a �nite subpath ~�00 � ~�0, extend �00 to ~� 0 � ~�0 by adding C initial and
terminal edges. Choose a �nite subpath ~� � ~� such that ~h#(~�) � ~� 0. Since �
is birecurrent, each end of ~� contains in�nitely many copies ~�i of ~� . De�ne ~�0i by
removing C initial and terminal edges from ~h#(~�i). Lemma 2.3.1 implies that ~�0i �
~�0. By construction, each ~�0i contains a copy of ~�00 and we have veri�ed that �0 is
birecurrent.

For the second part of the lemma, suppose that � is realized by � � G and that
� is birecurrent. Choose a topological representative f : G! G of 	. The preceding
argument, with h : G! G0 replaced by f : G! G, carries over with no other changes
to prove that f#(�) is birecurrent. Since f#(�) realizes 	#(�), this completes the
proof.

De�nitions 3.1.5. A closed subset �+ of B is an attracting lamination for O if it is
the closure of a single point � that :

(1) is birecurrent.

(2) has an attracting neighborhood for the action of some iterate of O.

(3) is not carried by an O-periodic free factor of rank one.

� is said to be generic for �+ or simply �+-generic. We denote the set of attracting
laminations for O by L(O).

Lemma 3.1.6. L(O) is O-invariant.
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Proof of Lemma 3.1.6 Suppose that � is generic with respect to �+ 2 L(O).
Lemma 3.1.4 implies that O#(�) is birecurrent. If V is an attracting neighborhood
for � under the action of Os then O#(V ) is an attracting neighborhood for O#(�)
under the action of Os. If [[F ]] is an O-periodic, rank one free factor that carries
O#(�) and if � : Fn ! Fn represents O�1, then [[�(F )]] is an O-periodic rank one
free factor that carries �. Thus O(�) is generic with respect to O#(�

+) 2 L(O).

In order to analyze L(O), we bring relative train track maps into the discussion.

De�nitions 3.1.7. Assume that f : G! G and ; = G0 � G1 � � � � � GK = G are a
relative train track map and �ltration representing O and that Hr is an exponentially
growing stratum. For each edge E of Hr and k � 0, de�ne the k-tile determined
by E to be the unoriented path determined by fk#(E); i.e. f

k
#(E) with either of its

orientations. A path in G is called a tile if it is a k-tile for some k. A k-tiling of a
path in Gr is a decomposition into subpaths that are either k-tiles or are contained
in Gr�1. A bi-in�nite path � � G has an exhaustion by tiles if it can be written as
the increasing union of tiles; equivalently � has an exhaustion by tiles if each of its
subpaths occurs as a subpath of a tile in �. If � has an exhaustion by tiles then,
condition (3) in the de�nition of relative train track maps (subsection 2.5) implies
that � � Gr is r-legal. We say that a line in G has a k-tiling or has an exhaustion by
tiles if the path representing it, with either choice of orientation, has this property.

A non-negative matrix M is aperiodic if it has an iterate Mk that is positive; i.e.
if each entry of Mk is positive. Aperiodic matrices are irreducible but the converse
is not true. See [Sen81] for the precise relationship between aperiodic and irreducible
matrices. If f : G! G is a relative train track map, then we say that an exponentially
growing stratum Hr is aperiodic if the transition submatrix Mr is aperiodic and that
f : G! G is eg-aperiodic if each exponentially growing stratum is aperiodic.

The following lemma records some elementary but useful observations.

Lemma 3.1.8. Assume that Hr is an exponentially growing stratum.

1. Every path in Gr has a 0-tiling.

2. If � is r-legal and has a k-tiling, then f#(�) has a (k + 1)-tiling.

3. If k < l, then each l-tile has a k-tiling; if Mk0
r is positive and l � k � k0 then

each k-tile occurs as a subpath of each l-tile.

4. The ijth coe�cient of Mk
r is the number of times that the ith edge in Hr is

crossed, in either direction, by the k-tile determined by the jth edge in Hr.

5. If � has an exhaustion by tiles then f#(�) has an exhaustion by tiles.

Proof of Lemma 3.1.8 (1) is immediate from the de�nitions. (2),(4) and (5) follow
from Lemma 2.5.1. (3) follows from (1)(2) and (4).
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The natural way to �nd attracting laminations is to look at weak limits of Ok(�)
for some circuit �. When working with respect to a relative train track map f : G!
G, one can look at the weak limits of fk(E) for some edge E. We use this simple
approach in the next pair of lemmas.

Lemma 3.1.9. Suppose that f : G ! G and ; = G0 � G1 � � � � � GK = G are
a relative train track map and �ltration representing O and that Hr is an aperiodic
exponentially growing stratum. Then there is an attracting lamination �+ with generic
leaf � so that Hr is the highest stratum crossed by the realization � of � in G.

Proof of Lemma 3.1.9 Choose an edge E of Hr and m > 0 so that fm# (E) = �E�

for some non-trivial paths �; � � Gr. Let h = fm; choose lifts ~E, ~�; ~� and ~h : �! �
so that ~h( ~E) = ~� ~E ~�. De�ne ~�j = ~hj#(

~E) and note that ~�j is a lift of a jm-tile.

Then ~�0 = ~E, ~�1 = ~�~�0 ~� and more generally ~�j+1 = ~�j~�j ~�j, for non-trivial paths ~�j
and ~�j. The ~�j's are therefore an increasing sequence of lifts of tiles whose union is
a bi-in�nite path ~� � � that is �xed by ~h#. We claim that the projection � � G
realizes an element � 2 B that is generic with respect to some element of L(O).

Since ~E is mapped over itself by ~h, there is a point ~x 2 ~E that is �xed by ~h. After
replacing m by a multiple if necessary, we may assume that the h#-image of any edge
in Hr contains at least two Hr-edges. De�ne ~�k to be the subpath of ~� that begins
with the kth ~Hr-edge to the left of ~E and ends with the kth ~Hr-edge to the right of
~E; de�ne Vk = N(�k). Lemma 2.5.1 implies that ~h#(~�k) � ~�2k. By Lemma 2.3.1(3),
h#(Vk) � Vk+1 for all su�ciently large k. The Vk's are a neighborhood basis for �
and so for all su�ciently large k, Vk is an attracting neighborhood of � for the action
of Om.

Since the di�erence between the number of edges in ~h#(~�k) and the number of
edges in ~�k is unbounded, the ~�k's can not be subpaths of a single ~h#-invariant axis.
In other words, � is not a circuit and so can not be carried by any free factor of rank
one.

By construction, � has an exhaustion by tiles. We now use this to show that �
has a k-tiling for all k � 1. A k-tiling of � corresponds to a subdivision of ~� and so is
determined by the vertices of ~� that are the endpoints of the subdivision pieces. By
Lemma 3.1.8(3), we may assume that each tile �i in an exhaustion of � has a k-tiling
and so de�nes a �nite set ~Vi of vertices of ~�. After passing to a subsequence, we may
assume that a vertex ~v 2 ~� satis�es either ~v 2 ~Vi for all large i or ~v 62 ~Vi for all large
i. The set of vertices that satisfy the former condition determines a k-tiling of �.

Lemma 2.5.1 implies that the �rst and last edges of any tile are contained in Hr.
Thus each end of � must contain in�nitely many edges in Hr. Lemma 3.1.8(3) and
the existence of k-tilings for all k imply that each tile occurs in�nitely often in each
end of �. Since every �nite subpath of � is contained in a tile, � is birecurrent.

Having proved that L(O) is not empty, we next list some useful properties of
generic leaves.
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Lemma 3.1.10. Assume that � 2 B is a generic line of some �+ 2 L(O), that
f : G ! G and ; = G0 � G1 � � � � � GK = G are a relative train track map and
�ltration representing O and that � is the realization of � in G. Then :

(1) The highest stratum Hr crossed by � is exponentially growing.

(2) � is r-legal.

Assuming that tiles are de�ned with respect to Hr:

(3) � has a k-tiling for all k � 1.

(4) � has an exhaustion by tiles.

Proof of Lemma 3.1.10 We argue by induction on the rank n of Fn. The n = 1
case is vacuous so we may assume that the lemma holds for outer automorphisms of
Fk with k < n.

As a �rst case suppose that � � GK�1. Let m be the smallest positive integer
so that the component C of GK�1 that contains � is fm-invariant. The inductive
hypothesis, applied to the restriction of Om to �1(C) completes the proof.

We now assume that � contains some, and hence in�nitely many, edges of HK.
Choose s > 0 so that � has an attracting neighborhood for the action of Os and let
� 6= � � G be a circuit that is weakly attracted to � under the action of f s#. Since
f si# (�) weakly converges to � as i!1, f s# can not act periodically on � with period
di�erent from one; since � 6= , f s# cannot �x �. Thus the number of edges in f si# (�)
grows without bound. Since f si# (�) weakly converges to a line with in�nitely many
HK-edges, the number of HK-edges in f

si
# (�) grows without bound. It follows that

HK must be an exponentially growing stratum. This completes the proof of (1).
For (2), �x k > 0 and let j be the number of illegal turns that � has in Hr. The

number of illegal turns of f si# (�) in Hr is bounded above by j. Choose a subpath �0 of
�. Since � is a weak limit of the f si# (�)'s, �0 occurs as a subpath of the periodic line
determined by f si# (�) for all large l. Since the length of the circuit f si# (�) increases
without bound, �0 is covered by two fundamental domains of the line f si# (�) for all
large s. It follows that the number of illegal turns of �0 in Hr is bounded above by
2j. Birecurrence, and the fact that �0 was arbitrary, therefore imply that � is r-legal.

For (3), �x k � 0 and let ~� � � be a lift of of �. A k-tiling of � corresponds to a
subdivision of ~� and so is determined by the vertices of ~� that are the endpoints of
the subdivision pieces.

Let q be the number of edges in �. For any �nite subpath �0 � � let �1 � �
be a �nite subpath that contains 2q + 1 copies of �0. As in the previous case, if l
is su�ciently large, then �1 occurs as a subpath of the periodic line determined by
f sl#(�) that is covered by two fundamental domains. In particular at least one copy

of �0 occurs as a subpath of f sl#(E) for some edge E of Gr. We conclude that � is an
increasing union of �nite subpaths that have k-tilings. The k-tilings of these subpaths
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correspond to �nite sets ~Vi of vertices of ~�. After passing to a subsequence, we may
assume that a vertex ~v 2 ~� satis�es either ~v 2 ~Vi for all large i or ~v 62 ~Vi for all large i.
The set of vertices that satisfy the former condition determines a k-tiling of �. This
proves (3).

To prove (4), choose a �nite subpath �0 � �. Birecurrence implies that there is
a �nite subpath �1 � � that contains two disjoint copies of �0. After enlarging �0 if
necessary we may assume that �0 contains at least one edge of Hr. By (3) � has a
k-tiling where k is so large that each k-tile contains more edges than �1 does. In any
k-tiling of � there are at most two k-tiles that intersect �1; one of these must contain
a copy of �0. We have now shown that every �nite subpath of � is contained in a tile
in �. This completes the proof of (4).

Corollary 3.1.11. Assume that f : G ! G and ; = G0 � G1 � � � � � GK = G
are a relative train track map and �ltration representing O, that Hr is an aperiodic
exponentially growing stratum and that tiles are de�ned with respect to Hr. Assume
further that � 2 B is �+-generic for some �+ 2 L(O) and that Hr is the highest stra-
tum crossed by the realization of � in G. Then fN(�) : � is a tileg is a neighborhood
basis in B for �. In particular, all such � have the same closure.

Proof of Corollary 3.1.11 Let � � G be the realization of �. Lemma 3.1.10(3) and
Lemma 3.1.8(3) imply that � contains all tiles. Conversely, Lemma 3.1.10(4) implies
that every subpath of � is contained in a tile in �.

De�nitions 3.1.12. Lemma 3.1.9, Lemma 3.1.10 and Corollary 3.1.11 imply that
for any relative train track map representing O and for any aperiodic exponentially
growing stratum Hr there is a unique element �+ 2 L(O) with the property that Hr

is the highest stratum crossed by the realization � � G of a �+-generic line. We say
that Hr is the stratum determined by �+ and that �+ is the attracting lamination
associated to Hr.

Lemma 3.1.13. L(O) is �nite.

Proof of Lemma 3.1.13 Choose a relative train track map f : G! G and �ltration
; = G0 � G1 � � � � � GK = G representing O. If f : G ! G is eg-aperiodic (i.e.
if each exponentially growing stratum Hr is aperiodic) then there is a one to one
correspondence between the exponentially growing strata and the elements of L(O)
and the lemma is clear.

Suppose then that some Mr is not aperiodic. There is a partition ([Sen81]) of
the edges of Hr into s > 1 sets P1; : : : Ps such that for each edge E 2 Pi, the edge
path f#(E) only crosses edges in Pi+1( mod s) and in Gr�1. The matrix M s

r is not
irreducible and so the �ltration for f must be enlarged to obtain a �ltration for
f s. After replacing f by f s, Hr divides into s exponentially growing strata. If s is
maximal, then the transition matrix for each of these s exponentially growing strata
is aperiodic and irreducible. We have shown that some iterate Op of O is represented
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by an eg-aperiodic relative train track map . Since L(Op) = L(O), we are reduced to
the previous case.

It is natural to focus on the case that each element of L(O) is O-invariant. In the
analogy with the mapping class group this corresponds to assuming that the pseudo-
Anosov components are �xed rather than permuted. The following lemma relates
this hypothesis to relative train track maps.

Lemma 3.1.14. The following are equivalent

(1) Each element of L(O) is O-invariant.

(2) Each element of L(O) has an attracting neighborhood for O#.

(3) Every relative train track map f : G! G representing O is eg-aperiodic.

(4) Some relative train track map f : G! G representing O is eg-aperiodic.

Proof of Lemma 3.1.14 It is obvious that (3) =) (4).
Suppose that f : G ! G is an eg-aperiodic relative train track map for O, that

�+ 2 L(O) and that Hr is the exponentially growing stratum associated to �+. If
� � Gr is �

+-generic, then f#(�) is O(�
+)-generic. Since Hr is the highest stratum

crossed by f#(�), Corollary 3.1.11 implies that O(�+) = �+. Thus (4) =) (1).
Suppose that f : G! G is a relative train track map representing O, that Hr is

an exponentially growing stratum and that Mr is not aperiodic. There is a partition
of the edges of Hr into s > 1 sets P1; : : : Ps such that for each edge E 2 Pi, the edge
path f#(E) only crosses edges in Pi+1( mod s) and in Gr�1. The matrix M s

r is not
irreducible and so the �ltration for f must be enlarged to obtain a �ltration for f s.
After replacing f by f s, Hr divides into s exponentially growing strata, one for each
Pi. By Lemma 3.1.9 each of these contributes an element to L(O) that clearly does
not have an attracting neighborhood for O. Thus (2) =) (3).

Suppose that �+ 2 L(O) is O-invariant, that � is a �+-generic line and that V
is an attracting neighborhood for � with respect to the action of Os. Each Oi

#(�) 2
Oi
#(V ) is generic with respect to �+. Corollary 3.1.11 implies that � 2 Oi

#(V ). Thus

U = V \ O#(V ) \ � � � \ O
s�1
# (V ) is a neighborhood of � that satis�es O#(U) � U .

Moreover, Os
#(U) � V . It follows that U is an attracting neighborhood for �. Thus

(1) =) (2).

We conclude this subsection with a pair of lemmas that are needed for future
reference.

Lemma 3.1.15. Assume that Hr is an aperiodic exponentially growing stratum for
a train track map f : G! G, that �+ 2 L(O) is associated to Hr and that � is a line
in �+ that is not entirely contained in Gr�1. Then the closure of � is all of �+. If �
is birecurrent then it is �+-generic.
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Proof of Lemma 3.1.15 Fix k � 0. By Lemma 3.1.10(3), each �+-generic line has
a k-tiling. Since � is a weak limit of �+-generic lines, � is an increasing union of �nite
subpaths that have k-tilings. It follows (cf. the proof of Lemma 3.1.10(3)) that � has
a k-tiling. If � 6� Gr�1, then � must contain at least one k-tile. Since k is arbitrary,
Corollary 3.1.11 and Lemma 3.1.8(3) imply that the closure of � contains each �+-
generic line and so contains �+. It follows immediately that � satis�es condition (3)
of De�nition 3.1.5. Condition (2) of De�nition 3.1.5 follows from the fact that every
neighborhood of a generic line is also a neighborhood of �. If � is birecurrent then
condition (1) is also satis�ed and � is �+-generic.

Lemma 3.1.16. A generic line of �+ 2 L(O) is never a circuit.

Proof of Lemma 3.1.16 A set in B consisting of a single circuit is closed in B. If
a �+-generic line � is a circuit, then �+ = �. Choose a relative train track map
f : G! G representing O. Since L(O) is �nite and invariant, the realization � � G
for � is invariant for the action of some iterate of f#. But this contradicts the fact
that � � Gr is r-legal and crosses edges in Hr for some exponentially growing stratum
Hr.

3.2 Paired Laminations

In this subsection we de�ne a pairing between L(O) and L(O�1) that is analogous
to the pairing between the stable and unstable foliations of a pseudo-Anosov homeo-
morphism.

We will need the following lemma and corollary.

Lemma 3.2.1. Suppose that Fn has generators fa1; : : : ; ang and that Fn�1 is the
subgroup generated by fa1; : : : ; an�1g. If � : Fn ! Fn is an automorphism and Fn�1
is �-invariant, then �(an) contains exactly one occurrence of an or �an.

Proof of Lemma 3.2.1 The restriction �jFn�1 extends by an 7! an to an automor-
phism �0 : Fn ! Fn. After replacing � by �(�0)�1, we may assume that �jFn�1 is
the identity.

Let G = Rn be the rose with n petals and let f : G! G be the obvious topological
representative of �. The edges of G are labeled e1; : : : en and the restriction of f
to the subgraph Gn�1 consisting of e1; : : : en�1 is the identity. If the f -image of an
initial [respectively terminal] segment of en is contained in Gn�1, then fold that initial
[respectively terminal] segment into Gn�1. We may now assume that f(en) begins
and ends with en or �en. If f is an immersion, then it is a homeomorphism and we are
done. Assume then that f is not an immersion. The only fold that can take place
is between the initial and terminal ends of en. Let p : G ! G0 be the maximal such
fold and let f 0 : G0 ! G be the induced map (i.e. f = f 0p). By construction, f 0 is an
immersion and hence a homeomorphism. But G0 has two vertices while G has only
one. This contradiction completes the proof.
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Corollary 3.2.2. If f : G ! G is a topological representative and Hi is a stratum
that consists of a single edge E, then f(E) crosses E, in either direction, at most
once.

Proof of Corollary 3.2.2 We may assume without loss that Gi = G. Suppose
at �rst that Gi�1 is connected. Choose a maximal tree T for G that is contained
in Gi�1 and that contains both endpoints of E. Let B = fa1; : : : ; an�1; Eg be the
basis of Fn determined by the edges of G n T , let Fn�1 be the subgroup generated by
fa1; : : : ; an�1g and let � : Fn ! Fn be the automorphism induced by f and T . The
corollary follows directly from Lemma 3.2.1.

Suppose now that Gi�1 is not connected. Denote the components of Gi�1 by C1

and C2 and suppose at �rst that C1 and C2 are f -invariant. If Cj has a single vertex,
let hj : G ! G be the identity. If Cj has at least two vertices, choose one, xj, that
is not an endpoint of E and let hj : G ! G be a map with support in Cj that is
homotopic to the identity and that satis�es hjf(xj) = xj. Let f 0 : G ! G be the
topological representative de�ned by f 0(e) = (h1h2f)#(e) for each edge e of G. Since
f(E) and f 0(E) cross E the same number of times, we may replace f with f 0. In
particular, we may assume that f �xes x1 and x2. Add an edge F to G with endpoints
x1 and x2, and extend f by F 7! F . This de�nes a topological representative (of a
di�erent outer automorphism) to which the previous argument applies.

If f permutes C1 and C2 then, arguing as above, we may assume that there are
vertices xj 2 Cj that are permuted by f . Add F to G as above and extend f by
F 7! �F . The proof concludes as in the previous case.

De�nitions 3.2.3. Since an attracting lamination �+ is the closure of a single line
�, any free factor that carries � carries every line in �+. Corollary 2.6.5 therefore
implies that there is a unique free factor F i of minimal rank whose conjugacy class
[[F i]] carries every line in �+. We denote [[F i]] by F (�+). The rank of �+ is de�ned
to be the rank of F i.

A key point in the proof of the following lemma is that O and O�1 have the same
invariant free factor systems.

Lemma 3.2.4. For each �+ 2 L(O) there is a unique �� 2 L(O�1) such that
F (�+) = F (��). We say that �+ and �� are paired.

Proof of Lemma 3.2.4 We induct on the rank n of Fn. If n = 1, then there are no
exponentially growing strata in any relative train track map representing an iterate
of O and so L(O) is empty. We may therefore assume that the lemma holds for outer
automorphisms of Fk where k < n.

There is no loss in replacing O by an iterate. We may therefore assume that each
element of L(O) is O-invariant. Choose �+ 2 L(O). Since F (�+) is unique, F (�+)
is O-invariant. If the rank of �+ is less than n, then the inductive hypothesis, applied
to the restriction of O to F (�+), implies that there exists a unique �� 2 L(O�1)
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such that F (�+) = F (��). We may therefore assume that there is a pairing between
the elements of L(O) with rank less than n and the the elements of L(O�1) with rank
less than n.

For any exponentially growing stratumHr there are bi-in�nite paths inGr crossing
edges in Hr. It follows that the rank of each component of Gr�1 is less than the rank
of Gr. In particular, there is at most one element of L(O) or L(O�1) with rank n.
It therefore su�ces to assume that there is an element �+ 2 L(O) with rank n and
prove that there is an element �� 2 L(O�1) with rank n.

After replacingO by a further iterate if necessary, there is (Lemma 2.6.7) a reduced
relative train track map f : G ! G and �ltration ; = G0 � G1 � � � � � GK = G
representing O. �+ is associated to the top stratum HK and each element of L(O)
and L(O�1) with rank less than n is carried by F = F(GK�1). Lemma 3.2.2 implies
that HK is not a single edge; since subdivision vertices in HK can be removed without
loss, HK is not an arc. It follows that F is neither a single (conjugacy class of a) free
factor of rank n � 1 nor a pair of (conjugacy classes of) free factors with rank sum
equal to n.

Choose (Lemma 2.6.7) a relative train track map f 0 : G0 ! G0 representing an
iterate ofO�1 such that F is realized by a �ltration element. The transition submatrix
for a non-exponentially-growing stratum is a permutation and so has an iterate that
equals the identity. We may therefore assume, after replacing f 0 by an iterate and
enlarging the �ltration if necessary, that each non-exponentially-growing stratum is
a single edge. We may also assume that f : G ! G is eg-aperiodic. If H 0

K0 is the
topmost stratum then, since f : G ! G is reduced, F = F(G0

K0�1). H
0
K0 cannot be

a zero stratum and the concluding observation of the preceding paragraph rules out
the possibility that it is a single edge. Thus H 0

K0 is exponentially growing. Since the
expanding lamination associated to H 0

K0 is not carried by F , it must have rank n.

3.3 Expansion Factors

In this subsection we assume that �+ is an attracting lamination for some element
of Out(Fn). De�ne the stabilizer of �

+ to be Stab(�+) = f	 2 Out(Fn) : 	#(�
+) =

�+g. The following corollary (of Proposition 3.3.3 below) is the main result of this
subsection; it is essential to our reduction of the Tits Alternative for Out(Fn) to the
Tits Alternative for PG(Fn).

Corollary 3.3.1. There is a homomorphism PF�+ : Stab(�+) ! Z such that 	 2
Ker(PF�+) if and only if �+ 62 L(	) and �+ 62 L(	�1).

The analogous result for the mapping class group is an immediate corollary of
the fact (expos�e 12 of [FLP79]) that the measured foliations associated to a pseudo-
Anosov homeomorphism are uniquely ergodic. Any mapping class that topologically
preserves the measured foliation must projectively �x its invariant transverse measure
and so multiplies this transverse measure by some scalar factor. The assignment
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of the logarithm of this scalar factor to the mapping class de�nes the analogous
homomorphism.

Because we are working in B and not a more structured space that takes measures
into account, we can not measure the attraction factor directly. Instead of an invariant
measure de�ned on the lamination itself, we use a length function on paths in a marked
graph. The length function depends on the choice of marked graph but the factor by
which an element of Stab(�+) expands this length does not.

De�nition 3.3.2. Assume that f : G ! G and ; = G0 � G1 � � � � � GK = G
are a relative train track map and �ltration for an element of Stab(�+) and that �+

is the attracting lamination associated to the (necessarily aperiodic) exponentially
growing stratum Hr. For any path � � G de�ne ELr(�) to be the edge length
of �, counting only the edges of Hr that are entirely contained in �. We say that
	 2 Stab(�+) asymptotically expands �+ by the factor � if for every such choice of
; = G0 � G1 � � � � � GK = G and f : G ! G, every topological representative
g : G! G of 	 and for all � > 0

�� � <
ELr(g#(�))

ELr(�)
< �+ � (�)

whenever � is contained in a �+-generic line and ELr(�) is su�ciently large.

For the remainder of this subsection we assume that f : G ! G, Hr, ; = G0 �
G1 � � � � � GK = G and �+ are as in De�nition 3.3.2.

The following proposition relates asymptotic expansion of �+ to Perron-Frobenius
eigenvalues. In particular, it implies that the Perron-Frobenius eigenvalue associated
to an exponentially growing stratum of a relative train track map f : G! G depends
only on the outer automorphism O determined by f and on the element of L(O) that
is associated to the stratum.

Proposition 3.3.3. (1) Every 	 2 Stab(�+) asymptotically expands �+ by some
factor � = �(	).

(2) �(		0) = �(	)�(	0)

(3) �(	) > 1 if and only if �+ 2 L(	).

(4) If �+ 2 L(	) and f 0 : G0 ! G0 is a relative train track map for 	, then �(	) =
�0s is the Perron-Frobenius eigenvalue for the transition submatrix M 0

s of the
exponentially growing stratum H 0

s associated to �+.

Our main result follows easily from Proposition 3.3.3.
Proof of Corollary 3.3.1 De�ne PF �

�(	) = log(�(	)). Proposition 3.3.3 and the
observation that PF �

�(	
�1) = �PF �

�(	) (which follows from Proposition 3.3.3(2))
imply that each �(	), other than 1, occurs as the Perron-Frobenius eigenvalue for an
irreducible matrix of uniformly bounded size. It follows (cf. page 37 of [BH92]) that
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the image of PF �
� is an in�nite discrete subset of R and is hence isomorphic to Z.

Identify the image with Z and call the resulting homomorphism PF�. The desired
properties follow immediately from Proposition 3.3.3.

We need a pair of preliminary estimates before beginning the proof of Proposi-
tion 3.3.3.

De�nitions 3.3.4. Let fEig be the edges of Hr and let �r be the Perron-Frobenius
eigenvalue forMr. The Perron-Frobenius theorem ([Sen81]) implies that ��nr Mn

r con-
verges to a matrix M� whose columns are projectively equal. Normalize the column
vectors ofM� so that the sum of the entries is one and denote this common frequency
vector by A = (ai). Let �

k
i be the k-tile fk#(Ei).

Every �+-generic line � has a unique 0-tiling. Pushing this forward by f# as
in Lemma 3.1.8(5), produces a 1-tiling of f#(�) that we call the standard 1-tiling
of f#(�). Continue this to de�ne the standard k-tiling of fk#(�). Since �+ is O-

invariant, � = fk#(k) for some �+-generic line k. In this way every �+-generic line
has a standard k-tiling for all k � 0.

The following lemma states that the k-tiles are `evenly distributed' in �-generic
lines.

Lemma 3.3.5. Fix � > 0 and k � 0. Suppose that � is a �nite subpath of a �+-
generic line �. Among all k-tiles in the standard k-tiling of � that are entirely con-
tained in �, denote the fraction that equal �ki by �ik(�). If ELr(�) is su�ciently large,
then ai � � < �ik(�) < ai + �.

Proof of Lemma 3.3.5 Choose l > 0. In the standard l-tiling of �, there are at
most two l-tiles that intersect � but are not entirely contained in �. If ELr(�) is
su�ciently large, then there is no loss in ignoring the Hr edges of � in these two
l-tiles and we may assume that � is a union of l-tiles and paths in Gr�1. It therefore
su�ces to assume that � is an l-tile for some arbitrarily large l. By Lemma 2.5.1
and the de�nitions, it su�ces to assume that k = 0. This case is an immediate
consequence of Lemma 3.1.8(4).

Lemma 3.3.6. Assume that g : G ! G is a topological representative and that �+

is g#-invariant. There is a constant C1 = C1(g) satisfying ELr(g#(�)) < C1 for any
subpath � � Gr�1 of a �+-generic line.

Proof of Lemma 3.3.6 If the lemma fails, then there exist �-generic lines �j and
�nite subpaths �j � Gr�1 of �j such that the central segment of g#(�j) obtained by
removing the �rst and last j edges contains at least one edge in Hr. After passing to
a subsequence, we may assume that the �j's are an increasing sequence whose union
is a line �� � Gr�1 with the property that g#(�

�) 6� Gr�1. Since �� is a line in �+

whose closure is not all of �+ and since g# is a homeomorphism that preserves �+,
g#(�

�) is a line in �+ whose closure is not all of �+. This contradicts Lemma 3.1.15
and so completes the proof.
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Proof of Proposition 3.3.3 Assume that f : G! G, ; = G0 � G1 � � � � � GK =
G, Hr and g : G ! G are as in De�nition 3.3.2 and that � is a �nite subpath of a
�+-generic line. De�ne

�k =

P
i aiELr(g#(�

k
i ))P

i aiELr(�
k
i )

:

We will show that for all � > 0 : if k is su�ciently large (relative to �) and if ELr(�)
is su�ciently large (relative to � and k) then

(1� �)�k �
ELr(g#(�))

ELr(�)
� (1 + �)�k: (��)

It will follow that � = lim�k exists and that for all � > 0, (�) holds whenever ELr(�)
is su�ciently large (relative to �).

We will verify (��) relative to the choices of f : G ! G, ; = G0 � G1 � � � � �
GK = G, Hr, and g : G! G and then check that � does not depend on these choices.

Let bcc(g) be the bounded cancellation constant for g : G! G and let C1 be the
constant of Lemma 3.3.6. In the following list �� means that the error of approxima-
tion is small relative to �. Choose k so large that for all i :

(A) C1=ELr(�
k
i ) �� 0

(B) bcc(g)=ELr(�
k
i ) �� 0

Now restrict attention to � where ELr(�) is so large that:

(C) �ik(�) �� ai

(D) ELr(�
k
i )=ELr(�) �� 0

We can now verify (��). In order to approximate ELr(g#(�)) we allow ourselves
to make assumptions that result in errors that are a small percentage of the total.
There are four such assumptions. The �rst is that � begins and ends with a k-tile
in the standard k-tiling of �. Thus � is a concatenation of k-tiles j and maximal
subpaths �l � Gr�1; let N(�) be the number of k-tiles in this decomposition. The
error that this assumption contributes is at most twice the number of Hr-edges in a
k-tile and so is controlled by (D). The second assumption is that the approximation
in (C) is exact. The third is that each ELr(g#(�l)) = 0; this error is controlled by
(A). The �nal assumption is that g#(�) � g#(�) is a concatenation of the g#(j)'s
and g#(�l)'s (with no cancellation at the junctures). This produces an error that is
bounded by 2bcc(g)N(�) and so is controlled by (B).

Once these assumptions are made, ELr(g#(�)) =
P

iN(�)aiELr(g#(�
k
i )). Apply-

ing this again with g = identity, ELr(�) =
P

iN(�)aiELr(�
k
i ). Thus

ELr(g#(�))

ELr(�)
= �k

and we have veri�ed (��).

31



If g� : G ! G is another topological representative of 	, then there are lifts
~g : �! � and ~g� : �! � such that the distance between ~g(~x) and ~g�(~x) is bounded
independently of ~x. It follows that ELr(g#(�)) � ELr(g

�
#(�)) is bounded indepen-

dently of � and hence that � does not depend on the choice of g.
Suppose next that f̂ : Ĝ ! Ĝ and ; = Ĝ0 � Ĝ1 � � � � � ĜK̂ = Ĝ is another

relative train track map and �ltration representing O, that �+ is the attracting lam-
ination associated to the stratum Ĥs and thatdELs is the edge length function that
counts edges of Ĥs in Ĝ.

Choose a homotopy equivalence h : G ! Ĝ that respects the markings and that
restricts to an immersion on each edge. Arguing exactly as above we conclude that
there is a positive constant � so that for all � > 0

(1� �)� <
dELs(h#(�))
ELr(�)

< (1� �)� (� � �)

whenever � is contained in a �+-generic line and ELr(�) is su�ciently large. The
details of this modi�cation are left to the reader.

Suppose now that ĝ : Ĝ! Ĝ represents 	. For any �nite path � � Gr, h#g#(�)
and ĝ#h#(�) di�er by initial and terminal segments of uniformly bounded size. It
follows, employing (� � �), that

dELs(ĝ#h#(�))
dELs(h#�)

�
dELs(h#g#(�))
dELs(h#�)

�
ELr(g#(�))

ELr(�)

where the error of approximation goes to 0 as ELr(�) ! 1 or equivalently as
dELs(h#�) ! 1. We conclude that � is independent of the choice of f : G ! G
and ; = G0 � G1 � � � � � GK = G . This completes the proof of part (1) of
Proposition 3.3.3.

Suppose that g : G ! G and g0 : G ! G are topological representatives for
	 and 	0 respectively. If � � G is contained in a �+-generic line, then there is a
subpath �0 � G of g#(�) that is contained in a �+-generic line and that di�ers from
g#(�) only in an initial and terminal segment of uniformly bounded length. Similarly,
g0#g#(�) � G di�ers from g0#(�

0) only in an initial and terminal segment of uniformly
bounded length. Thus �(		0) = �(	)�(	0) and we have proved part (2).

Suppose now that �(	) > 1 and that �0 is a �nite subpath of a �+-generic line
�. Let �1 be the subpath of g#(�) obtained from g#(�0) by removing the initial and
terminal subpaths of length bcc(g). Lemma 2.3.1(3) implies that g#(N(�0)) � N(�1).
If ELr(�0) is su�ciently large, then ELr(�1) > ELr(�0) and we may iterate the
argument to produce �k with increasing ELr-length such that g#(N(�k�1)) � N(�k)
and hence gk#(N(�0)) � N(�k). Since gk#(�) is �

+-generic, Corollary 3.1.11 implies
that � 2 N(�k) for all k.

By Lemma 3.1.8(4) �0 is contained in some tile, say an l-tile, in �. By Lemma 3.3.5
there exists k so that �k contains every l-tile. In particular, N(�k) � N(�0).
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Lemma 3.3.5 and Corollary 3.1.11 imply that the N(�j)'s are a neighborhood basis
for � and hence that N(�0) is an attracting neighborhood of � for the action of 	k

#.

Since �+ is 	-invariant, U = N(�0)\	#(N((�0))\� � �\	
k�1
# (N(�0)) is an attracting

neighborhood of � for the action of 	. It follows that �+ 2 L(	).
If �+ 2 L(	), we may assume that the relative train track map f : G ! G used

to compute � represents 	, that g = f and that � is a k tile �ki for some large k.
With these assumptions ELr(g#(�)) is the i

th column sum of Mk+1
r and ELr(�)) is

the ith column sum of Mk
r . The Perron-Frobenius theorem (cf. the de�nition of M�

above) implies that ELr(g#(�))=ELr(�))! �r as k!1. This completes the proof
of parts (3) and (4).

3.4 Detecting F2 via Laminations

We now show how expanding laminations can be used to prove that a group of outer
automorphisms contains a free subgroup of rank two. Our criterion is based on a
technique of Tits (Proposition 1.1 of [Tit72]), a version of which appears in the next
lemma.

Lemma 3.4.1. Suppose that a group H acts on a space X, that there are subsets
U+; U�; V + and V � of X, a point x 2 X and elements f; g 2 H such that

1. x 62 (U+ [ U� [ V + [ V �)

2. f(fxg [ U+ [ V + [ V �) � U+

3. f�1(fxg [ U� [ V + [ V �) � U�

4. g(fxg [ U+ [ U� [ V +) � V +

5. g�1(fxg [ U+ [ U� [ V �) � V �

Then the subgroup of H generated by f and g is isomorphic to F2.

In our case, H will be a subgroup of Out(Fn) and X will be the space B. The
`ping pong' method of Tits can be recast as follows.

Lemma 3.4.2. Suppose that :

� �+ 2 L(O) and �� 2 L(O�1) are paired and O-invariant.

� �+ 2 L(	) and �� 2 L(	�1) are paired and 	-invariant

� generic lines in �+ and �� are weakly attracted to �+ [respectively ��] under
the action of 	 [respectively 	�1].

� generic lines in �+ and �� are weakly attracted to �+ [respectively ��] under
the action of O [respectively O�1].
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Then ON and 	N generate a free subgroup of rank two for all su�ciently large N .

Proof of Lemma 3.4.2 Let �� and � be generic lines for �� and ��; let U� and
V � be attracting neighborhoods of �� and � respectively.

There exists k � 0 such that Ok
#(

+) � U+. Since f	l
#(V

+)g is a neighborhood

basis for +, there exists l � 0 such that Ok
#(	

l
#(V

+)) � U+. This inclusion remains
valid if k and/or l are increased.

Repeating this argument on various combinations of O�1 and 	�1, we see that
there there exist K;L � 0 such that

� OK
#	

L
#(V

+);OK
#	

�L
# (V �) � U+

� O�K
# 	L

#(V
+);O�K

# 	�L
# (V �) � U�

� 	K
#O

L
#(U

+);	K
#O

�L
# (U�) � V +

� 	�K
# OL

#(U
+);	�K

# O�L
# (U�) � V �

Replacing U+ [respectively U�; V +; V �] by OL
#(U

+) [respectively O�L
# (U�);

	L
#(V

+);	�L
# (V �)] and de�ning N = K + L, we have

(1) ON
#(V

+);ON
#(V

�) � U+

(2) O�N
# (V +);O�N

# (V �) � U�

(3) 	N
#(U

+);	N
#(U

�) � V +

(4) 	�N
# (U+);	�N

# (U�) � V �.

Since U� and V � are attracting neighborhoods, we also have

(5) ON
#(U

+) � U+;O�N
# (U�) � U�; 	N

#(V
+) � U�; and 	�N

# (V �) � V �.

Choose a circuit � � G that is weakly attracted to �+ under the action of O and
to �� under the action of O�1. By (3) and (4), Om

#(�) is weakly attracted to �+

[respectively ��] under the action of 	 [respectively 	�1] for all su�ciently large m,
say m � M . Let x = OM

# (�) 2 B. Since (Lemma 3.1.16) generic lines in attracting
laminations can not be circuits, we can choose L so that x 62 (U+ [ U� [ V + [ V �).
For large K and hence large N , ON

#(x) 2 U+;O�N
# (x) 2 U�; 	N

#(x) 2 U�; and

	�N
# (x) 2 V �.
We have now veri�ed all the hypothesis of Lemma 3.4.1.

We can now state the speci�c application of Lemma 3.4.2 that we will use.
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Corollary 3.4.3. Suppose that �+ 2 L(O) and �� 2 L(O�1) are paired and O-
invariant, that H is a subgroup of Out(Fn) containing O and that there is an element
 2 H such that generic lines of the four laminations  �1(��) are weakly attracted
to �+ under the action of O and to �� under the action of O�1. Then H contains a
free subgroup of rank two.

Proof of Corollary 3.4.3 De�ne 	 =  O �1 and note that �+ =  #(�
+) 2 L(	+)

and �� =  #(�
�) 2 L(	�1) are paired and 	-invariant. The condition on  �1# (��)

can be restated as

1. �� is weakly attracted to �+ [respectively ��] under the action of O [respec-
tively O�1].

2.  �1# �� is weakly attracted to  �1# (�+) [respectively  �1# (��)] under the action
of  �1	 [respectively  �1	�1 ].

This last condition is equivalent to

3. �� is weakly attracted to �+ [respectively ��] under the action of 	 [respectively
	�1].

The corollary therefore follows from Lemma 3.4.2.

4 Splittings

4.1 Preliminaries and non-exponentially-growing strata

To understand the action of an outer automorphism O on the space B of abstract
lines, we choose a relative train track map f : G! G representing O and study the
induced action f# on the space B(G) of lines in G. One advantage of working in B(G)
is that it is possible to subdivide a bi-in�nite path in G into subpaths in G. We will
be interested in subdivisions in which the action of f# on the whole is the `sum' of
the action of f# on the parts. We make this precise as follows.

Suppose that � = : : : �l�1�l : : : is a decomposition of a path or circuit � � G
into non-trivial subpaths. If � is a �nite path or a circuit, then the decomposition is
assumed to be �nite but in�nite paths may have in�nite decompositions. Decompo-
sitions of a circuit � = �1 : : : �l are always assumed to be cyclic; in particular, �1 and
��l do not have a common initial segment. If � is a path then we assume that there
are at least two subpaths in the decomposition but if � is a circuit then we allow
� = �1.

We say that � = : : : �l�1�l : : : is a k-splitting if f
k
#(�) = : : : fk#(�l�1)f

k
#(�l) : : : is

a decomposition into subpaths and is a splitting if it is a k- splitting for all k > 0.
If ~f : � ! � and ~� � � are lifts, then a decomposition ~� = : : : ~�l�1~�l : : : into

subpaths (with at least two pieces and with �nitely many pieces if ~� is �nite) is called
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a k-splitting if ~fk#(~�) = : : : ~fk#(~�l�1)
~fk#(~�l) : : : is a decomposition into subpaths, and

is called a splitting if it is a k-splitting for all k � 0. If � is a path in G then every
k-splitting [splitting] of ~� projects to a k-splitting [splitting] of �. If � is a circuit and
~� is the axis of the covering translation T , then T -invariant k- splittings [splittings]
of ~� project to k-splittings [splittings] of �.

Decompositions of ~� are determined by the juncture points ~J of the subpaths. If
the decomposition determined by ~J is a k- splitting [splitting] then we say that ~� can
be k-split [split] at ~J . If ~J contains a single point ~x, then we say that ~� can be k-split
[split] at ~x. As a matter of notation, we will only use � to separate subpaths if the
separation is a splitting.

We �rst record some elementary properties of k-splittings and splittings.

Lemma 4.1.1. (1) If � is a circuit, � = �01 is a splitting and �01 = �1� : : : ��l, then
� = �1� : : : ��l. In other words, splittings of the path �1 determine splittings of
the circuit �.

If � � G is a path or circuit then:

(2) If � = �1 � �2 and �1 = �01 � �
0
2 then � = �01 � �

0
2 � �2. The analogous result with the

roles of �1 and �2 reversed also holds.

(3) ~� can be k-split at ~x if and only if ~fk(~x) 2 ~fk#(~�).

(4) f~x 2 ~� : ~� can be k-split a ~xg is closed.

(5) If ~f#(~�) can be split at ~y and if ~x 2 ~� satis�es ~f(~x) = ~y, then ~� can be split at
~x.

If � � G is a path then

(6) Assume that � = �1�2 is a k-splitting, that � = �� is a decomposition into
subpaths and that not all of fk#(�2) is canceled when fk#(�)f

k
#(�) is tightened to

fk#(�). Let �
0 = �2�. Then � = �1�

0 is a k-splitting.

Proof of Lemma 4.1.1 Parts (1) (2) and (3) follow immediately from the de�nitions.
Parts (4), (5) and (6) follow from (3).

The following lemma complements Lemma 4.1.1(1).

Lemma 4.1.2. Every circuit � � G has a splitting � = �1.

Proof of Lemma 4.1.2 Choose lifts ~f : � ! � and ~� � � and let T : � ! � be
the covering translation with axis ~�. The set ~Sk = f~x 2 ~� : ~fk(~x) 2 ~fk#(~�)g is closed

by Lemma 4.1.1(4). An easy induction argument shows that fN maps \Nk=1 ~Sk onto
~fN# (~�) for all N � 1. Since \Nk=1 ~Sk is T -invariant and non-empty, it must intersect

each fundamental domain of ~�. Thus the T -invariant set \1k=1 ~Sk is non-empty. Choose
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a T -orbit ~J � \1k=1 ~Sk. If ~x; ~y 2 ~J and ~x < ~y in the ordering induced from ~� then
for all k > 0, fk(~x); fk(~y) 2 fk#(~�) and f

k(~x) < fk(~y) in the ordering induced from

fk#(~�). It follows immediately that ~� can be k-split for all k > 0, and hence split, at
~J . Since ~J is an orbit of T , there is an induced splitting � = �1.

If � intersects the interior of some edge of Hi then we say that � intersects Hi

non-trivially. We organize splittings of � according to the growth rate of the highest
stratum that � intersects non-trivially. We begin with the basic splitting lemma for
the non-exponentially-growing case.

De�nition 4.1.3. Suppose that f : G! G is a topological representative, that the
non-exponentially-growing stratum Hi consists of a single edge Ei and that f(Ei) =
Eiui for some path ui � Gi�1. We say that paths of the form Ei �Ei; Ei, and  �Ei,
where  � Gi�1 are basic paths of height i.

The restriction on the endpoints of � in the following lemma reduces the number
of special cases that we must consider.

Lemma 4.1.4. Suppose that f : G! G and Ei are as in De�nition 4.1.3. Suppose
further that � � Gi is a path or circuit that intersects Hi non-trivially and that the
endpoints of �, if any, are not contained in the interior of Ei. Then � has a splitting
whose pieces are either basic paths of height i or are contained in Gi�1.

Proof of Lemma 4.1.4 Suppose at �rst that � is a path. Choose lifts ~f : � ! �
and ~� � �. Fix k > 0. There is an initial segment Ek

i of Ei such that fk(Ek
i ) = Ei.

No other points in Gi are mapped by fk into the interior of Ei. If a copy of Ei cancels
with a copy of �Ei when f

k(�) is tightened to fk#(�), then there is a subpath � in �

connecting a copy of Ek
i to a copy of �Ek

i such that fk#(�) = �. But � is a closed path
and f is a homotopy equivalence so this is impossible. We conclude that no such
cancellation occurs and hence (Lemma 4.1.1(3)) that ~� can be k-split at any point
in the interior of a lift of Ek

i or �Ek
i . Lemma 4.1.1(4) implies that ~� can be k-split at

the initial vertex of any lift of Ei and at the terminal vertex of any lift of �Ei. Since
k is arbitrary ~� can be split at these points. Lemma 4.1.1(2) and induction allow
us to split at all such points simultaneously. The induced splitting of � satis�es the
conclusions of the lemma.

If � is a circuit, �rst apply Lemma 4.1.2 to obtain a splitting � = �1. If the
basepoint of �1 is not contained in the interior of Ei or �Ei , then by our previous
argument, �1 has a splitting of the right type. Lemma 4.1.1(1) produces the desired
splitting of �. Suppose then that the basepoint of �1 is contained in the interior of Ei

or �Ei. Arguing as in the previous case, ~�1 can be split at the initial vertex of any lift
of Ei and at the terminal vertex of any lift of �Ei. Let �1 = �1� : : : ��m be the resulting
splitting of �1 and let � 01 = �m�1. Then � = � 01 � �2: : : ��m�1 is the desired splitting.
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4.2 Exponentially growing strata

We return to the non-exponentially-growing case in section 5.5. In this subsection we
focus on the exponentially growing case. If Hr is an exponentially growing stratum,
then denote the maximal invariant set fx 2 Hr : f

k(x) 2 Hr; 8k � 0g by Ir. The
train track property gives the following basic splitting property.

Lemma 4.2.1. Suppose that f : G! G is a relative train track map, that Hr is an
exponentially growing stratum and that � � Gr is an r-legal path. If ~x 2 ~� \ ~Ir and
if every neighborhood of ~x in ~� intersects ~Hr non-trivially, then ~� can be split at ~x.

Proof of Lemma 4.2.1. Let ~� = ~�1~�2 be the decomposition determined by subdi-
viding at ~x. Lemma 4.1.1(3), Lemma 2.5.1 and induction on k imply that ~� = ~�1~�2
is a k-splitting for all k.

Lemma 4.2.2 below is a local version of Lemma 4.2.1. Its proof exploits the fact
that exponential growth dominates bounded loss if the initial length is large enough.

Suppose that f : G! G is a relative train track map, that Hr is an exponentially
growing stratum, that � is a path in G and that � � Gr is a subpath of � with
endpoints at vertices. If there are k Hr-edges to the left and to the right of � in � ,
de�ne Wk(�) to be the subpath of � that begins with the kth Hr-edge to the left of �
and ends with the kth Hr-edge to the right of �. We say that � is k-protected in � if
its �rst and last edges are in Hr, if Wk(�) � Gr and if Wk(�) is r-legal.

Lemma 4.2.2. Assume that f : G! G is a relative train track map and that Hr is
an exponentially growing stratum. There is a constant K so that if � is a path in G
and if � � Gr is a K-protected subpath of � , then � can be split at the endpoints of
�.

Proof of Lemma 4.2.2. Choose l so that the f l-image of an edge in Hr contains at
least two edges in Hr. Let K = 2lC where C is the bounded cancellation constant
for f : G! G .

We will show that if � is K-protected in � , then � can be i-split at the endpoints
of � for 1 � i � l. Moreover, f l#(�) is K-protected in f l#(�). Iterating this argument
proves that � can be i-split at the endpoints of � for all i.

Lemma 4.1.1(6), Lemma 2.5.1 and the bounded cancellation lemma imply that
if � is k-protected for k > C, then � can be 1-split at the endpoints of � and that
f#(�) is k � C protected. Thus if � is K protected, then � can be i-split at the
endpoints of � and also at the endpoints of WK�lC(�) = WlC(�) for 1 � i � l. Since
f l#(WlC(�)) � W2lC(f

l
#(�)) =WK(f

l
#(�)), f

l
#(�) is K-protected in f l#(�).

We have already de�ned what it means for a bi- in�nite path in G to be weakly
attracted to a generic line of an element of L(O). We now extend this (and change
the notation slightly) so that it applies to arbitrary paths in G.
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De�nition 4.2.3. Suppose that f : G ! G is a relative train track map, that Hr

is an aperiodic exponentially growing stratum, that �+ 2 L(O) is associated to Hr

and that � � Gr is a path or circuit. Then � is weakly attracted to �+ if each �nite
subpath of some (and hence any) generic line of �+ occurs as an unoriented subpath
of fk#(�) for all su�ciently large k.

Corollary 4.2.4. Assume that f : G ! G is a relative train track map, that �+ is
the expanding lamination associated to an aperiodic exponentially growing stratum Hr

and that � � G is a path or circuit. Then the following are equivalent:

1. � is weakly attracted to �+.

2. Some fk#(�) splits into subpaths, at least one of which is weakly attracted to �+.

3. Some fk#(�) splits into subpaths, at least one of which is an edge of Hr.

Proof of Corollary 4.2.4 If � is a circuit then choose �1 as in Lemma 4.1.2. For
every �nite subpath �0 of a generic line �, there is a subpath �1 of � that contains
two disjoint copies of �0. If �1 occurs as an unoriented subpath of fk#� then �0 occurs

as an unoriented subpath of fk#�1. It follows that � is weakly attracted to �+ if and
only if �1 is weakly attracted to �+. We may therefore assume that � is a path.

Corollary 3.1.11 and Lemma 3.1.8(3) imply that any edge ofHr is weakly attracted
to �+. Thus (3) implies (2). It is immediate from the de�nitions of splitting and
weak attraction that (2) implies (1). If � is weakly attracted to �+, then some
fk#(�) contains r-legal subpaths in Gr that contain arbitrarily many edges in Hr.

Lemma 4.2.2 implies that fk#(�) splits into subpaths, at least one of which is r-
legal, is contained in Gr and contains edges of Hr. Condition (3) now follows from
Lemma 4.2.1.

Lemma 4.2.2 suggests that ifHr is an exponentially growing stratum, then � � Gr

can be split into pieces that are either r-legal or are neighborhoods of an illegal turn
in Hr. We make that precise in Lemma 4.2.6 below. First we choose the appropriate
neighborhoods of an illegal turn in Hr.

If f : G ! G is a relative train track map and Hr is an exponentially growing
stratum, then de�ne Pr to be the set of paths � � Gr such that :

(i) Each fk#(�) contains exactly one illegal turn in Hr.

(ii) The initial and terminal (possibly partial) edges of each fk#(�) are contained in
Hr.

(iii) The number of Hr-edges in f
k
#(�) is bounded independently of k.

The following lemma is essentially contained in the proof of Lemma 5.11 of [BH92].
We give a proof here for the convenience of the reader. Recall (subsection 2.2) that
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we do not distinguish between a path � � G and its associated edge path E 0
0E1 : : : E

0
k.

In the following proof it is necessary to keep track of those edges in the edge path
that are contained in Hr. We write � \ Hr for the ordered sequence of edges and
partial edges of E 0

0E1 : : : E
0
k that are contained in Hr.

Lemma 4.2.5. Pr is a �nite f#-invariant set.

Proof of Lemma 4.2.5 The f#-invariance of Pr is immediate from the de�nition.
Decompose � 2 Pr as a concatenation � = �� where � and � are r-legal.

When fk(�) and fk(�) are tightened to fk#(�) and f
k
#(�), no Hr-edges are can-

celed. When fk#(�)f
k
#(�) is tightened to f

k
#(�), an initial segment of fk#(��) is canceled

with an initial segment of fk#(�). Since f
k
#(�) has an illegal turn in Hr, the �rst non-

canceled edges in fk#(��) and fk#(�) are contained in Hr. The cancellation between

fk#(��) and f
k
#(�) is therefore determined by fk#(��)\Hr and f

k
#(�)\Hr : the two paths

cancel until the �rst distinct elements of fk#(��)\Hr and f
k
#(�)\Hr are encountered.

Note that fk#(��) \Hr and f
k
#(�) \Hr are determined by � \Hr and � \Hr.

We claim that as � varies over all elements of Pr, �\Hr takes on only �nitely many
values. If � has a splitting then at least one of the resulting pieces is r-legal and inter-
sects Hr non-trivially. This contradicts Lemma 2.5.1 and condition(iii). Lemma 4.2.2
therefore implies that the number of Hr edges in � is bounded independently of �.
Let �0 and ��0 be the initial (possibly partial) edges of �\Hr and ��\Hr respectively.
The only possible di�culty is that there might exist � = �� and �0 = �0� 0 where the
only di�erence between � \ Hr and �

0 \ Hr is that the length of �0 and �
0
0 and the

length of �0 and �
0
0 may di�er. Suppose for concreteness that �00 is a proper subset

of �0 and that A is their di�erence. Property (ii) implies that the number of edges in
fk#(A)\Hr grows without bound. Property (iii) therefore implies that for su�ciently

large k, edges in fk#(A)\Hr must be canceled with edges of fk#(�)\Hr. This implies

that all of fk#(��
0) \ Hr is canceled with a proper initial segment X of fk#(�) \ Hr.

But X, like every initial segment of fk#(�) \ Hr, either contains or is contained in

fk#(�
0) \Hr. In the former case, all of fk#(�

0) is canceled with part of fk#(��
0); in the

latter case all of fk#(�
0) is canceled with part of fk#(

�� 0). In either case, fk#(�
0) is r-legal

in contradiction to condition (i). We have now veri�ed the claim.
Property(ii), the fact that �0 and �0 take on only �nitely many values and the

fact that the number of Hr-edges in � and in � are bounded independently of � imply
that there exists k > 0, independent of �, such that fk#(�) is obtained from fk#(�0)

and fk#(�0) by concatenating and by cancelling at the juncture. This implies that

fk#(�), and hence �, takes on only �nitely many values.

Lemma 4.2.6. Suppose that f : G! G is a relative train track map, that Hr is an
exponentially growing stratum, that � � Gr is a path or circuit and that each fk#(�)
has the same �nite number of illegal turns in Hr. Then � can be split into subpaths
that are either r-legal or elements of Pr.
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Proof of Lemma 4.2.6 We may assume by Lemma 4.1.2 and Lemma 4.1.1(1) that
� is a path. We induct on the number m of illegal turns that � has in Hr. If m = 0
then � is r-legal and there is nothing to prove. Suppose that m = 1. Write � = ��
where � and � are r-legal subpaths. After possibly splitting o� an initial segment of
� and a terminal segment of � according to Lemma 4.2.2, we may assume that � and
� contain only �nitely many Hr-edges.

It is convenient to work with lifts ~f : �! �, ~Hr and ~� = ~�~� to the universal cover.
We �rst check that if ~� is in�nite then there is at least one point in ~� at which ~� can
be split. For each k > 0, ~fk#(~�) is obtained from ~fk#(~�) and

~fk#(
~�) by concatenating

and by cancelling terminal edges of ~fk#(~�) with initial edges of ~fk#(
~�). Since each

~fk#(~�) has an illegal turn in ~Hr, not all of the ~Hr-edges of ~fk#(~�) are canceled during

this process. Let ~x be the initial vertex of the �rst ~Hr-edge in ~�. Lemma 4.2.1 and
Lemma 4.1.1(6) imply that ~� can be k-split at ~x. Since k is arbitrary ~� can be split
at ~x.

The set of points at which ~� can be split is closed. If ~� can be split at a point in
~�, choose the splitting point that is closest to the terminal end of ~�. After splitting
~� at this point we may assume that there are no splitting points for ~� in ~�. By a
completely similar argument we may also assume that there are no splitting points
for ~� in ~�. It remains to show that if � has no splittings, then � is an element of Pr.

Condition (i) of Pr follows from the hypothesis of the lemma. If condition (iii) is
violated, then Lemma 4.2.2 implies that some fk#(�) has a splitting. Lemma 4.1.1(5)
then implies that � has a splitting which is a contradiction. The �rst (possibly partial)
edge of � must be contained in Hr; otherwise, arguing as above, � can be split at the
initial vertex of the �rst edge of � in Hr. The same argument shows that the terminal
(possibly partial) edge of � is contained in Hr. This implies (ii) and completes the
proof in the m = 1 case.

Suppose now that m > 1. Decompose ~� = ~�1 : : : ~�m+1 so that each juncture is an
illegal turn in ~Hr and each ~�i is r-legal. Each ~fk#(~�) has a decomposition ~fk#(~�) =

~�k1 : : : ~�
k
m+1 into maximal r-legal subpaths. The set ~S2k = f~x 2 ~�2 : ~f

k(~x) 2 ~fk#(~�)g is

closed by Lemma 4.1.1(4). An easy induction argument shows that fN maps \Nk=1 ~S
2
N

onto ~�N2 for all N � 1. It follows that \1k=1 ~S
2
k is non-empty and that it is therefore

possible to split ~� at a point in ~�2. This splits � into subpaths that have fewer than
m illegal turns in Hr and induction on m completes the proof.

5 Improved Relative Train Track Maps

Lemma 3.4.3 connects the Tits Alternative to the action of O on bi-in�nite paths
and in particular to the basins of attraction for an expanding lamination pair ��. In
the next section we state and prove our Weak Attraction Theorem which character-
izes these basins of attraction for `topmost' laminations. In this section, we lay the
groundwork for that analysis.
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This is the most technical section in the paper. All future references to results in
this section will be made to subsection 5.1. It is therefore possible to skim the proof
of Theorem 5.1.5 and follow the proof of Theorem 7.0.1.

5.1 Statements

De�nition 5.1.1. A path � � G is a periodic Nielsen path for f : G! G if fk#(�) = �
for some k � 1; if k = 1, then we sometimes simply say that � is a Nielsen path.
We say that the periodic Nielsen path � is indivisible if it can not be written as a
concatenation of non-trivial periodic Nielsen paths.

Remark 5.1.2. Lemma 4.2.6 implies that if f : G! G is a relative train track map
and Hr is an exponentially growing stratum, then the indivisible periodic Nielsen
paths in Gr that intersect Hr non-trivially are precisely the elements of Pr that have
periodic orbit under the action of f#.

De�nition 5.1.3. Suppose that Hi is a single edge Ei and that f(Ei) = Ei�
l for

some closed indivisible Nielsen path � � Gi�1 and some l > 0. The exceptional
paths of height i are those paths of the form Ei�

k �Ej or Ei��
k �Ej where k � 0, j � i,

Hj is a single edge Ej and f(Ej) = Ej�
m for some m > 0. The set of exceptional

paths of height i is f#-invariant. It is an easy consequence of Lemma 4.1.1(3) that
an exceptional path of height i has no splittings. If � is an exceptional path of some
unspeci�ed height, then we sometimes simply say that � is an exceptional path.

De�nition 5.1.4. Suppose that :

� g : Q ! Q is a homotopy equivalence of a graph Q, all of whose components
are non-contractible.

� �1; : : : ; �m are circuits in Q that are permuted by g#

� S is a compact surface with m + 1 boundary components, ��1; : : : ; �
�
m and ��

� � : S ! S is a pseudo-Anosov homeomorphism that permutes the ��i 's in the
same way that g# permutes the �i's.

Let A be the union of m annuli A1; : : : ; Am. De�ne Y to be the space obtained
from Q [ A [ S by attaching one end of Ai to �i and the other end to ��i . Extend
g[� to a homotopy equivalence h : Y ! Y by interpolating between g(�i) and �(�

�
i )

on A. We say that h : Y ! Y is a geometric extension of g : Q! Q.
Suppose that f : G ! G is a topological representative and that Hi is an ex-

ponentially growing stratum. We say that Hi is a geometric stratum if there exists
h : Y ! Y as above and a homotopy equivalence � : (Y;Q) !(non-contractible
components of Gi, non-contractible components of Gi�1) such that f� ' �h. In
particular, �# identi�es the outer automorphism induced by h with the outer auto-
morphism induced by restricting f to the non-contractible components of Gi.
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The relative train track maps of [BH92] must be modi�ed to suit our present
needs. In [BH92] it was su�cient to control the Nielsen paths; in this paper, we must
also control the periodic Nielsen paths. We do this by replacing O by an iterate in
which every periodic Nielsen path is a Nielsen path and then applying the techniques
of [BH92]. This is carried out in subsection 5.2. [BH92] contains a characterization
of the irreducible outer automorphisms that arise as pseudo-Anosov mapping classes.
In subsection 5.3, we generalize this by characterizing geometric strata.

Relative train track maps are topological representatives whose exponentially
growing strata satisfy certain extra conditions. We will also add conditions on the
zero strata and on the non-exponentially-growing strata. By passing to an iterate and
subdividing if necessary (or by adding homological restrictions as in [BFH]), we may
assume that such non-exponentially-growing stratum Hi stratum is a single edge Ei

and that f(Ei) = Eiui for some path ui � Gi�1. We introduce a move, called sliding,
to arrange that ui is a closed path and that f(Ei) = Ei � ui. This is carried out in
subsection 5.4 and analyzed further in subsection 5.5.

A relative train track map that satis�es the conclusions of the following theorem
is said to be an improved relative train track map.

Theorem 5.1.5. For every outer automorphism O and O-invariant free factor sys-
tem F there is an eg-aperiodic relative train track map f : G ! G and �ltration
; = G0 � G1 � � � � � GK = G representing an iterate of O with the following
properties.

� F = F(Gr) for some �ltration element Gr.

� f is reduced. (De�nition 2.6.6)

� Every periodic Nielsen path has period one.

� For every vertex v 2 G, f(v) is a �xed point. If v is an endpoint of an edge in
a non-exponentially-growing stratum then v is a �xed point. If v is the endpoint
of an edge in an exponentially growing stratum Hi and if v is also contained in
a non-contractible component of Gi�1, then v is a �xed point.

� Hi is a zero stratum if and only if it is the union of the contractible components
of Gi.

� If Hi is a zero stratum, then

z-(i) Hi+1 is an exponentially growing stratum.

z-(ii) f jHi is an immersion.

z-(iii) Each vertex in Hi that has valence less than three in Gi+1 is the endpoint
of an edge of Hi+1.
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� If Hi is a non-exponentially-growing stratum, then

ne-(i) Hi is a single edge Ei.

ne-(ii) f(Ei) = Ei � ui for some closed path ui � Gi�1 whose basepoint is �xed
by f .

ne-(iii) If � � Gi is a basic path of height i (De�nition 4.1.3) that does not
split as a concatenation of two basic paths of height i or as a concatenation
of a basic path of height i with a path contained in Gi�1, then either : (i)
some fk#(�) splits into pieces, one of which equals Ei or �Ei; or (ii) ui is a

Nielsen path and some fk#(�) is is an exceptional path of height i.

� If Hi is an exponentially growing stratum then

eg-(i) There is at most one indivisible Nielsen path �i � Gi that intersects Hi

non-trivially. The initial edges of �i and ��i are distinct (possibly partial)
edges in Hi.

eg-(ii) If �i � Gi is an indivisible Nielsen path that intersects Hi non-trivially
and if Hi is not geometric, then there is an edge E of Hi that �i crosses
exactly once. (See also Lemma 5.1.7 below.)

eg-(iii) If Hi is geometric then there is an indivisible Nielsen path �i � Gi that
intersects Hi non-trivially and satis�es the following properties : (i) �i is a
closed path with basepoint in the interior of Hi; (ii) the circuit determined
by �i corresponds to the unattached peripheral curve �� of S; and (iii) the
surface S is connected.

Lemma 5.1.7 below is used to analyze non-geometric exponentially growing strata.

De�nition 5.1.6. For any subgraph X of G and �nite path � � G, de�ne < X; � >
to be the groupoid of paths that can be decomposed into a concatenation of subpaths
that are either entirely contained in X or are equal to � or ��.

Lemma 5.1.7. Suppose that f : G! G is reduced, that Hr is an aperiodic exponen-
tially growing stratum, that �r � Gr is a Nielsen path that crosses some edge E of
Hr exactly once and that the �rst and last (possibly partial) edges of �r are contained
in Hr. Then the endpoints of �r are distinct and if both endpoints are contained in
Gr�1, then at least one of them is contained in a contractible component of Gr�1. If
X is a subgraph of G that does not contain any edges of Hr, then there is a free factor
system that carries the same bi-in�nite paths as < X; �r >.

Proof of Lemma 5.1.7 We may assume, after subdividing if necessary, that the
endpoints of �r are vertices. Let Ĝ be the graph obtained from G by removing the
edge E and adding a new edge Ê with endpoints equal to the initial and terminal
endpoints of �. Decompose � into the concatenation of subpaths � = �E� where
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� and � are disjoint from E. There is a homotopy equivalence h : G ! Ĝ that
is the `identity' on all edges other than E and that satis�es h(E) = ��Ê ��. (The
homotopy inverse sends Ê to �r.) The map h# induces a bijection between the bi-

in�nite paths in < X; �r > and the bi-in�nite paths in the subgraph X [ Ê of Ĝ.
In particular, < X; �r > carries exactly the same bi-in�nite paths as the free factor
system F(X [ Ê).

Suppose now thatX = Gr�1. If the endpoints of �r are equal or are both contained
in non-contractible components of Gr�1, then F(X[Ê) is strictly larger than F(X) =
F(Gr�1). An r-legal bi-in�nite path in < X; �r > must lie entirely in X. Thus
F(X [ Ê) does not carry any line that is generic for the element of L(O) associated
to Hr and so is strictly smaller than F(Gr). Since < X; �r > is f#-invariant, this
contradicts the assumption that f : G! G is reduced and completes the proof.

An outer automorphism O is said to have polynomial growth if some (and hence
every) relative train track map representing O has no exponentially growing strata.
The set of all polynomial growth outer automorphisms is denoted PG(Fn). An ele-
ment of GL(n;Z) is unipotent if it is conjugate to an upper triangular matrix with
ones on the diagonal. We say that an element of PG(Fn) is unipotent if its image in
GL(n;Z) is unipotent. The set of unipotent elements of PG(Fn) is denoted UPG(Fn)
and plays a central role in [BFH] and [BFH96]. We conclude this subsection with a
strengthening of Theorem 5.1.5 for elements of UPG(Fn).

Theorem 5.1.8. Suppose that O 2 UPG(Fn) and that F is an O-invariant free
factor system. Then there is a relative train track map f : G ! G and �ltration
; = G0 � G1 � � � � � GK = G representing O with the following properties.

1. F = F(Gr) for some �ltration element Gr.

2. Each Hi is a single edge Ei satisfying f(Ei) = Ei � ui for some closed path
ui � Gi�1.

3. Every vertex of G is �xed by f .

4. Every periodic Nielsen path has period one.

5. If � is any path with endpoints at vertices, then there exists M =M(�) so that
for each m � M , fm# (�) splits into subpaths that are either single edges or are
exceptional.

6. M(�) is a bounded multiple of the edge length of �.

The proof of Theorem 5.1.8 is given in subsection 5.6.
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5.2 Nielsen Paths in Exponentially Growing Strata

This subsection and the one to follow focus on exponentially growing strata.

De�nition 5.2.1. Suppose that O �xes each element of L(O) = f�+
1 ; : : : ;�

+
l g, that

�i is the expansion factor for the action of O on �+
i and that F is an O-invariant

free factor system. We say that a topological representative f : G ! G of O and
�ltration ; = G0 � G1 � � � � � GK = G are F-Nielsen minimized if :

(1) f : G! G is reduced.

(2) F = F(Gs) for some �ltration element Gs.

(3) There are exactly l exponentially growing strata and the Perron-Frobenius eigen-
values of their transition submatrices equal �1; : : : ; �l.

(4) If Hr is an exponentially growing stratum, then every indivisible periodic Nielsen
path � � Gr that intersects Hr non-trivially has period one.

(5) If C is a contractible component of some Gi, then f
j(C) � Gi�1 for some j > 0.

(6) For each exponentially growing stratumHr, letNr(f) be the number of indivisible
Nielsen paths � � Gr that intersect Hr non-trivially. Then N(f) =

P
rNr(f)

is as small as possible subject to conditions (1) - (5).

Remark 5.2.2. Proposition 3.3.3(4) implies that condition (3) is satis�ed by every
relative train track map. In the course of proving Lemma 5.2.5 below, we must
consider topological representatives that are not relative train track maps. That is
why the de�nition does not include the hypothesis that f : G! G is a relative train
track map and why (4) and (6) do not refer to Pr.

One might expect to leave (1), (2) and (5) out of the de�nition and add them later
as separate conditions. In that case the minimization of N(f) in (6) would take place
over a larger collection of topological representatives and it is an priori possibility that
the absolute minimum N(f) would not occur for a relative train track map satisfying
(1), (2) and (5).

If we eliminate conditions (1), (2), (4) and (5) from the de�nition then we recover
the de�nition of stable topological representative from page 42 of [BH92].

Lemma 5.2.3. For any O and F , there exists an F-Nielsen minimized relative train
track map f : G! G and �ltration representing Ok for some k > 0.

Proof of Lemma 5.2.3 After replacing O by an iterate if necessary, O �xes each
element of L(O). Lemma 2.6.7 produces a relative train track map and �ltration
that represents some Ok and that satis�es (1), (2) and (5) in the de�nition of F -
Nielsen minimized. Lemma 3.1.14 implies that f : G ! G is eg-aperiodic. Propo-
sition 3.3.3(4) implies that f : G ! G satis�es (3). Since (Remark 5.1.2) every
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indivisible periodic Nielsen path is an element of the �nite set Pr, we may assume, by
increasing k, that (4) is satis�ed. Fix k, and choose, among all topological represen-
tatives for Ok that satisfy (1) - (5), one, say f 0 : G0 ! G0, that minimizes N(f) and
is hence F -Nielsen minimizing. If f 0 : G0 ! G0 is a relative train track map, we are
done. If not, modify f 0 : G0 ! G0 by performing `core subdivisions' and `collapsing
of inessential paths' to construct a relative train track map f : G! G. This is fully
described in the proof of Lemma 5.13, Lemma 5.14 and Theorem 5.12 of [BH92].
Since f : G ! G is a relative train track map, (3) is satis�ed. The construction
involves only subdivision, folding and the collapse of pre-trivial forests. As discussed
in the proof of Lemma 2.6.7, (1) and (2) are satis�ed. These operations preserve (5)
and do not change the period of any indivisible periodic Nielsen path nor any Nr(f).
Thus f : G! G is still F -Nielsen minimized.

Suppose that f : G! G is a relative train track map and that Hr is an exponen-
tially growing stratum. If �r � Gr is an indivisible Nielsen path that intersects the
Hr non-trivially, then �r = �� where � and � are r-legal and the turn at the juncture
of �� and � is an illegal turn in Hr. We say that the fold at the illegal turn of �r in
Hr is a full fold if either all of the initial (possibly partial) edge E1 of �� can be folded
with all or part of the initial (possibly partial) edge E2 of � or all of E2 can be folded
with all or part of E1.

Lemma 5.2.4. Suppose that f : G ! G is an F-Nielsen minimized relative train
track map, that Hr is an exponentially growing stratum and that �r � Gr is an
indivisible Nielsen path that intersects Hr non-trivially. Then the fold at the illegal
turn of �r in Hr is a full fold.

Proof of Lemma 5.2.4 This is a slight modi�cation of Lemma 5.17 of [BH92]. There
is a decomposition �r = �� into r-legal paths in Gr and there is a path � � Gr such
that f#(�) = �� and f#( ��) = ��� . We may assume, after subdividing if necessary,
that the endpoints of �r are vertices. It su�ces (page 25 of [BH92]) to show that �
and � can not both be single edges.

Suppose to the contrary that both � and � are single edges. Let G0 be the graph
obtained from G by identifying � and �� and let q : G ! G0 be the quotient map.
Since f(�) = �� and f( ��) = ��� , there is an induced map f 0 : G0 ! G0 de�ned by
f 0(q(E)) = q#f(E) for each edge E of G. If there are edges with trivial f 0-image,
then they form a tree and we collapse each component of the tree. After repeating
this tighten and collapse procedure �nitely many times (cf. subsection 2.4) we arrive
at a topological representative that we continue to call f 0 : G0 ! G0 and a quotient
map that we continue to call q : G ! G0. An edge in G is collapsed if and only
if some iterate of f# maps it to �r or ��r. In particular, only edges in zero strata
can be collapsed. We claim that conditions (1) - (5) in the de�nition of F -Nielsen
minimized are satis�ed by f 0 : G0 ! G0 and the �ltration with elements of the form
G0
i = q(Gi). (If each component of Hj is collapsed to a point then q(Gj) is not added

to the �ltration.)
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Lemma 5.1.7 implies that the endpoints of �r are distinct and that at least one of
them is not contained in a non-contractible component of Gr�1. Thus q is a homotopy
equivalence (cf. subsection 2.4) and F(Gi) = F(G0

i) for all i. This implies conditions
(1) and (2).

It is easy to check that condition (5) is stable under these collapse and tighten
operations and we leave this to the reader.

If E is an edge of Gr, then q(E) is an edge of G0 and f 0(q(E)) = qf(E). (If E
belongs toHr, then this uses the fact that an r-legal path inGr does not cross the turn
(��; �).) If E is an edge of G nGr that is not collapsed by q, then f 0q(E) is obtained
from qf(E) by cancelling edges in Hr. Thus H

0
i = q(Hi) is exponentially growing if

and only if Hi is exponentially growing and the Perron-Frobenius eigenvalues for Mi

and M 0
i are equal. This implies that condition (3) holds.

For every path � � G and k > 0, (f 0)k#(q#(�)) = q#f
k
#(�). In particular, if � is a

periodic Nielsen path for f , then �0 = q#(�) is a periodic Nielsen path for f 0 and the
period of �0 is at most the period of �. If � 6= �r, then �

0 is not trivial.
Conversely, suppose that �0 � G0

i is a periodic Nielsen path for f 0 : G0 ! G0. We
choose a path � � Gi satisfying q#(�) = �0 as follows. If the endpoints of �0 do not
lie in the edge q(�) = q( ��), then there is a unique path � � G satisfying q#(�) = �0.
If an endpoint of �0 lies in q(�) = q( ��) but is distinct from the initial endpoint of
q(�) = q( ��), then there is a unique path � � G that has periodic endpoints and that
satis�es q#(�) = �0. Finally, if �0 begins or ends at the initial endpoint of q(�) = q( ��),
then there is a unique path � � G that does not begin or end with �r or ��r and that
satis�es q#(�) = �0. In all cases, � is a periodic Nielsen path and the period of �0

equals the period of �; moreover, if �0 is indivisible, then � is indivisible. Condition
(4) for f 0 now follows from condition (4) for f .

Since q#(�r) is trivial, we have decreased N(f). This contradiction completes the
proof.

The following lemma is the main result of this subsection.

Lemma 5.2.5. If f : G ! G is an F-Nielsen minimized relative train track map
and Hr is an exponentially growing stratum, then there exists at most one indivisible
Nielsen path �r � Gr that intersects Hr non-trivially. Moreover, if there is such
an indivisible Nielsen path �r, then : its �rst and last (possibly partial) edges are
contained in Hr; the illegal turn of �r in Hr is the only illegal turn in Hr; �r crosses
every edge in Hr at least once; and either �r crosses every edge of Hr exactly twice
or �r crosses some edge of Hr exactly once.

Proof of Lemma 5.2.5 This is Theorem 5.15 of [BH92] with the word stable replaced
by F -Nielsen minimized. Having proved Lemma 5.2.4, the proof given in [BH92]
carries over to this context without change.
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5.3 Geometric Strata

The following proposition generalizes Theorem 4.1 of [BH92]. The entire subsection
is devoted to its proof.

Proposition 5.3.1. Suppose that f : G ! G is an F-Nielsen minimized relative
train track map with �ltration ; = G0 � G1 � � � � � GK = G, that Hr is an
exponentially growing stratum and that �r � Gr is an indivisible Nielsen path that
crosses every edge of Hr exactly twice. Then :

� the endpoints of �r are equal and are not contained in Gr�1.

� The initial (possibly partial) edges of �r and ��r are distinct.

� Hr is a geometric stratum. Moreover, the associated surface S is connected and
its unattached peripheral curve �� corresponds to the circuit determined by �r.

We assume throughout this section that K = r and that the endpoints
of �r are vertices. This causes no loss of generality in our proof of Proposition 5.3.1.

We begin by recalling a pair of de�nitions from page 46 of [BH92].

De�nition 5.3.2. (Folding �r: the proper case) Suppose that f : G ! G, Hr

and �r are as in the hypothesis of Proposition 5.3.1. Decompose �r = �� into a
concatenation of maximal r-legal subpaths and let E1 � Hr and E2 � Hr be the
initial edges of �� and � respectively. Lemma 5.2.4 implies that one of the edge paths
f(Ei), i=1 or 2, is an initial subpath of the other. For concreteness, suppose that
f(E1) is an initial subpath of f(E2). Assume that f(E1) is a proper subpath of f(E2).
(The case that f(E1) = f(E2) is handled in De�nition 5.3.5.)

Let b be the (possibly trivial) maximal subpath of Gr�1 that follows E1 in ��.
Lemma 2.5.1 implies that f(E1)f#(b) is an initial segment of f#(��) that is followed
in f#(��) by an edge in Hr. Since f : G ! G is a relative train track map , f#(b)
is non-trivial whenever b is non-trivial. The last edge of f(E2) and the �rst edge of
f#(��) that does not cancel with an edge of f#(�) are contained in Hr. Thus f#(E1b)
is a proper initial segment of f(E2). De�ne F : G! G0 to be the generalized fold (see
subsection 2.4) of E1b with the corresponding proper initial subpath of E2. There is
a map g : G0 toG such that gF ' f rel V. We refer to F : G ! G0 as the extended
fold (determined by �r) and to g : G0 ! G as map induced by the extended fold.

Since f is a relative train track map and Hr is the highest stratum, g(E 0) does not
cross the turn ( �E1; E2) for any edge E

0 of G0. Thus f 0 = Fg : G0 ! G0 is a topological
representative. The �ltration for f 0 : G0 ! G0 is de�ned by H 0

i = Hi for i < r and
H 0
r = (Hr nE2)[E 0

2. We say that f 0 : G0 ! G0 is obtained from f : G! G by folding
�r and that �0r = F#(�r) is the indivisible Nielsen path determined by �r.

The following lemma states, among other things, that f 0 : G0 ! G0 is a relative
train track map. This would fail if we simply folded E1 with an initial segment of E2.

Lemma 5.3.3. With notation as in De�nition 5.3.2
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� f 0 : G0 ! G0, H 0
r, �

0
r and G

0
r�1 satisfy the hypothesis of Proposition 5.3.1.

� If f 0 : G0 ! G0, H 0
r, �

0
r and G0

r�1 satisfy the conclusions of Proposition 5.3.1
then f : G! G, Hr, �r and Gr�1 satisfy the conclusions of Proposition 5.3.1.

� Hr and H
0
r have the same number of edges.

Proof of Lemma 5.3.3 A proof that f 0 : G0 ! G0 is a relative train track map and
that H 0

r is an exponentially growing stratum is contained in the proof of Theorem
5.15 of [BH92]. As in the proof of Lemma 5.2.4, f 0 : G0 ! G0 is F -Nielsen minimizing.

Eb 2

1

2

E

E
b
E

2

2

1

X

E3

E

X

E

3E

The extended fold F : G! G0 can be described as follows. E2 is subdivided into
two pieces if b is trivial and three pieces if b is non-trivial. The �rst piece is labeled
E1 and then identi�ed with E1 � Hr; the middle piece, if it exists, is labeled b and
then identi�ed with b � Gr�1; and the last piece is labeled E 0

2 and is the new edge of
H 0
r. To construct �0r, subdivide and relabel both copies of E2 in �r. Remove E1 and

b (if it is non-trivial) from � to form �0 and remove the �rst and middle segment (if
it exists) of the subdivided E2 that is the �rst edge of � to form � 0; �0r = �0� 0. The
key point is that the second copy of E2 in �r contributes to �

0
r a copy of the edges

that are removed from � to form �0. The losses and gains exactly balance so that �0r
crosses every H 0

r edge exactly twice. The completes the proof of the �rst part of the
lemma.

Since F : (non-contractible components of Gr, non-contractible components of
Gr�1) ! (non-contractible components of G0

r;non-contractible components of G0
r�1)

is a homotopy equivalence, Hr is a geometric stratum if and only if H 0
r is a geomet-

ric stratum. By construction, F# maps the circuit determined by �r to the circuit
determined by �0. If the initial endpoint v1 of �r is not contained in Gr�1, then each
edge in the link of vi is in Hr. Each time that the interior of �r passes through v1, it
crosses two edges of Hr. The total number of times that �r crosses the Hr-edges in
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the link of v1 is even. Since �r starts at v1, it must also end at v1. Thus the conclu-
sion that the endpoints of �r are equal is a consequence of the other conclusions of
Proposition 5.3.1. If an endpoint of �r is in Gr�1 or if the initial edges of �r and ��r
are equal then the same is true for F#(�r) = �0r. This completes the second part of
the lemma.

It is clear from the de�nitions that Hr and H
0
r have the same number of edges.

De�nition 5.3.4. (Folding �r: the improper case) Suppose that f : G ! G,
Hr and �r are as in Proposition 5.3.1. Decompose �r = �� into a concatenation of
maximal r-legal subpaths and let E1 � Hr and E2 � Hr be the initial edges of �� and
� respectively. Assume that f(E1) = f(E2).

De�ne F : G ! G0 to be the fold of E1 with E2. There is an induced map
g : G0 ! G satisfying gF = f . As in the previous case, f 0 = Fg : G0 ! G0 is a
topological representative. We may think of Gr�1 as a subgraph of G0. The �ltration
for f 0 : G0 ! G0 is de�ned by G0

i = Gi for i < r and G0
r = G0. If f 0 : G0 ! G0 is a

relative train track map then let �0r = F#(�r). If f
0 : G0 ! G0 is not a relative train

track map, then restore the relative train track property by collapsing inessential
connecting paths and by performing core subdivisions in Gr�1 as in the proof of
Lemma 5.2.3. This process may change the combinatorial type of G0

r�1 but an edge
of H 0

r = F (Hr) is only e�ected by being shortened according to a core subdivision.
We abuse notation by denoting the resulting relative train track map by f 0 : G0 ! G0

and the top stratum by H 0
r even though G0 may have changed. F#(�r) determines an

indivisible Nielsen path �0r that intersects H
0
r non-trivially.

Lemma 5.3.5. With notation as in De�nition 5.3.4

� f 0 : G0 ! G0, H 0
r, �

0
r and G

0
r�1 satisfy the hypothesis of Proposition 5.3.1.

� If f 0 : G0 ! G0, H 0
r, �

0
r and G0

r�1 satisfy the conclusions of Proposition 5.3.1
then f : G! G, Hr, �r and Gr�1 satisfy the conclusions of Proposition 5.3.1.

� H 0
r has one less edge than Hr does.

Proof of Lemma 5.3.5 By construction f 0 : G0 ! G0 is a relative train track map.
As in the proof of Lemma 5.2.3, f 0 : G0 ! G0 is F -Nielsen minimizing. Collapsing
inessential connecting paths and performing core subdivisions in Gr�1 has no e�ect
on the way that �0r crosses edges in H

0
r. Thus the argument used in Lemma 5.3.3 to

prove that �0r crosses each edge of H 0
r exactly twice applies in this context as well.

This completes the proof of the �rst part of the lemma.
The second part is proved exactly as it was in Lemma 5.3.3. The third part is

immediate from the construction.

While proving Proposition 5.3.1, there is no loss in replacing f : G ! G by
f 0 : G0 ! G0 produced by either a proper fold of �r (De�nition 5.3.2) or by an improper
fold of �r (De�nition 5.3.4). Moreover, this process can be repeated by folding �0r and
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so on. We refer to this as repeatedly folding the indivisible Nielsen path . If at some
point the fold is improper, then the number of edges in the r-stratum is reduced
by the folding process. Since the number of edges in the r-stratum never increases,
improper folds occur only �nitely many times. We may therefore assume that
as we repeatedly fold the indivisible Nielsen path, each fold is proper.

Every topological representative of G factors (Subsection 2.4) as a sequence of
folds followed by a homeomorphism. In general, there is no preferred way to choose
the folds but in our context it is natural to begin at the illegal turn of �r in Hr. This
is the key to Lemma 5.3.6 below. To make its statement precise, note that for any
extended fold F : G ! G0, we may think of Gr�1 as a subgraph of both G and G0

and with respect to this notation, F jGr�1 = identity.

Lemma 5.3.6. If f : G! G and �r � Gr satisfy the hypothesis of Proposition 5.3.1,
then there exist :

� a composition of extended folds fr : G! G1

� a composition fr�1 : G
1 ! G2 of folds involving edges in Gr�1

� a homeomorphism fr�1 : G
1 ! G2

such that f ' �fr�1fr rel V.

Proof of Lemma 5.3.6 We use the notation of De�nition 5.3.2; we also let �0r =
�0� 0 � G0

r be the decomposition of �0r into maximal r-legal subpaths, let E 0
1 and E

0
2 be

the initial edges of ��0 and � 0 respectively and let F 0 : G0 ! G00 be the extended fold of
�0r with respect to f 0 : G0 ! G0. We claim that either g can not be folded at (E 0

1; E
0
2)

or F 0 : G0 ! G00 is a generalized fold for g : G0 ! G. (By construction, F 0 : G0 ! G00

is a generalized fold for f 0 : G0 ! G0.) More precisely, write E 0
2 as a concatenation

of subpaths E 0
2 = �01�

0
2�

0
3 satisfying f

0(�01) = f 0(E 0
1) and f

0(�02) = f 0#(b
0) where b0 is

the maximal subpath of G0
r�1 following E

0
1 in �

0
r. (It is possible that both �

0
2 and b

0

are trivial.) We will show that if g(E 0
1) and g(E

0
2) have a non-trivial common initial

segment, then g(�01) = g(E 0
1) and g

0(�02) = g0#(b
0).

As a �rst step toward verifying the claim, suppose that g(E 0
1) and g(E

0
2) have a

common initial segment but that the maximal g-fold of E 0
1 and E

0
2 does not use all

of �01. In other words, suppose that the g-fold is not full. Let F̂ : G0 ! Ĝ be the
maximal g-fold of E 0

1 and E
0
2, let ĝ : Ĝ ! G be the induced map satisfying ĝF̂ = g

and let Ĝi = F̂ (G0
i) for 1 � i � r. Since the fold is not full, Ĥr = F̂ (H 0

r) has one
more edge than do H 0

r and Hr.
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F

E1E 2

Since F̂ is maximal, ĝ can not be folded at the newly created vertex. By
Lemma 5.2.5, (E 0

1; E
0
2) is the only illegal turn for f 0 that involves an edge in H 0

r. Since
every fold for g is also a fold for f 0 = Fg, F 0 is the only fold for g that involves an
edge in H 0

r. It follows that all folds for ĝ have both edges in Ĝr�1. If ̂ � Ĝr�1 is
any non-trivial path with endpoints in Ĥr \ Ĝr�1 = H 0

r \ G
0
r�1 = Hr \ Gr�1, then

there exists a non-trivial path  � Gr with endpoints equal to those of ̂ such that
F̂#F#() = ̂; in particular, ĝ#(̂) = f#() is non-trivial. It follows that folding edges

in Ĝr�1 according to ĝjĜr�1 will not cause previously distinct vertices in Ĥr \ Ĝr�1

to become identi�ed. Thus no new illegal turns involving the edges of Ĥr are created
during such folds. Consecutively fold edges in Ĝr�1 according to ĝjĜr�1 until no more
folds are possible; call this composition of folds fr�1 : Ĝ! G�. There is an induced
immersion � : G� ! G satisfying f = �fr�1F̂F . Since G has no valence one vertices,
� is a homeomorphism. Now �(fr�1(Ĝr�1)) = f(Gr�1) = Gr�1 so �(fr�1(Ĥr)) = Hr.
But �fr�1jĤr induces a bijection on edges so this contradicts the fact that Ĥr and
Hr do not have the same number of edges. We conclude that if g can be folded at
(E 0

1; E
0
2), then all of E 0

1 can be folded with a proper initial segment of E 0
2.

Let E be the �rst edge of f#(�) that is not part of the maximum common initial
segment of f#(��) and f#(�). Then the initial edge E 0 in F (E) � G0 is the the �rst
edge of g#(�

0) that is not part of the maximum common initial segment of g#(��
0)

and g#(�
0). Since E is contained in Hr, E

0 is contained in H 0
r. In particular, E 0 is

not contained in b0 and we have veri�ed the claim.
If g can not be folded at ( �E 0

1; E
0
2), then de�ne fr = F and construct fr�1 and �

exactly as above. Otherwise, let F 0 : G0 ! G00 be the extended fold of �0r with respect
to f 0 : G0 ! G0 and let g0 : G00 ! G be the induced map satisfying g0F 0 ' g rel V 0. If
g0 can not be folded at the illegal turn of �00r , then de�ne fr = F 0F and construct fr�1
and � exactly as above. Otherwise repeat the argument of the claim to conclude that
the extended fold of �00r is a generalized fold for g0. Continue in this manner until we
arrive at the desired factorization.

We associate a surface S and a graph K to f : G ! G and �r as follows. We
think of �r as a map with domain I � f0g � I � [0; 1] and subdivide I � f0g into
subintervals that map either to individual edges of Hr or into maximal subpaths fblg
of Gr�1. The edges in the subdivision of I�f0g are labeled according to the oriented
images in G. For each edge Ei of Hr, identify the two edges of I�f0g that are labeled
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Ei. The quotient of I � f0g by this identi�cation rule is a graph K. The quotient of
all of I � [0; 1] by the identi�cation rule is a surface S that deformation retracts to
K. The edges of K inherit a labeling that de�nes a map h : K ! G. For each edge
Ei � Hr there is a unique edge in K labeled Ei; for notational simplicity, we refer to
this edge as Ei. The other edges of K form a subgraph K0 consisting of edges that
are mapped to Gr�1. Note that K0 � @S. Let VK be the vertex set of K.

γ α βE E E E EE2 2 1 3 3 1

α γ

β
E

E

E

3

1

2

K � S (K0 = Gr�1)

The next lemma states that an extended fold F : G ! G0 can be lifted to a
homotopy equivalence between the graphs K and K 0 associated to the indivisible
Nielsen paths �r and �

0
r respectively.

Lemma 5.3.7. Suppose that f : G ! G, f 0 : G0 ! G0, �r and �0r are as in De�-
nition 5.3.2. Suppose further that K and K 0 are the graphs associated to �r and �0r
respectively and that h : K ! G and h0 : K 0 ! G0 are the associated labeling maps.
Then there is a homotopy equivalence FK : K ! K 0 such that :

� h0FK = Fh.

� FK induces a bijection between the vertices of K and the vertices of K 0.

� FKjK0 : K0 ! K 0
0 is a homeomorphism.

Proof of Lemma 5.3.7 We use the notation of De�nition 5.3.2. As described in the
proof of Lemma 5.3.3, there is a one to one correspondence between the edges of K
and the edges of K 0; this correspondence preserves labels with the single exception
that E2 corresponds to E

0
2.

To study the link structures of K and K 0, we think of �r = e1 � � � � � em as a
concatenation of subpaths where each ej is labeled by either an edge Ei � Hr or a
maximal subpath bl � Hr. Thus each ej is identi�ed with an edge of K. The link of

54



a vertex in K is the equivalence class of oriented edges in K generated by �ej � ej+1
for 1 � j � m� 1. Let �0 be the analogous equivalence relation on oriented edges in
K 0.

If b is trivial, let A = E1 (thought of as an edge of K); if b is not trivial, let
A = bK , the edge of K that corresponds to b. Let E3 be the edge that follows b in
��. The generating relations for �0 are obtained from the generating relations for �
as follows. Erase E1 � E2 and add E3 �0 E 0

2. If A = bK or if the second occurrence
of E1 in �r is not followed by the second occurrence of E3 in �r, then erase �A � E3.
(This accounts for the changes caused by the shortening of � and � to �0 and � 0.)
If �r does not begin with E2 or end with �E2, then �r passes through a turn (X;E2)
with X 6= E1. Erase X � E2, add X �0 E1 and add �A �0 E 0

2. (This accounts for
the subdivision of E2 into the edge path AE 0

2 or E1AE
0
2.) Finally, change � to �0

in the remaining generating relations. The combinatorial types of K and K 0 di�er in
at most two links. The initial endpoint of E2 is moved from the vertex containing X
and E1 and is added to the vertex containing E3 and �A. (These vertices need not be
distinct.)

E

E

A

E

E A

EE

1

2

3

1

23
X

X

Links in K Links in K 0

We may think of K n E2 as a subgraph of both K and K 0; thus K is formed by
adding E2 and K 0 is formed by adding E 0

2. The maps h and h0 agree on K n E2;
h(E2) = E2 and h

0(E 0
2) = E 0

2. De�ne FK to be the identity on K nE2 and FK(E2) =
E1bKE

0
2 where we allow the possibility that bK is trivial. The desired properties of

FK follow immediately.

The next step in the proof of Proposition 5.3.1 is to show that f : G! G can be
lifted to K.

Corollary 5.3.8. There is a homotopy equivalence fK : K ! K such that:

(i) hfK ' fh rel VK.

(ii) fK permutes the elements of VK.

(iii) fK jK0 is a homeomorphism.
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Proof of Corollary 5.3.8 Let �; fr�1 and fr be as in Lemma 5.3.6. There is a relative
train track map f 1 : G1 ! G1 that is obtained by iteratively folding indivisible Nielsen
paths, starting with �r and continuing through the extended folds that make up fr.
Let h1 : K1 ! G1 be the associated labeling map. Lemma 5.3.7 implies that there
exists F1 : K ! K1 such that h1F1 = frh.

Let �1r = (fr)#(�r) � G1 be the corresponding indivisible Nielsen path and let
fb1l g be the maximal subpaths of �1r in G

1
r�1. Since f 1 is a relative train track map

and f 1jGr�1 = f jGr�1 = �fr�1jGr�1, each �#(fr�1)#(b
1
l ) is a non-trivial path in Gr�1.

By construction �fr�1jH1
r : H1

r ! H1
r is injective and �#(fr�1)#(�

1
r) = f#(�r) = �r.

It follows that �r is obtained from �1r by replacing each b1l with �#(fr�1)#(b
1
l ) and

relabeling an edge E1 ofH1
r by the edge �#(fr�1)#(E

1); thusK is obtained fromK1 by
changing the edge labels b1l to �#(fr�1)#(b

1
l ) and the edge labels E

1 to �#(fr�1)#(E
1).

This induces a homeomorphism F2 : K
1 ! K such that hF2 ' �fr�1h

1 rel vertices.
De�ne fK = F2F1. Then hfK = hF2F1 ' �fr�1h

1F1 = �fr�1frh = fh rel VK .
Since F1 induces a bijection of vertices and F2 is a homeomorphism, fK permutes
the vertices of K. Finally, since F1jK0 and F2 are homeomorphisms, fK jK0 is a
homeomorphism.

The next lemma exploits the fact that f : G! G is reduced. If v̂ is vertex of K,
we denote its link, thought of as the oriented edges with initial vertex v̂, by Lk(K; v̂).
The link of v in G is denoted Lk(G; v).

Lemma 5.3.9. 1. If h(Lk(K; v̂)) � Hr, then h(Lk(K; v̂)) = Lk(G; h(v̂)).

2. The endpoints of �r are equal and are not contained in Gr�1; the initial edge of
�r is distinct from the initial edge of ��r.

3. For each component C of K0, h#(C) is a non-trivial circuit in Gr�1.

Proof of Lemma 5.3.9 Since fKjK0 is a homeomorphism and fK permutes the
vertices of K, we may assume, after replacing f by an iterate if necessary, that fK
�xes every vertex of K and restricts to the identity on K0.
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D
0

D

v0

w0

X p

Suppose that D = h(Lk(K; v̂)) � Hr is not all of Lk(G; h(v̂)). De�ne a new graph
G0 from G as follows. Replace v = h(v̂) by a pair of vertices v0 and w0; reattach the
edges of D to v0 ( where they are labeled D0) and the remaining edges in Lk(G; v)
to w0; add an edge X connecting v0 and w0. De�ne p : G0 ! Gr to be the homotopy
equivalence that collapses X to v. Let G0

r = G0 n X and G0
r�1 = p�1(Gr�1) n X.

Note that pjG0
r�1 : G

0
r�1 ! Gr�1 is a homeomorphism so we may think of Gr�1 as a

subgraph of both G and G0. With this notation pjGr�1 = identity. By construction,
there is a map h� : K ! G0

r satisfying ph
� = h. If E is an edge of Hr, and so also an

edge of K, then for all k > 0, h�#f
k
K(E) � G0

r is a lift of fk#(E). Thus G
0
r carries the

lamination �+ 2 L(O) associated to Hr and F(G
0
r) 6= F(Gr�1).

We next show that F(G0
r) is O-invariant by de�ning a topological representative

f 0 : G0 ! G0 such that pf 0 ' fp rel vertices and such that f 0 restricts to a self map
of G0

r. On the edges of G0
r�1 = Gr�1, f

0 = f . If E 0 is an edge of H 0
r = G0

r nG
0
r�1, then

p(E 0) is an edge of Hr and so h�1p(E 0) is a well-de�ned edge of K; de�ne f 0(E 0) =
h�fKh

�1p(E 0). Finally de�ne f 0(X) = X. Lemma 5.3.8 implies that pf 0 ' fp rel
vertices on the edges of H 0

r and hence that pf 0 ' fp rel vertices on all edges. Since
fK �xes all vertices, so does f 0. It follows that f 0 is continuous. By de�nition, f 0

restricts to a self map of G0
r.

To complete the proof of (1) we will show that F(G0
r) 6= F(G0) = F(G) in con-

tradiction to the assumption that f : G! G is reduced and our previous observation
that F(G0

r) 6= F(Gr�1). If F(G0
r) = F(G0), then G0

r must have two components,
one of which, Y 0, is contractible. Since G0

r carries �
+, Y 0 � G0

r�1. But then Y 0 is
a contractible component of Gr�1 that contains the vertex v = h(v̂) and is hence
mapped to itself by f . This contradicts condition (5) in the de�nition of F -Nielsen
minimizing.
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We now turn to the proof of (2). Let v1 be the initial vertex of �r = ��. If
v1 62 Gr�1, then each time the interior of �r passes through v1 it crosses two edges
of Hr. The total number of times that �r crosses the Hr-edges in Lk(G; v) is even.
Since �r starts at v1, it must also end at v1. Suppose that the initial edge E of �r
equals the initial edge of ��r. For large k, there are initial subpaths �0 and �0 of E
such that � = fk#(�0) and

�� = fk#(�0). We may assume without loss that �0 � �0
and hence that � is an initial subpath of ��. Since the initial edge of � is in Hr, the
di�erence between the number of edges in fm# (�) and f

m
# (�) grows without bound,

in contradiction to the fact that for all m � 0, �r = fm# (�r) is obtained from the
concatenation of fm# (�) and fm# (�) by cancelling at the juncture.

To complete the proof of (2), we assume that v1 2 Gr�1 and argue to a contra-
diction. Let D1 be the initial edge of �r and suppose that the lift of D1 to K has
initial endpoint v̂1. Part (1) implies that v̂1 is contained in a component C of K0.
Since C is completed to a circle in @S by @I � [0; 1] [ I � f1g, C is an arc. For
notational concreteness, we give the argument when C has two edges: A with end-
points v̂1 and v̂2 and label b1; and B with endpoints v̂2 and v̂3 and label b2. We also
assume that v1 = v3 6= v2 where vi = h(v̂i). The arguments in other cases require
only straightforward modi�cations.

K

A Bv̂1 v̂3

D1 D2 D3

< b1 > < b2 >

G0

B0

A0

b1

b2X

w0

1

w0

2

v0

2

v0

3

D
0

3

D
0

2

D
0

1

v̂2

v0

1

The subset of Lk(K; v̂i) that projects to Hr is denoted D̂i; its image in Lk(G; vi) is
denoted Di. Note that Lk(K; v̂1) = D̂1 [A, Lk(K; v̂2) = D̂2 [ �A[B and Lk(K; v̂3) =
D̂3 [ �B. De�ne G0 to be the graph obtained from Gr as follows. Replace v1 = v3 by
three vertices v01; v

0
3 and w

0
1; replace v2 by two vertices v02 and w

0
2. The edges of Di are

reattached to v0i. The remaining edges in the link of v1 [respectively v2] are reattached
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to w0
1 [respectively w

0
2]. Add edges X connecting v01 to w

0
1, A

0 connecting v01 to v
0
2 and

B0 connecting v02 to v03. De�ne p : G0 ! G to be the homotopy equivalence that
collapses X to v1, sends A

0 to b1 and sends B0 to b2. As in the previous case, there
is a map h� : K ! G0 n X satisfying ph� = h and there is an induced topological
representative f 0 : G0 ! G0 : that satis�es pf 0 = fp; that restricts to the identity on
X [A0[B0; and that maps G0 nX into itself. De�ne G0

r�1 = p�1(Gr�1)n (X [A0[B0)
and G0

r = G0 nX. The proof now concludes as in the previous case.
For part (3), we may assume by parts (1) and (2) that C is a loop. We will

give the argument when the boundary component C consists of three edges: A with
endpoints v̂1 and v̂2 and label b1; B with endpoints v̂2 and v̂3 and label b2; and C
with endpoints v̂3 and v̂1 and label b3. As in part (2) we assume that v1 = v3 6= v2.
De�ne G0 and p : G0 ! G exactly as in part (2). If h#(C) is trivial, then b3 ' �b2�b1
rel endpoints and there exists h� : K ! G0 such that ph� ' h rel vertices; one simply
de�nes h�(A) = A0, h�(B) = B0 and h�(C) = �B0 �A0. The proof now concludes as in
the previous cases.
Proof of Proposition 5.3.1 We have already de�ned S. Parts (1) and (2) of
Lemma 5.3.9 imply that @I �f0; 1g[ I �f1g projects to a component �� of @S. The
components of @S n�� = K0 are denoted 

�
1 ; : : : ; 

�
m . Part (3) of Lemma 5.3.9 implies

that each i = h#(
�
i ) is a non-trivial circuit. Since hfK ' fh and fK permutes the

�i 's, f# permutes the i's and the induced permutations of f1; : : : ; mg agree.

De�ne Ĝ = Gr�1 [hjK0
K. The identity map on Gr�1 and h �t together to give

a continuous map ĥ : Ĝ ! G. Part (1) of Lemma 5.3.9 implies that ĥ induces a
bijection between the vertices of K nK0 and the vertices of G nGr�1. Thus ĥ induces
a bijection between the vertices of Ĝ and the vertices of G. Since ĥ also induces a
bijection on edges, ĥ is a homeomorphism.

LetA be the union ofm annuliAi; : : : ; Am. De�ne Y to be the space obtained from
Gr�1[A[S by attaching one end of Ai to i and the other end to 

�
i . By construction,

S = M(�Kr ) is the mapping cylinder of the quotient map �Kr : I � f0g ! K. Since
ĥ : Ĝ! G is a homeomorphism, Y is homeomorphic to the mapping cylinder M(�r),
where �r is thought of as a map of the interval into G. The natural deformation
retraction of M(�r) to G de�nes � : (Y;Gr�1)! (G;Gr�1). It remains to show that
if r : S ! K is the deformation retraction given by collapsing mapping cylinder
lines, then the homotopy equivalence fKr : S ! S is homotopic to a pseudo-Anosov
homeomorphism �.

Since rjK0 = identity and fKjK0 is a homeomorphism, fKr permutes the com-
ponents of K0 � @S. The component �� is freely homotopic in S to the circuit
determined by �r and so is also �xed by (fKr)#. It follows (Theorem 3.1 of [Hem88])
that fKr is homotopic to a homeomorphism �. To prove that the mapping class de-
termined by � is pseudo-Anosov, it su�ces to show that the only periodic conjugacy
classes are the peripheral ones.

A non-trivial circuit �K � K determines a non-trivial circuit �̂ � Ĝ and hence a
non-trivial circuit � � G. If �K is periodic under the action of fK and �K 6� K0, then
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� is periodic under the action of f and � 6� Gr�1. Lemma 4.2.6 and Lemma 5.2.5
imply that � splits into subpaths that are either entirely contained in Gr�1 or equal
to �r or ��r. Part (2) of Lemma 5.3.9 implies that � is a multiple of �r or ��r.

5.4 Sliding

In this subsection we introduce and study the technique used to arrange condition
(ne-ii) of Theorem 5.1.5. We assume throughout this subsection that f : G! G is a
relative train track map, thatHi is a non-exponentially-growing stratum and that each
non-exponentially-growing stratum Hj is a single edge Ei satisfying f(Ej) = Ejuj for
some path uj � Gj�1.

For any path � � Gi�1 with initial endpoint equal to the terminal endpoint of Ei

and with terminal endpoint at a vertex of Gi�1, de�ne a new graph G0 by replacing
Ei with an edge E 0

i that has the same initial endpoint as Ei and the same terminal
endpoint as �. Every edge of GnEi is naturally identi�ed with an edge of G0 nE 0

i; we
use the same name for the edge in both graphs. Similarly, a path � � G that does
not cross Ei is identi�ed with a path, also called �, in G0.

Ei

α

i

p

E

There are homotopy equivalences p : G ! G0 and p0 : G0 ! G that equal the
`identity' on the common edges of G and G0 and that satisfy p(Ei) = E 0

i �� and p0(E 0
i) =

Ei� respectively. De�ne f 0 : G0 ! G0 by tightening pfp0 : G0 ! G0; in other words,
on each edge of G0, f 0 = (pfp0)#. We say that f 0 : G0 ! G0 is obtained from
f : G! G by sliding Ei along �. For each Gj de�ne G

0
j = p(Gj).

The basic properties of sliding are listed in the following lemma.

Lemma 5.4.1. Suppose that f 0 : G0 ! G0 is obtained from f : G ! G by sliding
Ei along �. Then f 0(E 0

i) = E 0
iu

0
i where u

0
i = [��uf(�)] � G0

i�1. Moreover, H 0
j is

exponentially growing [respectively non-exponentially-growing] if and only if Hj is
exponentially growing[respectively non-exponentially-growing]. If f : G ! G is F-
Nielsen minimizing, then so is f 0 : G0 ! G0 .

Proof of Lemma 5.4.1 We have f 0(E 0
i) = (pfp0)#(E

0
i) = (pf)#(Ei�) =

p#([Eiuf(�)])x = [E 0
i ��uf(�)] = E 0

i[��uf(�)]. Sliding has no e�ect on any F(Gj) so
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f 0 : G0 ! G0 satis�es conditions (1) and (2) in the de�nition of F -Nielsen minimizing
if f : G! G does.

Since f jGi�1 agrees with f
0jG0

i�1, we may restrict our attention to strata Hj with
j > i. If Hj is a zero stratum and E0 is an edge in Hj, then f(E0) � Gj�1. Thus
f 0(E0) = (pf)#(E0) � G0

j�1 and H
0
j is also a zero stratum. If Hj is non-exponentially-

growing, then Hj is a single edge Ej and there is a path uj � Gj�1 such that f(Ej) =
Ejuj. Thus f

0(Ej) = (pf)#(Ej) = p#(Ejuj) = Ejp#(uj) where p#(uj) � G0
j�1. Thus

H 0
j is non-exponentially-growing.
Suppose now thatHr is exponentially growing and that E is an edge ofHr. For any

non-trivial paths � � G and 0 � G0 with endpoints at vertices, (p0p)#(�) = � and
(pp0)#(

0) = 0. In particular, p#(�) and p
0
#(

0) are non-trivial. The train track prop-
erty implies that f(E) = a1b1a2 : : : blal+1 where ai � Hr and bi � Gr�1 are non-trivial
paths. Thus f 0(E) = (pf)#(E) = p#(a1b1a2 : : : blal+1) = a1p#(b1)a2 : : : p#(bl)al+1.
This implies that Hr is exponentially growing and that the transition submatrices,
Mr and M 0

r, and hence the Perron-Frobenius eigenvalues �r and �0r, are equal. If
� 0 � G0

r�1 is a non-trivial path with endpoints in H 0
r \ G

0
r�1, then p

0
#(�

0) is a non-
trivial path with endpoints in Hr \ Gr�1 and hence (fp0)#(�

0) is non-trivial. Thus
f 0#(�

0) = (pfp0)#(�
0) is non-trivial. We have now veri�ed that f 0 : G0 ! G0 is a

relative train track map.
If �0 � G0

r satis�es (f 0)k#(�
0) = �0, then p0#(�

0) = p0#(pfp
0)k#(�

0) = (f)k#p
0
#(�

0).

Similarly, if � � Gr and f
k
#(�) = �, then p#(�) = (pfk)#(�) = (f 0)k#p#(�). In other

words, p induces a period preserving bijection between indivisible periodic Nielsen
paths in Gr and indivisible periodic Nielsen paths in G0

r. Thus f 0 : G0 ! G0 is
F -Nielsen minimized if f : G! G is.

In order to �nd good paths along which to slide, we consider a restricted lift of
f de�ned as follows. Choose a lift ~Ei in the universal cover � of G. Let ~f : � ! �
be the lift of f : G ! G that �xes the initial endpoint of ~Ei, let ~ui be the lift of
ui satisfying ~f( ~Ei) = ~Ei~ui and let �i�1 � � be the component of the full pre- image
of Gi�1 that contains ~ui. Since ~f( ~Ei) = ~Ei~ui, �i�1 is ~f -invariant. Denote ~f j�i�1 by
h : �i�1 ! �i�1 and note that if ~q is the initial vertex of ~ui, then h(~q) is its terminal
vertex.

The sliding operation can be lifted to � by replacing each lift of Ei with a lift of
E 0
i. Call the resulting tree �0. Let ~f 0 : �0 ! �0 be the lift of f 0 : G0 ! G0 that �xes

the initial endpoint of the lift ~E 0
i that corresponds to ~Ei. ( ~Ei and ~E 0

i have a `common'
initial endpoint.) Lemma 5.4.1 implies that �0i�1 = �i�1 and that ~f 0j�0i�1 = ~f j�i�1.
In this sense, h : �i�1 ! �i�1 is unchanged by the sliding operation.

For any ~x; ~y 2 �i�1, denote the path connecting ~x to ~y by [~x; ~y] and its image
under the covering projection pr : � ! G by pr([~x; ~y]) � Gi�1. Paths in Gi�1 that
have their initial endpoint at q = pr(~q) and their terminal endpoint at a vertex v are
in one to one correspondence with paths in �i�1 of the form [~q; ~v] where pr(~v) = v
and hence are in one to one correspondence with the set of vertices ~v of �i�1. Thus
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we may speak of sliding along the path determined by the vertex ~v.

Lemma 5.4.2. If f 0 : G0 ! G0 is obtained from f : G ! G by sliding along the
path corresponding to a vertex ~v, then f 0(E 0

i) = E 0
iu

0
i where u

0
i = pr([~v; h(~v)]).

Proof of Lemma 5.4.2 This follows immediately from Lemma 5.4.1 and the de�ni-
tion of h.

The following proposition is the main result of this subsection. Conditions (1) and
(2) record the fact that we have taken u to be as simple as h will allow. Condition (3)
is a strengthening of the assertion that f 0(E 0

i) = E 0
i � u

0
i and is used in Lemma 5.5.1.

Proposition 5.4.3. After subdividing at a periodic orbit of f : G! G if necessary,
there is a vertex ~v of � that projects to a periodic point of f so that if f 0 : G0 ! G0

is obtained from f : G! G by sliding along the path determined by ~v, then f 0(E 0
i) =

E 0
i � u

0
i where:

1. u0i is trivial if and only if h has a �xed point.

2. If u0i is non-trivial, then u0i is periodic under the action of f# if and only if h
commutes with a covering translation T of �i�1; in this case, the in�nite ray
~R0 = ~u0ih#(~u

0
i)h

2
#(~u

0
i) : : : is contained in the axis of T .

3. If u0i is not trivial, then E
0
i � w

0
i is a splitting for every initial segment w0

i of u
0
i.

Proof of Proposition 5.4.3 If Fix(h) 6= ;, then, after subdividing if necessary, we
may choose ~v 2 Fix(h). Lemma 5.4.2 implies that u0 is the trivial path. We assume
now that h is �xed point free. Lemma 5.4.2 implies that u0 can not be trivial for any
choice of ~v. This veri�es condition (1).

Let ~X = f~x : f~x; h(~x); h2(~x); : : : g is an ordered subset of an in�nite path in �i�1g.
Note that h( ~X) � ~X and that if ~x 2 ~X and [~x; h(~x)] = [~x; ~y] � [~y; h(~x)], then ~y 2 ~X.
The �rst step in the proof is to show that ~X 6= ;.

We say that the initial edge of [~v; h(~v)] is preferred by the vertex ~v 2 �i�1. If
E is preferred by both [respectively neither] of its endpoints, then h(E), thought of
as an edge path, contains �E [respectively E]. But then some subinterval of E maps
to all of �E [respectively E] and so must contain a �xed point. This contradiction
implies that E is preferred by exactly one of its endpoints. For each ~v 2 �i�1, let
L(~v) = E0 � E1 � : : : be the in�nite path de�ned by choosing E0 to be the preferred
edge for ~v, and by inductively choosing Ei+1 to be the preferred edge for the terminal
endpoint of Ei.

Given ~v; ~w 2 �i�1, denote [~v; ~w] by ~. An easy induction argument on edge
length shows that either the initial edge of ~ is preferred by the initial vertex of ~
or the terminal edge of ~ is preferred by the terminal vertex of ~ or both . In other
words, either the initial edge of ~ is the initial edge of L(~v) or the initial edge of the
inverse of ~ is the initial edge of L( ~w) or both. It follows that L(~v) and L( ~w) have
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a common in�nite end. De�ne I(~v; ~w) to be the initial vertex of L(~v) \ L( ~w); thus
L(I(~v; ~w)) = L(~v) \ L( ~w).

v

w

I(v,w) L(I(v,w))

L(v)

L(w)

Choose a vertex ~v0 and inductively de�ne ~vi+1 = I(~vi; h(~vi)). Then
L(~v0) = [~v0; ~v1][~v1; ~v2][~v2; ~v3] : : : and h#([~vi; ~vi+1]) = [h(~vi); h(~vi+1)] contains
[~vi+1; ~vi+2]. De�ne ~Ym = f~y 2 [~v0; ~v1] : h

i(~y) 2 [~vi; ~vi+1] 8 0 � i � mg. A straight-
forward induction argument shows that h( ~Ym) = [~vm; ~vm+1] and in particular that
~Ym 6= ;. The ~Ym's are a nested sequence of closed subsets of [~v0; ~v1] so \ ~Ym 6= ;. By
construction, \ ~Ym � ~X so ~X 6= ;.

v0
v

v

v

h(v )

h(v )

L(v )

1

2 0

0

1

3

The next step is to choose a vertex ~v 2 ~X. Let s be the smallest positive integer
for which there exists ~x 2 ~X satisfying pr[~x; h(~x)] � Gs. Choose such an ~x. If Hs is
non-exponentially-growing, then Hs is a single edge Es and f(Es) = Esus for some
path us � Gs�1. After replacing ~x by some hk(~x) if necessary, we may assume that
[~x; h(~x)] contains at least one entire edge ~e whose projected image e equals either Es

or �Es and that pr(h(~x)) is not contained in the interior of Es. If e = Es let ~v be the
initial edge of ~e; if e = �Es, let ~v be the terminal edge of ~e. Lemma 4.1.4 implies that
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[~x; h(~x)] can be split at ~v and hence that ~v 2 ~X.
If Hs is exponentially growing, then after replacing ~x by some hk(~x) if necessary,

we may assume that each [hi(~x); hi+1(~x)] has the same number of illegal turns in Hs.
Lemma 4.2.6 produces a splitting of [~x; h(~x)]. If one of the resulting pieces is a lift ~�
of some � 2 Ps, let ~v be its initial endpoint. Replacing ~x by some hk(~x) if necessary,
we may assume by Lemma 4.2.5 that v is f -periodic. After subdividing at the orbit
of v, we may assume that ~v 2 ~X is a vertex. If there are no ~� pieces, then [~x; h(~x)]
is s-legal. After replacing ~x by some hk(~x) if necessary, we may assume that [~x; h(~x)]
contains an entire edge of Hs. Let ~v be an endpoint of such an edge. Lemma 4.2.1
implies that [~x; h(~x)] splits at ~v and hence that ~v 2 ~X. Replacing ~v by some hi(~v),
we may assume that v is a periodic point.

We assume from now on that ~u0i = [~v; h(~v)], where ~v is chosen as above, and
that u0i � Gs is its projected image. If (f 0)k#(u

0
i) = u0i for some k > 0, then the

in�nite ray ~R0 = ~u0ih#(~u
0
i)h

2
#(~u

0
i) : : : is contained in the axis of the covering translation

T : �i�1 ! �i�1 that satis�es T (~u0i) = hk#(~u
0
i). Since h# preserves the axis of T , h

commutes with T .
Conversely, suppose that there is a covering translation T of �i�1 that commutes

with h. Then T ([~x; h(~x)]) = [T ~x; h(T ~x)] for all ~x and so L(T (~v)) = T (L(~v)). This
implies that L(~v) and T (L(~v)) have a common in�nite end and hence that L(~v) and
the axis of T have a common in�nite end. In particular, hl(~v) is contained in the axis
of T for all su�ciently large l. This implies that there is a uniform bound to the edge
length of [hl(~v); hl+1(~v)], and hence that (f 0)l#(u

0
i) takes only �nitely many values.

After replacing ~v by some hl(~v) if necessary, we may assume that u0i is periodic under
the action of f 0# and that ~R0 is contained in the axis of T . We have now veri�ed (2).

Recall that ~R0 = ~u0i �h#(~u
0
i) �h

2
#(~u

0
i) : : : is the in�nite ray starting at ~v and contain-

ing fhi(~v) : i � 0g. Let ~u0i = ~�1 � ~�2 � � � � � ~�n0 be the splitting provided by Lemma 4.2.6
if Hs is non-exponentially-growing and by Lemma 4.2.1 if Hs is exponentially grow-
ing. Then hi#(~u

0
i) = hi#(~�1) � h

i
#(~�2) � � � � � h

i
#(�n0) and

~R0 has an in�nite splitting
~R0 = ~�1 � ~�2 � : : : where ~�in0+j = hi#(~�j).

To verify condition (3), we must show that [~v; hi(~v)] is contained in [~v; hi(~y)] for all
~y 2 ~u0i. It su�ces to show that hi(~u0i) intersects h

i�1
# (~u0i) trivially. We will prove the

slightly stronger statement that hi(~�j), which tightens to ~�in0+j, intersects ~�in0+j�1
trivially for 1 � j � n0 and all i � 0.

Suppose at �rst that Hs is non-exponentially-growing. If the initial edge of ~�j is
a lift of Es, then Lemma 4.1.4 implies that hi(~�j) is a lift of Es, possibly followed
by a sequence of edges in �i�1 and possibly terminating in a lift of �Es; if h

i(~�j) does
terminate in a lift of �Es then the sequence of edges in �i�1 tightens to a non-trivial
path. The initial edge of hi(~�j) is disjoint from the rest of hi(~�j) and acts as a barrier
to keep hi(~�j) from intersecting ~�in0+j�1. If the initial edge of ~�j is not a lift of Es,
then the terminal end of ~�in0+j�1 is a lift of �Es and h

i(~�j) is a sequence of edges in
�i�1, possibly terminating in a lift of �Es; if the last edge of h

i(~�j) is a lift of �Es, then
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the sequence of edges in �i�1 tightens to a non-trivial path. The edges in �i�1 can
not cross the terminal edge of ~�in0+j�1 and the terminating lift of �Es, if it exists, can
not either because the path between it and ~�in0+j�1 is non-trivial.

Assume now that Hs is exponentially growing. If ~�j = ~� for some � 2 Ps, let
� = �� be the unique decomposition of � into s-legal subpaths. Lemma 2.5.1 implies
that hi(~�) (and also hi( ~�)) decomposes into a path that projects to Hs, followed by a
sequence of edges that project to Gs�1 and tighten to a non-trivial path, followed by
a path that projects to Hs and so on. The terminal end of hi(~�) and the initial end
of hi( ~�) agree up to a point, but there is always an initial subpath of hi(~�) that is
disjoint from the rest of hi(~�j). This prevents h

i(~�j) from crossing back to ~�in0+j�1.
If ~�j 6= ~�, then ~�j is s-legal. If the initial edge of ~�j projects to Hs, then

Lemma 2.5.1 implies that the initial edge of hi(~�j) is disjoint from the rest of hi(~�j)
and prevents hi(~�j) from crossing back to ~�in0+j�1. If the initial edge of ~�j does not
project to Hs, then the terminal edge of �in0+j�1 projects to Hs and prevents hi(~�j)
from crossing back to ~�in0+j�1 : edges that project to Gs�1 can not cross this barrier
and edges that project to Hs do not because Lemma 2.5.1 implies that they are part
of hi#(~�j).

5.5 Splitting Basic Paths

We proved in Lemma 4.1.4 that if f : G! G is a relative train track map and Hi is
a single edge Ei satisfying f(Ei) = Eiui for some path ui � Gi�1, then a path � � Gi

splits into subpaths that are either entirely contained in Gi�1 or are basic paths of
height i; i.e. are one of the following three types : Ei; Ei �Ei;  �Ei, where  � Gi�1.
The path  �Ei is the inverse of the path Ei� so it su�ces to consider Ei and Ei �Ei.
In this subsection we consider further splittings of the paths Ei and Ei �Ei.

Lemma 5.5.1. Assume that :

� f : G! G is a relative train track map;

� each exponentially growing stratum Hi satis�es conditions eg-(i), eg-(ii), and
eg-(iii) of Theorem 5.1.5;

� each non-exponentially-growing stratum Hi is a single edge Ei and satis�es the
conclusions of Proposition 5.4.3;

� if Hi is an exponentially growing stratum then every indivisible periodic Nielsen
path � � Gi that intersects Hi non-trivially has period one.

Then every periodic Nielsen path has period one. If Hi is a non-exponentially-growing
stratum and if  � Gi�1 is a non-trivial path then the following are satis�ed :

(1) If Ei [respectively Ei �Ei] can be split at a point in the interior of Ei, then
fm# (Ei) = Ei � 1 [respectively fm# (Ei �Ei) = Ei � 1 �Ei] for some m � 0 and
1 � Gi�1.
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(2) If Ei has no splittings, then some fm# (Ei) is an exceptional path of height i
(De�nition 5.1.3).

(3) If Ei �Ei has no splittings, then Ei �Ei is an exceptional path of height i.

Proof of Lemma 5.5.1 The proof is by induction on f jGj. If G1 = H1 is expo-
nentially growing, then conditions (1) - (3) for f jG1 are vacuous and the condition
on periodic Nielsen paths follows directly from our hypotheses. If G1 = H1 is non-
exponentially-growing, then f pointwise �xes the single edge E1 in H1. Conditions
(1) - (3) are therefore vacuous and the condition on periodic Nielsen paths follows
from the fact that f jG1 is the identity.

We assume now that the lemma holds for f jGi�1 and prove it for f jGi. If Hi

is exponentially growing, then the the condition on periodic Nielsen paths follows
from Lemma 4.2.6 and the inductive hypothesis; conditions (1) - (3) are vacuous. We
may therefore assume that Hi is a single non-exponentially-growing edge Ei and that
f(Ei) = Ei � ui. Let s be the smallest positive integer for which ui � Gs.

Proposition 5.4.3 implies that for any non-trivial initial segment �1 of Ei, some
fm# (�1) = Ei � 

0 where 0 � Gi�1. Thus if a path � splits as � = �1 � �2 where �1 is a
non-trivial initial segment of Ei then some fm# (�) has a splitting of the form Ei � �

0.
Part (1) of the lemma now follows from the fact that each fm# (Ei) is of the form
Ei1 and each fm# (Ei �Ei) has the form Ei1 �Ei where 1 � Gi�1.

In order to treat (2) and (3) simultaneously, let � = Ei or Ei �Ei. Assume that
� has no splittings; in particular, ui is non-trivial.

Step 1: (Cancelling large middle segments) As a �rst step in the proof of
(2) and (3), we use the absence of splittings to show that if � = �01�

0
2�

0
3 is any

decomposition into non-trivial subpaths, then there exist M > 0 and an M -splitting
� = �1�2�3 such that �1 is an initial subpath of �01, ��3 is an initial subpath of ��03 and
fM# (�) = fM# (�1)f

M
# (�3) where the indicated juncture point is a vertex. There is no

loss in assuming that �01 is contained in the initial edge of � and that �03 is contained
in the terminal (possibly partial) edge of �.

It is convenient to work with lifts ~f and ~� = ~�01~�
0
2~�

0
3. The set ~Sk = f~x 2 ~� :

~fk(~x) 2 ~fk#(~�)g is closed by Lemma 4.1.1(4). Since ~� can be split at any point of

\1k=1 ~Sk, this in�nite intersection contains only the endpoints of ~�. Thus there exists
M > 0 so that \Mk=1 ~Sk � ~�01 [ ~�03. An easy induction argument shows that fN maps
\Nk=1 ~Sk onto ~fN# (~�) for all N � 1. Since the ~Ei that is the initial edge in ~f(~�) is

not canceled when ~fk(~�) is tightened to ~fk#(~�), each
~Sk, and hence \Mk=1

~Sk, contains

an initial segment of ~Ei. Choose a point ~x 2 (\Mk=1 ~Sk) \ �01 so that fM(~x) is as
close to the terminal end of ~fM# (�) as possible and let ~�1 be the initial segment of ~Ei

that terminates at ~x. The choice of ~x guarantees that ~fM(~x) is a vertex. Moreover,
fM# (~�1) is a proper subinterval of fM# (~�) : if not, then fM# (~�) = f l#(Ei�

�) for some
l and some initial segment �� of ui. This contradicts part (3) of Proposition 5.4.3,
Lemma 4.1.1(5) and the assumption that � has no splittings. There are points of
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\Mk=1 ~Sk in �
0
3 that map arbitrarily close to ~fM(~x). Since \Mk=1 ~Sk is closed there exists

~y 2 \Mk=1 ~Sk in �03 such that ~f(~y) = ~f(~x). The subdivision at ~x and ~y de�nes the
desired M -splitting. This completes the �rst step.

If � = Ei, then, after replacing � by some f l#(�) if necessary, we may assume

that the last (possibly partial) edge of fk#(�) is contained in the same stratum for all
k � 0. An immediate consequence of step 1 is that the last edge of � is not pointwise
�xed by f . Thus one of the following conditions is satis�ed :

(i) the terminal endpoint of � is a vertex and the terminal edge is some
non-exponentially-growing �Ej with non-trivial uj

(ii) the last edge of � is contained in an exponentially growing stratum Hr.

If � = Ei �Ei, then (i) holds for Ei = Ej without replacing � by f l#(�). Suppose at
�rst that (i) holds.

Step 2: (At least 3 blocks cancel) Write � = Ei
0 �Ej, where  = 0 if j = i.

De�ne the ray Ri to be the in�nite path ui � f#(ui) � f
2
#(ui) � : : : and de�ne Rm

i to

be the initial segment ui � f#(ui) � f 2#(ui)� : : : �f
m�1
# (ui). We refer to the fk#(ui)'s as

the blocks of Ri. De�ne Rj and R
m
j similarly with uj replacing ui. Then fm# (�) =

[EiR
m
i f

m(0) �Rm
j
�Ej]. We claim that if m is su�ciently large, then a subpath of Rm

i

containing at least three blocks of Ri cancels with a subpath of �Rm
j containing at

least three blocks of �Rj when EiR
m
i f

m(0) �Rm
j
�Ej is tightened to fm# (�).

By step 1, there are a positive integer M and initial subpaths �M of RM
i and

��M of �RM
j so that fM# (�) = Ei�M ��M �Ej. For m > M , fm# (�) = fm�M# (Ei�M ��M �Ej).

Since Ei�M = f l#(Ei�
�) for some initial segment �� of �i, part (3) of Proposition 5.4

implies that Ei�M = Ei � �M ; similarly ��M �Ej = ��M � �Ej. Thus fm# (�) is obtained

from the concatenation of EiR
m�M
i fm�M# (�M) and fm�M# (��M) �Rm�M

j
�Ej by cancelling

at the juncture point. Step 1 implies that for su�ciently large m, long cancellation
must occur in both Rm�M

i and �Rm�M
j . The only way that this could happen is if long

segments of Rm�M
i and �Rm�M

j cancel with each other. This veri�es our claim.
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(Step 3) is the following sublemma.

Sublemma 5.5.2. If Ei and Ej (i � j) have distinct lifts ~Ei and ~Ej whose corre-
sponding rays ~Ri and ~Rj have a common subpath that contains at least three blocks in
each ray, then the path ~� � � that connects the initial endpoint of ~Ei to the terminal
endpoint of ~Ej projects to an exceptional path � � G of height i.

Proof of Sublemma 5.5.2 Let �i�1 � � be the component of the full pre-image of
Gi�1 that contains ~ui and ~uj and let hi : �i�1 ! �i�1 and hj : �i�1 ! �i�1 be the
restricted lifts of f that �x the initial endpoints of ~Ei and ~Ej respectively.

We consider �rst the case that hi = hj. Part (1) of Proposition 5.4.3 implies that
hi is �xed point free and hence that the initial endpoint of ~Ej does not lie in �i�1;
thus Ej = Ei. The covering translation S of �i�1 that carries ~ui =< ~v; hi(~v) > to
~uj =< S(~v); hj(S(~v)) > commutes with hi. Part (2) of Proposition 5.4.3 implies that
fk#(ui) = ui for some k > 0 and hence by the inductive hypothesis that f#(ui) = ui;

moreover, both ~Ri and ~Rj are contained in the axis of S. It follows that ui is a
multiple of the indivisible circuit � determined by S and that the segment of the axis
of S that separates the terminal endpoints of ~Ei and ~Ej projects to �

q or �� q for some
q � 0. Thus � = Ei�

q �Ei or Ei��
q �Ei is exceptional. This completes the proof in the

special case and we assume from now on that hi 6= hj.

68



z z z z z z

R

R

h h

h h

0 1 2 3 4 5

i i

j j

i

j

Let s be the smallest positive integer for which ui (and hence also uj) is contained
in Gs. Assume for now that Hs is a non-exponentially-growing stratum. Let ~X � ~Ri

be the set of vertices that are either the initial endpoint of a lift of Es in ~Ri or the
terminal endpoint of a lift of �Es in ~Ri. Order the elements of ~X so that ~xl < ~xl+1
in the orientation on ~Ri. Lemma 4.1.4 implies that hi(~xl) = ~xl+n0 for all l and some
�xed n0. De�ne ~Y � ~Rj and m0 similarly using Rj and hj instead of Ri and hi. Then
~Z = ~X\ ~Y � ~Ri\ ~Rj contains at least n0+m0+1 consecutive elements ~z0; : : : ; ~zn0+m0

of ~X and of ~Y and hihj(~z0) = hi(~zm0
) = ~zn0+m0

= hj(~zn0) = hjhi(~z0). Since hihj and
hjhi are lifts of f

2 that agree at a point, they are equal.
There is a non-trivial covering translation S of �i�1 such that Shi = hj and there

is a covering translation T of �i�1 such that Thj = hiS. Then hihj = hiShi = Thjhi
so T is the identity and hi commutes with S. A symmetric argument shows that
hj also commutes with S. Part (2) of Proposition 5.4.3 implies that ui; uj � Gi�1

are periodic Nielsen paths and that ~Ri and ~Rj are contained in the axis of S. By
the inductive hypothesis, f#(ui) = ui and f#(uj) = uj. The covering translation Si
of �i�1 that carries the initial endpoint of ~ui to the terminal endpoint of ~ui and the
covering translation Sj of �i�1 that carries the initial endpoint of ~uj to the terminal
endpoint of ~uj both preserve the axis of S and hence commute with S and with each
other. The segment of the axis of S that separates the terminal endpoints of ~Ei and
~Ej projects to � q or �� q for some q � 0. After replacing S with S�1 if necessary,
ui = �k and uj = � l or �� l where � is the circuit corresponding to the axis of S. Since
~Ri and ~Rj have a common subpath that contains blocks in both ray, uj = � l and � is
exceptional.

Suppose now that Hs is exponentially growing. If the decomposition of ui given
by Lemma 4.2.6 contains at least one �s or ��s, then the previous argument requires
only one modi�cation. Namely, ~X is de�ned to be the set of lifts of �s or ��s. These
get `translated' by hi and hj so the argument goes through exactly as before.

It remains to rule out the possibility that the decomposition of ui given by
Lemma 4.2.6 contains no �s or ��s. Suppose to the contrary. Then ui is s-legal.
Since blocks of �Rj cancel with segments of Ri, uj is also s-legal. The action of f
on Ri and Rj is more like an a�ne map than like a translation so we do not use
the previous argument. By hypothesis, � = Ei�m��m �Ej where �m and ��m are initial
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subpaths of Ri and �Rj and in particular are s-legal. Lemma 4.2.2 implies that �m
and �m take on only �nitely many values and hence that some fm# (�) is a periodic

Nielsen path, say fm+p
# (�) = fm# (�). There is a lift ~f : � ! � whose restriction to

�i�1 equals hi. Thus ~f �xes the initial endpoint of ~Ei and ~f p �xes the initial endpoint
~w of ~Ej.

If Ei 6= Ej, then ~w 2 �i�1. Part (1) of Proposition 5.4.3 implies that p > 1.
Let ~ � � be the path that connects ~w to hi( ~w) and let  be its image in Gi�1.
Then  is a periodic Nielsen path and so by the inductive hypothesis is a Nielsen
path. But then [p] = [f() : : : f p�1()] lifts to the trivial path [~hi(~) � � � � �h

p�1
i (~)]

which is impossible. We conclude that Ei = Ej. The covering translation S of �
that carries the initial endpoint of ~Ei to the initial endpoint of ~Ej commutes with ~f p.
The restriction Sj�i�1 therefore commutes with hpi . Since hj = (Sj�i�1)h

p
i (Sj�i�1)

�1,
hpi = hpj . This implies that ~Ri and S( ~Ri) = ~Rj have an in�nite end in common and

hence that ~Ri and the axis of S have an in�nite end in common. It follows that
hi preserves the axis of S and so commutes with S. This contradicts part (2) of
Proposition 5.4.3 and the fact that ui is s-legal.

Step 4: ((2) and (3) are satis�ed when (i) holds)
Choose a lift ~Ei in the universal cover � and choose m as in step 2. There is a lift

of fm# (�) that begins with
~Ei and ends at the inverse of some ~Ej. Let ~Ri and ~Rj be

the lifts of Ri and Rj that begin at the terminal endpoints of ~Ei and ~Ej respectively.
Our choice of m guarantees that ~Ri \ ~Rj contains at least three blocks in each ray.
By Sublemma 5.5.2, fm# (�) is an exceptional path of height i. If i = j, then fm# (�) is
�xed by f#. Since � and fm# (�) have the same endpoints and the same image under
fm# , they must be equal. In particular, � is an exceptional path of height i.

Step 5: (Case (ii) does not occur) Suppose that (ii) holds. Arguing as in the
previous case, step 1 implies that for all su�ciently large m, fm# (Ei) = Ei�m�m
where �m � Ri and where �m � Gr is r-legal. Step 1 also implies that if l � m is
su�ciently large, then Hr-edges of f

(l�m)
# (�m) cancel with edges of f

(l�m)
# (�m) when

f l�m# (Ei�m)f
(l�m)
# (�m) is tightened to f l#(�); thus r � s. The symmetric argument

shows that s � r (so that s = r) and that �m must be s-legal. Lemma 4.2.2 implies
that �m takes on only �nitely many values. The same is true for �m: the argument is
essentially the same as the one in the proof of Lemma 4.2.5. There are no subtleties
in applying this argument and we leave the details to the reader. We conclude that
fm# (�) is a periodic Nielsen path. But the argument of the last paragraph in the proof
of the sublemma proves that this is impossible. We conclude that (ii) does not occur.

Step 7: (Conclusion) It remains to prove that every periodic Nielsen path � � Gi

has period one. Lemma 4.1.4 implies that � splits into periodic Nielsen paths that are
either contained in Gi�1 or are basic paths. Conditions (1) - (3) of this lemma (which
we have already veri�ed), imply that a basic path that is also a periodic Nielsen
path splits into exceptional paths of height i and periodic Nielsen paths in Gi�1. By
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induction and by examination of the exceptional paths, we conclude that � has period
one.

5.6 Proof of Theorem 5.1.5

Choose (Lemma 5.2.3) a reduced F -Nielsen minimizing relative train track map f :
G ! G and �ltration ; = G0 � G1 � � � � � GK = G that represents Ok for some
k � 1. We will modify f : G ! G in various ways but will continue to call the
resulting relative train track map f : G ! G. (Modi�cations of f : G ! G may of
course involve changes in G.)

Condition (5) in the de�nition of F -Nielsen minimizing (De�nition 5.2.1) implies
that contractible components of Gi's are unions of zero strata.

Lemma 5.2.5, Lemma 5.1.7 and Proposition 5.3.1 imply (eg-i), (eg-ii) and (eg-iii).
IfHr is an exponentially growing stratum and � � Gr is an indivisible periodic Nielsen
path that intersects Hr non-trivially, then since f : G! G is F -Nielsen minimizing,
� has period one. These properties are unchanged by taking iterates.

After passing to an iterate if necessary, we may assume: that f(v) is a �xed
point for each vertex v; that the non-contractible components of the Gi's are mapped
to themselves by f ; and that each non-exponentially-growing stratum Hi consists
of a single edge Ei satisfying f(Ei) = wiEivi for some paths wi; ui in Gi�1. After
subdividing at a �xed point in the interior of Ei if necessary, we may assume that wi

is the trivial path and hence that (ne-i) is satis�ed.
Suppose that Hi is exponentially growing, that C is a non-contractible component

of Gi�1 and that v 2 Hi\C. Choose a path � between v and f(v). Since f jC : C ! C
is a homotopy equivalence of C, there is a closed path � based at f(v) so that
f#(�) = f#(�). Then � = [� ��] is a path between v and f(v) such that f#(�)
is trivial. The train track property for Hi implies that � is trivial and hence that
v = f(v) is a �xed point.

Apply Proposition 5.4.3 to the non-exponentially-growing strata in the �ltration
for f : G ! G working upwards. At the end of this process, we have lost none of
our previously acquired properties and arranged that if Hi is a non-exponentially-
growing stratum then f(Ei) = Ei � ui. Moreover, the endpoints of the edges in
non-exponentially-growing strata are now periodic points; after passing to a further
iterate, they are �xed points. We have therefore established (ne-ii). Suppose that Hi

is non-exponentially-growing and that � = Ei;  �Ei or Ei �Ei is a basic path of height
i (De�nition 4.1.3). If � splits at some point of , then � splits as a concatenation
of either two basic paths of height i or a basic path of height i and a path in Gi�1.
Lemma 5.5.1 implies that if � splits at a point in Ei or �Ei then some fk#(�) splits as
a concatenation of two subpaths one of which is Ei or �Ei. Lemma 5.5.1 also implies
that if � has no splittings, then some fk#(�) is an exceptional path of height i. Thus
condition (ne-iii) is satis�ed. Applying Lemma 5.5.1 once again we see that every
periodic Nielsen path has period one. The properties that we have veri�ed so far are
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all stable under passing to an iterate of f .
We now turn our attention to the zero strata. We have already established that a

contractible component of any Gi is made up of edges in zero strata. We next show
that if Hi is a zero stratum, then Hi is contained in the union of the contractible
components of Gi. Suppose to the contrary that a zero stratum Hi intersects a non-
contractible component C of Gi and that i is the largest positive integer for which
this occurs. Then f(C) � cl(C n(Hi\C)) and so cl(C n(Hi\C)) is a proper subgraph
of C that has the same rank as C. We may therefore choose a vertex v of Hi that has
valence one in C. Since G does not have valence one vertices, v is incident to an edge
that is part of a higher stratum and so by assumption is not a zero stratum. But we
have already shown that such vertices are �xed points. This contradicts the fact that
the only edge incident to v in C maps o� of itself. We conclude that a zero stratum
Hi is contained in the union of the contractible components of Gi.

We next reorganize the zero strata and push them up the �ltration as high as
possible. Assume that Hi is a zero stratum. Since vertices in zero strata are not �xed
points and so are not the f -image of a vertex, no edge in G has f -image entirely
contained in zero strata. In particular, the contractible components of Gi are disjoint
from f(Gi). We may therefore amalgamate the edges in all of the contractible com-
ponents of Gi into a single zero stratum (still called Hi). If Hi+1 is a zero stratum,
then we can amalgamate Hi and Hi+1 into a single stratum (still called Hi). We
may therefore assume that Hi+1 is not a zero stratum. If some components of Hi are
components of Gi+1, then they are not in the image of Gi+1, and we can remove these
components from Hi and consider them as a new zero stratum Hi+2. We may there-
fore assume that Gi+1 has no contractible components. Since the endpoints of edges
in non-exponentially-growing strata are �xed points, Hi+1 must be an exponentially
growing stratum.

After performing these operations on each zero stratum, working upward through
the �ltration, condition z-(i) is satis�ed and Hi is a zero stratum if and only if it is
the union of the contractible components of Gi.

If Hi is a zero stratum and f jHi is not an immersion, then we can fold a pair of
edges in Hi. Tighten the images of the remaining edges. Since the f -image of an edge
does not lie entirely in zero strata, no edge has trivial image after tightening. Folding
and tightening in this manner does not undo any of our established properties (cf.
4.3.6 of [BH95]) and it reduces the total number of edges in the image of Hi. After
�nitely many steps, f jHi is an immersion. Perform this folding operation on each
zero stratum, working up through the �ltration so that the modi�cations made in
one zero stratum do not undo the modi�cations made in the previous strata. At the
end of this process, condition z-(ii) is satis�ed.

If v is a vertex in a zero stratum Hi, then it is not �xed by f and so is not the
endpoint of an edge in Hj with j > i+1. Since G has no valence one vertices, v must
have valence at least two in Gi+1. If v has valence two and if both incident edges are
contained in Hi, then erase v as a vertex. Since v is not the image of any vertex the
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map remains simplicial. After erasing all such vertices, z-(iii) is satis�ed.

5.7 UPG(Fn)

We assume in this section that Zn is identi�ed with the abelianization of Fn and hence
also with H1(G;Z) for any marked graph G. There is an induced a homomorphism
from Out(Fn) to GL(n;Z).

We also assume in this section that F is an O-invariant free factor system.

De�nitions 5.7.1. Denote fO 2 Out(Fn) : L(O) = ;g by PG(Fn). Thus O 2
PG(Fn) if and only if some, and hence every, relative train track map representing O
has no exponentially growing strata. Recall that an element of GL(n;Z) is unipotent
if it is conjugate to an upper triangular matrix with 1's on the diagonals. The subset
of PG(Fn) consisting of elements O whose image in GL(n;Z) is unipotent is denoted
UPG(Fn).

The following lemma shows that zero strata are not needed for elements of PG(Fn).

Lemma 5.7.2. Every O 2 PG(Fn) is represented by a relative train track map
f : G! G and �ltration ; = G0 � G1 � � � � � GK = G such that:

1. F = F(Gr) for some �ltration element Gr.

2. Each vertex of each Gi has valence at least two. In particular, there are no zero
strata and all components of Gi are non-contractible.

Proof of Lemma 5.7.2 Lemma 2.6.7 provides a relative train track map f : G!
G and �ltration ; = G0 � G1 � � � � � GK = G satisfying condition 1. Since
O 2 PG(Fn), f : G ! G has no exponentially growing strata. If v is a valence one
vertex of some Gi and if E is the unique edge of Gi that is incident to v, then perform
a homotopy of f by precomposing f with the homotopy that slides v across E to the
other endpoint of E and then tightening. This homotopy only a�ects edges that are
incident to v. If E 0 6= E is an edge of Hl that is incident to v, then the homotopy
changes the way f(E 0) crosses edges in Gi, but the relative train track property is
maintained since l > i. (Keep in mind that a topological representative of an element
of PG(Fn) is a relative train track map if and only if it has no exponentially growing
strata.) The new image of E is trivial so we can collapse E. This does not e�ect the
relative train track property and does not change any [[�1(Gj)]] so condition 1 is still
satis�ed. After �nitely many such moves, condition 2 is satis�ed.

De�nition 5.7.3. Suppose that f : G ! G and ; = G0 � G1 � � � � � GK = G are
a relative train track map and �ltration representing O 2 PG(Fn) and that there are
no zero strata in the �ltration. Choose a maximal tree T for G whose intersection
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Ti with each Gi is a maximal forest for Gi. For each edge e in Gi n Ti choose an
embedded circuit  � Gi that contains e but is otherwise contained in Ti. We say
that the basis B for H1(G;Z) determined by the homology classes of the 's is a PG
basis determined by f : G ! G. The element of GL(n;Z) determined by B and the
action of f on H1(G;Z) is denoted MB.

Lemma 5.7.4. If B is a PG basis determined by f : G ! G, then each diagonal
entry in MB is either �1; 0 or 1.

Proof of Lemma 5.7.4 An element b 2 B corresponds to an edge e in some Gi n Ti
and an embedded circuit  � Gi. The lemma follows from the fact that f#() either
crosses e once or not at all.

The following proposition relates the UPG property to relative train track maps.

Proposition 5.7.5. The following are equivalent:

(1) O 2 UPG(Fn).

(2) If B is a PG basis determined by f : G ! G, then each diagonal entry in MB

equals 1.

(3) There is relative train track map f : G! G and �ltration ; = G0 � G1 � � � � �
GK = G representing O such that:

(3-a) F = F(Gr) for some �ltration element Gr.

(3-b) Each vertex of each Gi has valence at least two.

(3-c) Each Hi is a single edge Ei satisfying f(Ei) = viEiui for paths vi; ui �
Gi�1.

Proof of Proposition 5.7.5 If (3) is satis�ed and B is a PG basis determined by
f : G! G and ; = G0 � G1 � � � � � GK = G then MB is upper triangular with 1's
on the diagonal. Thus (3) =) (1).

If (1) is satis�ed, then MB is conjugate to an upper triangular matrix with 1's
on the diagonal and so has trace n. Condition (2) follows from Lemma 5.7.4. Thus
(1) =) (2).

The remainder of the proof is dedicated to proving that (2) =) (3). Lemma 5.7.2
provides f : G ! G and ; = G0 � G1 � � � � � GK = G satisfying (3-a) and (3-b).
We will arrange (3-c) by induction on i. Note that if O 2 UPG(Fn) and B is a PG
basis for f : G ! G, then Ok 2 UPG(Fn) and B is a PG basis for Ok with matrix
Mk

B. We may therefore apply (2) to iterates of f .
Let B be a PG basis for f : G! G . Since f transitively permutes the edges in

G1, conditions (3-b) and (2) imply that G1 is connected. Choose an element b 2 B,
let e be the corresponding edge in G1 and let  be the corresponding embedded circuit
in G1. If G1 has rank at least two, then there is an edge e0 � G1 that is not in .
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After replacing f by an iterate if necessary, we may assume that f(e0) = e. But then
the circuit f() does not contain e and so the diagonal element corresponding to b
is 0. This contradicts (2) and we conclude that G1 has rank one. By (3-b), G1 is
homeomorphic to a circle.

If G1 contains more than one edge, then f jG1 is a non-trivial rotation. Choose
a homotopy ht : G ! G with support in a small neighborhood of G1 so that h0 =
identity and h1jG1 = (f jG1)

�1. De�ne a new topological representative of G by
tightening fh1. At this point, the map (which we still call f) �xes each edge in
G1; collapse all but one of these edges to arrange that G1 is a single edge E1. As
in the proof of Lemma 5.7.2, f : G ! G is a relative train track map and (3-a) is
still satis�ed. Condition (3-b) is still satis�ed and (2) rules out the possibility that
f(E1) = �E1.

We assume now that (3-c) holds for Gi�1 and prove it for Gi. Suppose that
Hi = fE1; : : : ; Epg. (We reserve the notationEj for the edges ofG after (3-c) has been
satis�ed.) Then f(Ej) = vjE

j+1uj or f(E
j) = vj �E

j+1uj for subpaths vj; uj � Gi�1,
where the indices of the Ej's are taken mod p and where some reordering may have
been necessary. If the Ej's are disjoint from Gi�1, then they determine a component
of Gi and we may proceed exactly as in the G1 case. We may therefore assume that
some, and hence every, Ej has at least one in endpoint Gi�1. Let C1 be a component
of Gi�1 that contains an endpoint of each Ej. There are three cases to consider,
depending on the location of the other endpoint of Ej.

Suppose at �rst that both endpoints of each Ej lie in C1. In this case, each
Ej determines an element of B. The embedded circuit  corresponding to E1 is the
concatenation of E1 and a subpath in Gi�1. If p > 1 then the circuit f#() is therefore
a concatenation of E2 or �E2 with a subpath in Gi�1. But then the diagonal element
associated to E1 is 0 in contradiction to (2). If p = 1 and f(E1) = u1 �E1v1 then the
diagonal element associated to E1 is �1. This also contradicts (2) so (3-c) is satis�ed.

Suppose next that each Ej has an endpoint in a component C2 6= C1 of Gi�1. In
this case f(Ej) = vjEj+1uj and we need only show that p = 1. We may assume that
the intersection of the maximal tree T with Hi is E

1. If p > 1, then the embedded
circuit  corresponding to Ep intersects Hi in �E1 and Ep. The image circuit f#()
intersects Hi in �E2 and E

1. Thus the diagonal entry of MB corresponding to E2 is 0
if p > 2 and �1 if p = 2. This contradiction to (2) veri�es that p = 1.

Finally, we rule out the possibility that E1 has an endpoint x that is not in Gi�1.
Since Gi does not have valence one vertices, that there must be at least one other edge
of Hi, say E

2, with an endpoint at x. We may assume that E1 � T but that no other
Ej with an endpoint at x is contained in T . As in the previous case, E2 determines
an element of B whose diagonal entry in MB is either 0 or �1. This contradiction to
(2) completes the proof.

Corollary 5.7.6. If O 2 PG(Fn) is contained in the kernel of the natural homomor-
phism
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Out(Fn) ! GL(n;Z)! GL(n;Z=3Z), then O 2 UPG(Fn). In particular, every
subgroup of PG(Fn) contains a �nite index subgroup in UPG(Fn).

Proof of Corollary 5.7.6 This is an immediate consequence of Lemma 5.7.4, con-
dition (2) of Proposition 5.7.5 and the obvious fact that �1 and 0 are not congruent
to 1 mod 3.

Corollary 5.7.7. Suppose that O 2 UPG(Fn) and that F is an O-invariant free
factor system. Then there are a relative train track map f : G ! G and �ltration
; = G0 � G1 � � � � � GK = G that represent O and that satisfy conditions (1), (2),
(3) and (4) of Theorem 5.1.8.

Proof of Corollary 5.7.7 Choose f : G ! G and ; = G0 � G1 � � � � � GK = G
as in part (3) of Proposition 5.7.5. Then Condition (1) is satis�ed and all periodic
points of f are �xed points. We arrange (2) by induction on i as follows. The i = 1
case follows from the fact that f jG1 = identity. Suppose then that (2) holds for
1 � j � i � 1. If both ui and vi are non-trivial, then subdivide Ei at the unique
�xed point in the interior of Ei to create two edges with either ui or vi trivial. If vi
is not trivial, replace Ei by �Ei. We may therefore assume that vi is trivial. Apply
Proposition 5.4.3 to arrange that f(Ei) = Ei � ui where the initial endpoint of ui is
periodic and hence �xed. Since f jGi�1 is unchanged, (2) is now satis�ed for 1 � j � i.
This completes the induction step.

Condition (2) implies condition (3). Lemma 5.5.1 implies condition (4).

A useful corollary of condition (3) of Theorem 5.1.8 is that for any path � with
endpoints at vertices, there is a unique path � with endpoints at vertices such that
f#(�) = � . Since every exceptional path is the image of an exceptional path, a
non-exceptional path can not have an image that is an exceptional path.

We say that a path � with endpoints at vertices has height i if it crosses Ei but
not does not cross Ej for any j > i. By Lemma 4.1.4, every path of height i with
endpoints at vertices has a splitting whose pieces are either basic paths of height i or
paths with height less than i. This provides a recursive splitting of � into basic pieces.
We will use the following notion of complexity as the basis for induction arguments.

De�nition 5.7.8. We subdivide basic paths of height i into two types. Those of the
form Ei and  �Ei are called type 1 basic paths of height i and those of the form Ei �Ei

are called type 2 basic paths of height i. The complexity of a basic path is the ordered
pair specifying its height and its type; the pairs are ordered lexicographically. Thus
a type 2 basic path of height i has greater complexity than a type one basic path of
height i and lower complexity than a type one basic path of height i + 1. If � has
height i and � = �1� : : : ��l is the splitting of Lemma 4.1.4, then de�ne the complexity
of � to be the highest complexity that occurs among those �j that are basic paths of
height i.
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Proof of Theorem 5.1.8 Choose f : G! G and ; = G0 � G1 � � � � � GK = G as
in Corollary 5.7.7.

Step 1: (Property (5)) We prove (5) by induction on the complexity of �. We
assume without loss that � is a basic path of height i and that � = Ei or � = Eii �Ei.
In either case, if � = �1 � �2 is a splitting into subpaths with endpoints at vertices,
then �2 has strictly smaller complexity than �.

Since f jG1 is the identity,M(�) = 0 for � with height 1. We may therefore assume
that (5) holds for paths with complexity lower than �. In particular, M(Ej) = 0 for

all j < i. After replacing ui by f
M(ui)
# (ui) if necessary, (which requires sliding Ej as

in the proof of Proposition 5.5.1) we may assume that M(ui) = 0 and hence that
M(Ei) = 0.

If � has no splittings, then parts (2) and (3) of Lemma 5.5.1 imply that some
fk#(�) is exceptional and so M(�) � k. Suppose then that � can be split. If � can
be split at some point in its initial edge, then part (1) of Lemma 5.5.1 implies that
fk#(�) = Ei � � for some path � and some k � 0. Thus M(�) � k +M(�) and, since
� has lower complexity than �, induction completes the proof. Finally, If � can not
be split at a any point in its initial edge, then split as close to the initial vertex as
possible. This yields � = Ei�1 � �2 where Ei�1 has no splittings. Parts (2) and (3) of
Lemma 5.5.1 imply that some fk#(�) = � � � where � is an exceptional path. Thus
M(�) � k +M(�) and induction completes the proof of (5).

Step 2: (Extending rays to lines) Let s = height(ui). For l � 0, denote f l#(ui)
by Bl and de�ne B�l � Gs to be the unique path with endpoints at vertices such
that f l#(B�l) = ui. Clearly f#(Bl) = Bl+1 for all l. For the remainder of this proof

we will refer to Es and �Es as s-edges. Since f
k
# preserves highest edges, the number

of s-edges in Bl and the number of s-edges in [BlBl+1] are independent of l. Since
[B0B1] = B0B1, each [BlBl+1] has twice as many s-edges as each Bl. In particular, no
s-edges are canceled when BlBl+1 is tightened to [BlBl+1]. By construction (see the
proof of Proposition 5.4.3) B0, and hence each Bl, either begins with Es or ends with
�Es. Thus f#(BlBl+1) = f#(Bl)f#(Bl1) and we have shown that BlBl+1 = Bl � Bl+1

for all l. The union of the Bl's is an f#-invariant line in Gs.

We say that a bound that is independent of � as being a uniform bound. As in the
proof of (5), we argue by induction on complexity and the height one case is obvious.
We may therefore assume that (6) holds for paths with complexity lower than �.
There is no loss in assuming that ui is non-trivial and that � = Ei or � = Ei �Ei

for some  � Gi�1. To handle both of these cases simultaneously we write � = Ei�
where either � =  or � =  �Ei. In either case, the complexity of � is smaller than
the complexity of �. We argue by induction on j = height(�).

Step 3: (The case j < s) Suppose that j < s. If k > 0 then Bk�1 is not
entirely canceled when fk(�) = EiB0 : : : Bk�1f

k(�) is tightened to fk#(�). It fol-
lows (Lemma 4.1.1(6)) that f#(�) = E1 � �0 where �0 = [B0f(�)] and hence that
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M(�) � M(�0) + 1. Since the length of �0 is a uniformly bounded multiple of the
length of �, induction on complexity completes the proof.

Step 4: (The case j = s) Suppose that j = s. We will use the observation that
fk#(�) = Ei[B0 : : : Bk�1f

k(�)] = Eif
k
#([B�k : : : B�1�]). Since fk# preserves highest

edges, any cancellation of s-edges when fk(�) is tightened to Eif
k
#([B�k : : : B�1�])

occurs when B�k : : : B�1� is tightened to [B�k : : : B�1�]. We now restrict to k so large
that B�k : : : B�1 contains more s-edges than � does. Decompose � into subpaths
� = �1�2 where �1 is the shortest initial segment that contains each s-edge of �
that is canceled when B�k : : : B�1� is tightened. Then �1 = �B�1

�B�2 : : : �B�(r�1)
�B�
�r

where �B�
�r is an initial segment of �B�r and r � 0. Now � can be obtained from

(Ei
�B�1 : : : �B�r�1)[B�r�1 : : : B�1�] by tightening at the indicated juncture. Applying

fk#, we see that f
k
#(�) is obtained from (E1 �B0 �B1 � � � � �Bk�r�2)f

k
#([B�r�1 : : : B�1�])

by cancelling at the indicated juncture. By construction, the latter term begins
with Bk�r�1 so there is no cancellation at the indicated juncture. Lemma 4.1.1(6)
implies that f r+2# (�) = E�B0 �f

r+2
# ([B�r�1 : : : B�1�]) and hence thatM(�) � maxfr+

2;M([B�r�1 : : : B�1�]g. The path B�r�1 : : : B�1� is obtained from � by removing �1,
adding B�r�1 and perhaps adding part of B�r. If r � 1, then the additional edges
have a uniformly bounded length. If r > 1, then �1, and hence �, contains �B�r+1 and
so the length of the additional edges is a uniformly bounded multiple of the length of
� . In either case, induction on complexity completes the proof.

Step 5: (The case j > s)We now assume that j > s. In this case the splittings of �
produced by Lemma 4.1.4 extend to splittings of �. Since all but the �rst subpath in
any such splitting of � have lower complexity than �, we may assume that � = Ei� �Ej

where height(�) < j. For the same reason, we may also assume that � does not
split at any vertex. Let t = height(uj) and let q =height(�). For the remainder
of the argument we make no use of the fact that i > j. We may therefore argue
symmetrically on i and j.

Denote fm# (uj) by Cm for m � 0 and de�ne Cm for m < 0 as we did for Bl. We

refer to the Bl's as `B-blocks' and the Cm's as `C-blocks'. Now fk#(�) is obtained

from (EiB0 � � � � �Bk�1)f
k
#(�)(

�Ck�1 � � � � � �C0 � �Ej) by cancellation at the two indicated
junctures. Suppose that as part of this cancellation process a subpath of B0 � � � ��Bk�1

that contains at least three B-blocks cancels with a subpath of �Ck�1 � � � � � �C0 that
contains at least three C-blocks. Sublemma 5.5.2 implies that fk#(�), and hence �, is
exceptional. In that case M(�) = 0 and there is nothing to prove. We may therefore
assume that no such cancellation occurs.

If q > maxfs; tg, then splittings of � produced by Lemma 4.1.4 extend to splittings
of � in contradiction to our assumption that � does not split at any vertex. After
interchanging the roles of i and j if necessary, we may assume that s � maxfq; tg
and that any subpath of B0 � � � � �Bk�1 that cancels with a subpath of �Ck�1 � � � � � �C0

contains fewer than 3 B-blocks.
If q < s then all cancellation of s-edges in B0 � � � � � Bk�1 must be with s-
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edges in �Ck�1 � � � � � �C0. It follows that f 4#(�) = [EiB0B1B2B3f
4(� �Ej)] splits as

Ei � [B0B1B2B3f
4(� �Ej)] and the proof concludes as in the j < s case above.

If q = s, then we argue as in the j = s case above. Restrict to k so large
that B�k : : : B�1 contains more s-edges than � does. Decompose � into subpaths
� = �1�2 where �1 is the shortest initial segment that contains each s-edge of �
that is canceled when B�k : : : B�1� is tightened. Then �1 = �B�1

�B�2 : : : �B�(r�1)
�B�
�r

where �B�
�r is an initial segment of �B�r and r � 0. Now � can be obtained from

(Ei
�B�1 : : : �B�r�5)[B�r�5 : : : B�1�] �Ej by tightening at the indicated junctures. Ap-

plying fk# with k � r + 6, we see that fk#(�) is obtained from (E1 � B0 � B1� : : :

�Bk�r�6)f
k
#([B�r�5 : : : B�1�]) ( �Ck�1� : : : � �C0

�Ej) by cancelling at the indicated junc-

tures. By construction, fk#([B�r�5 : : : B�1�])( �Ck�1� : : : � �C0
�Ej) tightens to a path that

begins with Bk�r�5. It follows that f r+6# (�) = E�B0 � f
r+6
# ([B�r�5 : : : B�1� �Ej]) and

hence that M(�) � maxfr + 6;M([B�r�5 : : : B�1� �Ej])g. The proof concludes as in
the j = s case above.

We will need the following technical results in [BFH].

Lemma 5.7.9. Suppose that f : G! G is as in Theorem 5.1.8. There is a constant
C1 so that if ! is a closed path that is not a Nielsen path, � = �!k� is a path and
n > 0, then at most C1 copies of fn#(!) are canceled when fn#(�)f

n
#(!

k)fn#(�) is
tightened to fn#(�).

Proof of Lemma 5.7.9 It is su�cient to consider the case that � is empty. The
proof is by induction on the height of �. If height(�) � height(!), then none of
the highest edges in fn#(!) are canceled during the tightening. We may therefore
assume that height(�) > height(!) and that we have veri�ed the lemma for all �
of lower height. By Lemma 4.1.4 it is su�cient to consider the case that � = Ej�

0

where height(�0) < j. Let Bl = f l#(uj) and Rj = B0 � B1� : : : �Bl � : : : ; the Bl's are

called the blocks of Rj. Then f
n
#(�) is obtained from (EjB0 : : : Bn�1)[f

n
#(�

0)fn#(!
k)]

by tightening at the indicated juncture. By the inductive hypothesis, the number of
copies of fn#(!) that are canceled when fn#(�

0)fn#(!
k) is tightened to [fn#(�

0)fn#(!
k)] is

bounded independently of n; k; �0 and !. Sublemma 5.7.11 below therefore completes
the proof.

Sublemma 5.7.10. If N � Rj and 
N contains at least three blocks of Rj for some

N � 3, then  is a Nielsen path.

Proof of Sublemma 5.7.10 Lifting to the universal cover, there exists ~Rj =
~B0

~B1 : : : where ~f( ~Bl) = ~Bl+1 and there exists a covering translation T corresponding
to  so that the axis of T has an interval I in common with ~Rj that contains three
blocks of ~Rj and three fundamental domains of the axis A(T ) of T . Since T and ~f
both `translate' the initial segments of the highest edges in I (cf. the proof of Sub-
lemma 5.5.2) the two lifts T ~f and ~fT of f agree at a point and so must be equal. We
conclude that T commutes with ~f and hence that  is Nielsen.
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Sublemma 5.7.11. There is a constant K with the following property. If K � Rj,
then  is a Nielsen path.

Proof of Sublemma 5.7.11 The proof is by induction on j, the j = 1 case being
trivial.

If uj has m edges, then Bl can be written as a concatenation of at most m edges
and at most m subpaths of rays Ri with i < j. By the inductive hypothesis, there is
a constant K0 so that if K0 is contained in some Bl then  is a Nielsen path.

Let K = 5K0. If 
K � Rj then either K0 is contained in some Bl or 

K contains
three blocks of Rj. In either case  is a Nielsen path.

6 The Weak Attraction Theorem

We assume throughout this section that O# �xes each element of L(O).
An element of L(O) is said to be topmost if it is not contained in any other element

of L(O). Let �� be the expanding lamination for O�1 that is paired (Lemma 3.2.4)
with �+. The following Weak Attraction Theorem is the main result of this section.
It is an explicit description of the basin of attraction of �+ in the birecurrent elements
of B. In the next section we will exploit the fact that `most' birecurrent paths are
attracted to �+.

Theorem 6.0.1. Suppose that �+ is a topmost element of L(O), that f : G! G is
an improved relative train track map representing O and that Hr is the exponentially
growing stratum that determines �+.Then there exists a subgraph Z such that Z\Gr =
Gr�1 and such that every birecurrent path  � G satis�es exactly one of the following.

1.  is a generic line for ��.

2.  2< Z; �r >

3.  is weakly attracted to �+.

Remark 6.0.2. Suppose that G = Gr and hence that Z = Gr�1. If Hr is not a
geometric stratum, then Lemma 5.1.7 and (eg-ii) imply that < Z; �r > contains the
same bi-in�nite paths as Gr�1. If Hr is a geometric stratum, then (eg-iii) implies that
the set of bi-in�nite paths in < Z; �r > is the union of the bi-in�nite paths in Gr�1

with the circuit �r.

Remark 6.0.3. Suppose that � : S ! S is a homeomorphism of a compact surface
in Thurston normal form and that S0 � S is a proper subsurface that is a pseudo-
Anosov component of �. The geometric analog of Theorem 6.0.1 implies that the
expanding measured foliation F for �jS0 weakly attracts every closed curve that is
not entirely contained in SnS0. If we work in the projective foliation space PF rather
than in B, then F is only certain to attract every simple closed curve that is entirely
contained in S0. Thus the basin of attraction in B can be larger than the basin of
attraction in PF .
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The following proposition is one of the two main steps in proving Theorem 6.0.1.

Proposition 6.0.4. Suppose that f : G! G is an improved relative train track map
representing O, that �+ is a topmost element of L(O) and that Hr is the exponentially
growing stratum that determines �+. Then there is a subgraph Z of G such that:

1. Z \Gr = Gr�1.

2. Z contains every zero stratum and every exponentially growing stratum other
than Hr.

3. f(E) 2< Z; �r > for each edge E in Z.

4. Suppose that � � G is a �nite path whose endpoints are �xed by f . Then
� 2< Z; �r > if and only if � is not weakly attracted to �+.

We will state and prove some preliminary results before beginning the proof of
Proposition 6.0.4.

Lemma 6.0.5. Suppose that f : G ! G is an improved relative train track map,
that Hr is an exponentially growing stratum, that �r � Gr is a indivisible Nielsen path
that intersects Hr non-trivially and that X is a subgraph of G that does not contain
any edges in Hr. Then the set of bi-in�nite elements in < X; �r > determines a closed
subset of BG.

Proof of Lemma 6.0.5 A (not necessarily �nite) path � 2< X; �r > has a locally
de�ned canonical decomposition into subpaths in < X; �r >. More precisely, suppose
that � = : : : aiai+1ai+2 : : : is the decomposition into single edges of G. The ai's can
be grouped into subpaths bj that are either single edges in X or �r or ��r. The bj's are
uniquely determined by the following rule. If (�ai; ai+1) is an illegal turn in Hr, then
(�ai; ai+1) is the illegal turn in either �r or ��r, and ai; ai+1 and some adjacent edges
are grouped into a bj that is �r or ��r respectively. All edges not so grouped, are in
X and determine bj's. Let M be the number of edges in �r. Then the endpoints of
the bj's are separated by at most M edges and the subpath ai�M � � �ai+M determines
whether or not the endpoint shared by ai and ai+1 is an endpoint of some bj. We
say that the endpoints of the bj's are cutting vertices for �. Any subpath of � that is
bounded by cutting vertices is contained in < X; �r >.

Suppose that �i !  in BG and that �i 2< X; �r >. Write  as an increasing
union of �nite subpaths i. After passing to a subsequence, we may assume that i is
a subpath of �i. There is a common subpath of �i and i that is bounded by cutting
vertices in �i and that covers all of i with the exception of at most M edges at the
beginning and end. Thus  can be written as an increasing union of subpaths in
< X; �r >. The canonical decompositions of these subpaths agree on their overlap so
 2< X; �r >.

The following lemma is due to Peter Scott.
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Lemma 6.0.6. If � : F ! F is an automorphism of a �nitely generated free group
and H is a �nitely generated subgroup of F such that �(H) � H, then �(H) = H.
In particular �jH is an automorphism.

Proof of Lemma 6.0.6 (Peter Scott) Suppose at �rst that H is free factor of
F . Then �(H) is a free factor of F and the Kurosh subgroup theorem (see also
Lemma 2.6.2) implies that �(H) is a free factor of H. Since �(H) and H have the
same rank, �(H) = H.

For general H, the LERF property [Hal49] (see also [Sco78] and [Sco85]) implies
that H is a free factor of some �nite index subgroup F 0 of F . The subgroup F 00 =
\i�

i(F 0) is an intersection of subgroups of �xed �nite index and so itself has �nite
index in F . By the Kurosh subgroup theorem, H \ F 00 is a free factor of F 00. By
construction �(F 00) = F 00. Thus �(H \ F 00) � H \ F 00 and, by the special case
considered above, �(H \ F 00) = H \ F 00. Since this subgroup has the same �nite
index in both �(H) and H, the index of �(H) in H must be one. In other words,
�(H) = H.

Corollary 6.0.7. Suppose that f : G! G is an improved relative train track map,
that Hr is an exponentially growing stratum, that �r � Gr is a indivisible Nielsen path
that intersects Hr non-trivially and that X is a subgraph of G that does not contain
any edges in Hr. If f(E) 2< X; �r > for each edge E of X, then f# restricts to a
bijection on the set of bi-in�nite paths in < X; �r > and to a bijection on the set of
�nite paths in < X; �r > whose endpoints are �xed by f .

Proof of Corollary 6.0.7 Suppose that � is a path in < X; �r > with �xed endpoints
and that x is one of the endpoints of � . Let H be the subgroup of �1(G; x) consisting
of those elements represented by closed paths in < X; �r > with basepoint at x and
let � : �1(G; x) ! �1(G; x) be the automorphism determined by f . Our hypotheses
imply that �#(H) � H, so Lemma 6.0.6 implies that �#jH is an automorphism. Let
� be the element of H determined by �f(��) and let � be the closed path in < X; �r >
with basepoint at x whose corresponding element � 2 H satis�es �(�) = �. Then
f#(��) = � and we have shown that f# restricts to a surjection on the set of �nite
paths in < X; �r > whose endpoints are �xed by f . Injectivity is an immediate
consequence of the fact that f is a homotopy equivalence.

Non-contractible components of X that do not contain either endpoint of �r are
permuted by f . The restriction of f to the union of these components is a homotopy
equivalence and so induces a bijection on the set of bi-in�nite paths that they carry.
We may therefore assume that each component of X contains an endpoint of �r. Let
x be the initial endpoint of �r and let H and � be de�ned as above . A circuit in
G can be written as a concatenation of subpaths in < X; �r > if and only if the
conjugacy class that it determines in �1(G; x) contains an element of H. Since �jH
is a homotopy equivalence, f# induces a bijection of these circuits and hence on the
set C of periodic bi-in�nite paths in < X; �r > that they determine. Every bi-in�nite
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path in < X; �r > can be approximated by an element of C. Lemma 6.0.5 therefore
implies that the set of bi-in�nite paths in < X; �r > is the closure of C. The lemma
now follows from the fact that the bijection that f# de�nes on C extends to the closure
of C.

Proof of Proposition 6.0.4 We build Zi = Z \Gi in stages, beginning with Zr =
Gr�1.

Step 1: (On verifying (4)) Before beginning the construction of Z, we make two
general observations about proving (4) for Zi once (3) for Zi is known.

If � 2< Zi; �r >, then fk#(�) 2< Zi; �r > for all k � 0. Since < Zi; �r >
does not contain any r-legal paths with more Hr-edges than are contained in �r, �
is not weakly attracted to �+. Thus we need only prove the if half of (4). The
second observation is that we can replace � by fk#(�) without loss of generality. This
replacement clearly has no e�ect on being weakly attracted to �+, so we need only
check that if fk#(�) 2< Zi; �r > for some k > 0, then � 2< Zi; �r >. This follows
from Lemma 6.0.7 and the fact that � is the only path in G whose endpoints are
�xed by f and that has fk#-image equal to fk#(�).

Step 2: (Zr) Condition (3) for Zr follows from the invariance of Gr�1. Suppose that
� � Gr has �xed endpoints and is not weakly attracted to �+. After replacing � by
some fk#(�) if necessary, we may assume that each f i#(�) contains the same number
of illegal turns in Hr. Increasing k if necessary, Lemma 4.2.6 and the fact that �r
is the unique periodic element of Pr imply that � splits into pieces that are either
r-legal or equal to either �r or ��r. Since � is not weakly attracted to �+, each of the
r-legal pieces must lie in Gr�1 = Zr�1. Thus � 2< Zr�1; �r > and (4) is satis�ed.

Assume now that we have de�ned Zi�1 satisfying (1)-(4) for some i > r. To
complete the inductive step we will de�ne Zi maintaining (2) and then verify (3) and
(4).

Step 3: (The case that Hi is non-exponentially-growing) When Hi is
non-exponentially-growing, Hi is a single edge Ei and f(Ei) = Ei � ui for some closed
path ui whose basepoint is �xed by f . If ui is weakly attracted to �+, then de�ne
Zi = Zi�1. Condition (3) for Zi�1 implies condition (3) for Zi. To verify (4), we
must show that if � � Gi has �xed endpoints and is not weakly attracted to �+,
then � � Gi�1. Suppose to the contrary that � crosses Ei. Since the endpoints of �
are �xed, they are not in the interior of Ei. Lemma 4.1.4 implies that � splits into
subpaths, at least one of which is a basic path of height i. Since ui is weakly attracted
to �+, Lemma 3.1.16 implies that ui is not a Nielsen path. After replacing � by an
iterate, ne-(iii) implies that there is a further splitting of � into pieces, at least one
of which is Ei or �Ei. This contradicts Corollary 4.2.4 and so veri�es (4).

If ui is not weakly attracted to �+, then de�ne Zi = Zi�1 [ Ei. The inductive
hypothesis implies that ui 2< Zi�1; �r > so (3) is satis�ed. Assume that � � Gi has
�xed endpoints and is not weakly attracted to �+. Since � splits into subpaths that
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are either entirely contained in Gi�1 or are basic pieces of height i, we may assume
that � is a basic piece of height i. We may assume further that no iterate of � splits as
a concatenation of two basic paths or as a concatenation of one basic path and a path
in Gi�1. Condition ne-(iii) of Theorem 5.1.5 implies, after replacing � by an iterate
if necessary, that � is an exceptional path of height i; i.e. � = Ei�

k �Ej or Ei��
k �Ej

where j � i, � is a Nielsen path, ui = � l and uj = �m. The inductive hypothesis
implies that � 2< Zi�1; �r >. If i 6= j, then the inductive hypothesis also implies that
Ej 2< Zi�1; �r >. Thus � 2< Zi; �r > and (4) is satis�ed.

Step 4: (The case that Hi is exponentially growing) Suppose that Hi is ex-
ponentially growing. De�ne Zi = Zi�1 [ Hi. For each edge Ej of Hi, f(Ej) =
a1 � b1 � a2 � � � � � am where each al is a subpath in Hi � Zi and each bl � Gi�1. Since
�+ is topmost, each bl is not weakly attracted to �+. If the endpoints of bl are �xed,
then the inductive hypothesis implies that bl 2< Zi�1; �r >. If the endpoints of bl are
not �xed, then bl is contained in a zero stratum and so is contained in Zi�1 by the
inductive hypothesis. This veri�es (3).

Suppose that � � Gi has �xed endpoints and is not weakly attracted to �+.
Lemma 4.2.6 and the assumption that �i is the unique periodic element of Pi imply,
after replacing � by an iterate if necessary, that � splits into pieces that are either
i-legal or equal to �i or ��i. By Lemma 4.2.1, an i-legal path splits into subpaths
cj � Hi � Zi and dj � Gi�1; as in the preceding argument the inductive hypothesis
implies that dj 2< Zi�1; �r >. It therefore su�ces to show that �i 2< Zi; �r >.
Decompose �i = �i�i where �i and �i are i-legal. If the initial endpoint of �i is a
vertex, let E be the initial edge of �i; otherwise, let E be the edge that contains
the initial endpoint of �i. For su�ciently large k, �i is a subpath of fk#(E). Since

fk#(E) 2< Zi; �r > and the initial and terminal segments of �i are in Hi, and so in
particular are not in Gr, �i 2< Zi; �r >. A similar argument holds for �i. Thus �i
and ��i are contained in < Zi; �r >. This completes the proof in the case that Hi is
exponentially growing.

Step 5: (The case that Hi is a zero stratum) If Hi is a zero stratum, then de�ne
Zi = Zi�1[Hi. Theorem 5.1.5 implies that Hi+1 is an exponentially growing stratum
and that Hi is a forest. For each edge Ej of Hi+1, f(Ej) = a1 � b1 � a2� : : : �am where
each al is a subpath in Hi+1 and each bl � Gi. Since �+ is topmost, each bl is not
weakly attracted to �+. Let f�lg be the set of paths in Hi that occur as a bk in the
above decomposition for some f(Ej).

Suppose that P;Q 2 Hi+1 \Hi. We write P � Q if P and Q belong to the same
component of Hi or equivalently if there is a path in Hi that connects P and Q.
There is also an equivalence relation generated by P �0 Q if and only if P and Q are
the endpoints of some �l. If we collapse each component of the forest Hi to a point
then the image of Gi+1 is a graph Ĝi+1 that is homotopy equivalent to Gi+1. We
can also view Ĝi+1 as being obtained from Gi+1n int(Hi) by identifying � equivalent
points in Hi+1\Hi. Let Ĝ

0
i+1 be the graph obtained from Gi+1n int(Hi) by identifying
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�0 equivalent points in Hi+1 \ Hi. Then Ĝi+1 is obtained from Ĝ0
i+1 by identifying

the elements in certain �nite subsets. Each � equivalence class that contains m �0

equivalence classes determines a set of m points in Ĝ0
i+1 that must be identi�ed to

form Ĝi+1. In particular, Ĝ0
i+1 corresponds to a free factor system F of F(Gi+1) that

lies between F(Gi) = F(Gi�1) and F(Gi+1). A bi-in�nite path is carried by F if and
only if it is contained in < (Gi+1 nHi);[�l >. This collection of bi-in�nite paths is
mapped into itself by f#, so F is invariant under the action of an iterate of O. Since
f : G ! G is reduced and F carries the expanding lamination determined by Hi+1,
F = F(Gi+1). This implies that � and �0 must be the same relation.

Condition z-(ii) of Theorem 5.1.5 and the fact that each f(v) is �xed imply that
f(�l) is a path in Gi�1 with �xed endpoints. The inductive hypothesis implies that
f(�l) 2< Zi�1; �r >. Thus �l has a decomposition as an alternating concatenation of
subpaths �j that map into Zi�1 and �j that map to either �r or ��r.

Suppose that �1 and �2 are paths inHi with endpoints in Hi+1\Hi and that �1 and
�2 have decompositions into �j's and �j's as above. We claim that if �1 and �2 have a
common initial endpoint, then [��11 �2] has a decomposition into �j's and �j's as above.
It su�ces to prove that the maximum common initial segment � of �1 and �2 contains
every �j that it intersects. If this fails, then the image of the initial segment of both
�1 n� and �2 n� would complete the partial crossing of �r or ��r begun in the image of
�. By condition eg-(i) of Theorem 5.1.5, �r and ��r have di�erent initial edges so the
partial image can only be completed in one way. Thus the initial segments of �1 n �
and �2 n� have the same image, in contradiction to the fact (z-(ii) of Theorem 5.1.5)
that f jHi is an immersion. This veri�es our claim.

Since � equals �0, every path � � Hi with endpoints in Hi+1\Hi can be expressed
as [b1b2 : : : bm]. The previous paragraph and induction imply that each �k = [b1 : : : bk],
and in particular �, has a decomposition into �j's and �j's and that each �j occurs in
the decomposition of some bl.

We next check that each �j is contained in a single edge of Hi. Suppose to the
contrary that some �j crosses a vertex w. Condition z-(iii) of Theorem 5.1.5 implies
that there is a (possibly trivial) path � that starts at w, ends inHi+1\Hi and intersects
�j only in w. Choose �l that contains �j. The unique path � � Hi that connects the
initial endpoint P of �l to the terminal endpoint Q of � agrees with �l up to w and
then follows � . But then � deviates from �l in the middle of �j, in contradiction to our
observation in the previous paragraph that the maximum common initial subinterval
of � and �l contains each �j that it intersects. We conclude that each �j is contained
in a single edge.
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Q
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��

�l

Given an edge e of Hi, choose �l = �1�1�2�2 : : : that contains it. The endpoints
of e are not contained in the interior of any �j so f(e) 2< Zi�1; �r >. This completes
the proof of (3).

Property (4) for Gi follows from property (4) for Gi�1 and the observation that a
path in Gi with �xed endpoints can not be contained in, and hence can not intersect,
a component of Gi that is mapped o� of itself.

The following proposition is the second main piece of the proof of Theorem 6.0.1.

Proposition 6.0.8. Suppose that Hs is an exponentially growing stratum of an im-
proved relative train track map f : G ! G, that  � Gs is a birecurrent path that is
not contained in Gs�1 and that  is not weakly attracted to the expanding lamination
�+
s associated to Hs. If Hs is non-geometric, then  is a generic line for ��

s . If Hs

is geometric, then either  is a generic line for ��
s or  = �s.

Proof of Proposition 6.0.8 in the geometric caseWe use the notation of De�ni-
tion 5.1.4; in particular, � : S ! S is a pseudo-Anosov homeomorphism, Q is a graph,
A is a collection of annuli, Y = Q[A[S, � : (Y;Q)! (Gs, non-contractible compo-
nents of Gs�1) is a homotopy equivalence and h : Y ! Y is a homotopy equivalence
that satis�es �h ' f�. Let � be a generic line of �+

s .
For every bi-in�nite path � � Gs there is a bi-in�nite path �

� � Y that intersects
@S transversely, that intersects each Ai (if at all) in arcs that run from one component
of @Ai to the other and that satis�es �#(

�) = . If � is birecurrent then either
�� � Gs�1, �

� � S or its intersection with @S decomposes �� into an alternating
concatenation of �nite paths a�i � Y n int(S) and �nite geodesics b�i � S; each a�i
represents a non-trivial element in �1(Y nint(S)) and each b�i represents a non-trivial
element in �1(S; @S).

We assume that h#(�
�) = ((f#(�))

�. In other words, we assume that h#(�
�)

intersects @S and the Ai's as above.
For each b�i and k > 0, hk#(�

�) contains a path in S that is homotopic rel @S to

�k(b�i ). In particular, if � corresponds to a circuit (and so is periodic), then the length
of the components of hk#(�

�) \ S tend to in�nity as k ! 1. Thus �� \ S can not
contain any �nite components and we conclude that �� � S.
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We say that �� is weakly attracted to �� if for each �nite subpath ��0 of �
� and

each � > 0 there exists k > 0 so that hk#(�
�) contains a subpath that is �-parallel to

��0. It is easy to check that �� is weakly attracted to �� if and only if � is weakly
attracted to � and we leave this to the reader. Thus generic lines for �+

s correspond
to generic leaves of the expanding lamination for �. The lemma now follows from
well known properties of the pseudo-Anosov map �. .

The following lemma is a re�nement of Lemma 4.2.5 and is needed for the proof
of Proposition 6.0.8 in the non-geometric case.

Lemma 6.0.9. For any non-initial, non-terminal subpath �0s of �s, there exist posi-
tive integers L < K1 with the following property. If k � K1 and if both � � Gs and
fk#(�) have one illegal turn in Hs, then f

L
#(�) contains �

0
s as an unoriented subpath.

Proof of Lemma 6.0.9 Since Ps is �nite and �s and ��s are the only elements of Ps
on which f# acts periodically, there exists L so that fL#(�) = �s or ��s for all � 2 Ps.
It is therefore su�cient to show that � and some � 2 Ps have a common subpath
�0 that contains all but short (determined by the choice of �0s) initial and terminal
segments of �. After subdividing if necessary, we may assume that each � 2 Ps has
endpoints at vertices.

Suppose that for each k � 1, �k is a path in Gs such that both �k and f
k
#(�k) have

one illegal turn in Hs. After shortening �k, we may assume that fk+1# (�k) is s-legal
and that �k has no splittings. It su�ces to show that, after passing to a subsequence,
� = [1k=1�k is an element of Ps.

Decompose �k as a concatenation �k = �k�k of s-legal subpaths. If the edge length
of the �k's are unbounded, then after passing to a subsequence, we may assume that
the ��k's converge to an in�nite ray ���, in the sense that the length of the maximal
common initial segment of ��k and ��� goes to in�nity as k goes to in�nity. If the length
of the �k's is bounded, then after passing to a subsequence, we may assume that each
��k � ��k+1; in this case, let ��� = [1k=1��k. De�ne �

� similarly and let � = �����. Then
fk#(�) has an illegal turn in Hs for all k and by Lemma 4.2.6 either is an element of
Ps or splits into subpaths, one of which is an element of Ps and the rest of which
are s-legal. But any such splitting induces a splitting on �k for all large k which is
impossible. Thus � = [1k=1�k is an element of Ps.

Proof of Proposition 6.0.8 in the non-geometric case There is no loss in as-
suming that G = Gs and that the endpoints of �s are vertices. After passing to an
iterate if necessary, we may assume that there is an improved relative train track map
and �ltration representing O�1 such that F(Gs�1) is realized by a �ltration element.

The �rst step in the proof is to show that  loses illegal turns in Hs at an expo-
nential rate under the action of the f#. This will be made explicit during the course
of the proof.

Let �0s be a subpath of �s that contains all but a proper initial segment of the �rst
edge of �s and a proper terminal segment of the last edge of �s. Let L and K1 be the
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constants of Lemma 6.0.9. By Lemma 4.2.2 and Corollary 4.2.4, there exists K � K1

so that for any edge E in Hs, every path in G that contains fK�L
# (E) as a subpath is

weakly attracted to �+.
Suppose that 0 is a �nite subpath of  such that f

K
# (0) is a subpath of f

K
# (). We

claim that if 0 contains m illegal turns in Hs, then f
K
# (0) contains at most m� [m

3
]

illegal turns in Hs. Let l be the number of illegal turns that f
K
# (0) has in Hs. Write

0 as a concatenation of subpaths 0 = �1�2 � � ��l where fK# (0) = fK# (�1)f
K
# (�2) : : :

: : : fK# (�l) and where each fK# (�i) contains one illegal turn in Hs. Each �i must
contain at least one illegal turn in Hs since the image of an s-legal path is s-legal. It
therefore su�ces to show that �i�1�i�i+1 contains at least four illegal turns in Hs for
each 2 � i � l � 1.

Let �i = fL#(�i). If �i�1�i�i+1 contains exactly three illegal turns in Hs, then
�i�1�i�i+1 contains exactly three illegal turns in Hs. Lemma 6.0.9 implies that, with
the possible exception of short initial and terminal segments, �i�1�i�i+1 contains a
subpath of the form �1�1�

2�2�
3, where each �i is �s or ��s. Moreover, all of the Hs

edges that are canceled when fK�L(�i�1�i�i+1) is tightened to fK# (�i�1�i�i+1) are
contained in �1; �2 and �3. Lemma 5.1.7 and (eg-(ii)) imply that the endpoints of �s
are distinct and not both contained in non-contractible components of Gs�1. Since
these endpoints are �xed points, they can not be contained in contractible components
of Gs�1. It follows that at least one of �1 or �2 must contain an edge E of Hs. But
then fK# (�i�1�i�i+1) and hence fK# () contains fK�L

# (E) and so is weakly attracted
to �+

s . This contradiction veri�es our claim and completes the �rst step in the proof.
The second step in the proof is to show that for any �nite subpath 1 of  there

exists � � G with a uniformly bounded (i.e. bounded independently of  and 1)
number of Hs edges such that 1 is a subpath of O�k

# (�) in G for some k � 0. If
Gs�1 = ;, then � will be a circuit; if Gs�1 6= ;, then � will be a bi-in�nite path with
both ends in Gs�1.

After extending 1 to a larger subpath of  if necessary, we may assume that fK# (1)
is a subpath of f#(). For future reference, note that if C 0 is a positive integer so
that no path with edge length greater than C 0 has trivial fK# -image, then at most C 0

initial and C 0 terminal edges need to be added to 1 to arrange this property. Let C
be the bounded cancellation constant for fK and let 00 be the subpath of 0 = fK# ()
that is obtained from fK# (1) by removing C initial edges and C terminal edges. Let
02 be the subpath of 0 that is obtained from 00 by adding 2C initial edges and 2C
terminal edges. We claim that fK# (N(1)) � N(02).

88



β

γ

σ

γ

γ

γ

0

2

1f (   )
K

To see this, it is convenient to work in the universal cover �. Choose lifts ~fK :
� ! �, ~1 � ~ and ~00 � ~02 � ~0 = ~fK# (~). Given � 0 2 N(02), choose a lift ~� 0 that

contains ~02. There is a unique bi-in�nite path
~� � � such that ~fK# ( ~�) = ~� 0. Let ~� � �

be the bi-in�nite path connecting the forward end of ~ to the forward end of ~�. Then
~�0 = ~fK# (~�) is the bi- in�nite path connecting the forward end of ~0 to the forward end

to ~� 0. In particular, ~�0 is disjoint from ~02. The bounded cancellation lemma therefore
implies that ~fK(~�) is disjoint from ~fK(~1) and hence that ~� is disjoint from ~1. A
symmetric argument on the backward ends implies that ~� � N(1) as claimed.

After increasing the number of edges in 02 � 0 by at most 2C 0, we may assume
that fK# (02) is a subpath of fK# (0).

The di�erence between the number of illegal turns of fK# (1) inHs and the number
of illegal turns of 02 in Hs is at most 6C + 2C 0. If 1 contains m illegal turns in Hs

and m is su�ciently large, say m > M , then by the �rst step, 02 contains fewer than
m illegal turns in Hs. Iterating this, we conclude that for any 1, there exists k and
a �nite subpath ̂2 � ̂ = fk#() such that fk#(N(1)) � N(̂2) and such that ̂2
contains at most M illegal turns in Hs. Lemma 4.2.2 and Corollary 4.2.4 imply that
the number of Hs-edges in ̂2 is bounded independently of  and 1. If Gs�1 = ;,
then extend ̂2 to a circuit � that crosses each edge at most one more time than ̂2
does. If Gs�1 6= ;, then extend ̂2 to a bi-in�nite path � that crosses an Hs edge at
most two more times than ̂2 does. Since fk#(N(1)) = Ok

#(N(1)), we have shown

that O�k
# (�) 2 O�k

# (N(̂2)) � N(1). This completes the second step.
Let f 0 : G0 ! G0 be an improved relative train track map representing O�1 such

that F(Gs�1) is realized by a �ltration element. For the �nal step, we consider �rst
the case that Gs�1 6= ;. Since F(��) = F(�+) is not carried by F(Gs�1) and since
there are no O�1-invariant free factor systems between F(Gs�1) and f[[Fn]]g, ��

s is
associated to the highest stratum H 0

s0 and F(G0
s0�1) = F(Gs�1). Choose a homo-

topy equivalence h : G ! G0 that respects the markings and so induces the natural
identi�cation of B(G) with B(G0). Since F(G0

s0�1) = F(Gs�1), the bounded cancel-
lation lemma implies that number of H 0

s0 edges in h#(�) is bounded independently
of the path � � Gs�1. Let 0 = h#() � G0. Given a �nite subpath 01 � 0,
choose a �nite subpath 1 �  such that h#(N(1)) � N(01). By the second step,
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there exists � and k for 1 as above so that O�k
# (�) � N(1). Let � 0 = h#(�).

Then (f 0)k#(�
0) = O�k

# h#(�) = h#O
�k
# (�) 2 N(01), or equivalently 

0
1 is a subpath

of (f 0)k#(�
0). There is a positive integer M 0, independent of  and 1, such that � 0

contains fewer than M 0 edges in H 0
s0.

Let �00 � 0 be any �nite subpath that crosses an edge in H 0
s0. Choose a �nite

subpath 01 � 0 that contains at leastM 0+1 copies of �00 and let k and � 0 be as in the
preceding paragraph. At least one of the copies of �00 must be contained in (f 0)k(E 0)
where E 0 is a single edge of H 0

s0 in �
0. This implies that �00 is contained in every generic

line of ��. Since �00 was arbitrary, 0 is a line of ��. Since 0 is birecurrent and is
not contained in G0

s0�1, Lemma 3.1.15 implies that 0 is a generic line of ��
s . Since

 � G and 0 � G0 determine the same line in B,  is a generic line of ��
s .

It remains to consider the case that Gs�1 = ;. As there are only �nitely many
possibilities for � , we may assume that � is independent of 1. Choose h : G ! G0

that respects the markings, let 0 = h#(), let �
0 = h#(�) and let M 0 be the number

of edges in � 0. For any �nite subpath �00 � 0, there is a �nite subpath 01 � 0 that
contains at least 2M 0 + 1 copies of �00.

If O�k
# (� 0) takes on only �nitely many values, then  is the periodic bi-in�nite

path determined by an O-invariant circuit. This contradicts the �rst step in the
proof and we conclude that the number of edges in the circuit O�k

# (� 0) tends to 1
as k tends to 1. It follows that for su�ciently large k, 01 is a subpath of the bi-
in�nite path determined by O�k

# (� 0) that intersects at most two fundamental domains.
In particular 01 is contained in a subpath that is a concatenation of at most 2M 0

segments, each of which is a subset of (f 0)k(E 0) for a single edge E 0 of G0. The proof
now concludes as in the previous case.

The following corollary will be strengthened at the end of the section after we
complete the proof of Theorem 6.0.1. This partial result is used in the proof of
Theorem 6.0.1.

Corollary 6.0.10. Suppose that f : G! G is an improved relative train track map
representing O, that �+ 2 L(O) is associated to the exponentially growing stratum
Hs and that �� 2 L(O�1) is paired with �+. If  � Gs is a bi-in�nite path that is not
a generic line of either �+ or ��, then  is weakly attracted to �+ under the action
of O if and only if  is weakly attracted to �� under the action of O�1.

Proof of Corollary 6.0.10 We may assume that G = Gs, and, after passing to
an iterate if necessary, that there is an improved relative train track map f 0 : G0 !
G0 for O�1 such that F(Gs�1) is realized by a �ltration element. Since F(��) =
F(�+) is not carried by F(Gs�1) and since there are no O�1-invariant free factor
systems between F(Gs�1) and f[[Fn]]g, �� is associated to the highest stratum H 0

s0

and F(G0
s0�1) = F(Gs�1). If  is carried by F(Gs�1) = F(G0

s0�1) or if  is an O-
invariant circuit, then  is not weakly attracted to either �+ or ��. In all other cases,
Proposition 6.0.8 implies that  is weakly attracted to both �+ and ��.
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Corollary 6.0.11. If �� 2 L(O�1) is paired with a topmost lamination �+ 2 L(O),
then �� is topmost.

Proof of Corollary 6.0.11 Choose an improved relative train track map f : G !
G representing an iterate of O, let Hr be the exponentially growing stratum that
determines �+ and let Z be the subgraph of Proposition 6.0.4. Suppose that �+

s and
��
s are paired laminations associated to an exponentially growing stratum Hs with

s > r. Conditions (2) and (3) of Proposition 6.0.4 imply that each generic line  of
�+
s is contained in < Z \Gs; �r >. Choose an Hs-edge E that occurs in�nitely often

(counting orientation) in . A subpath of  that starts at an occurrence of E and
ends just before an occurrence of E de�nes an s-legal circuit 0 that is contained in
< Z\Gs; �r > (because the endpoints of 0 are cutting vertices as de�ned in the proof
of Lemma 3.1.11). Lemma 4.2.1 and Corollary 4.2.4 imply that 0 is weakly attracted
to �+

s under the action of O. Lemma 3.1.16 and Corollary 6.0.10 therefore imply that
0 is weakly attracted to ��

s under the action of O�1. Lemma 6.0.7 implies that the
set of bi-in�nite paths in < Z \ Gs; �r > is O�1-invariant. Lemma 6.0.5 therefore
implies that each generic line of ��

s is contained in < Z; �r >. On the other hand,
the bi-in�nite paths of < Z \Gr; �r > di�er from the bi-in�nite paths of Gr�1 in at
most a circuit, so < Z; �r > does not contain any generic lines of ��. We conclude
that a generic line of �� is not contained in the closure of a generic line of ��

s and
hence that �� is topmost.

Proof of Theorem 6.0.1 Let f : G! G, O, Hr and Z be as in Proposition 6.0.4.
If a generic line of �� is weakly attracted to �+, then �� (being closed and O-

invariant) would contain �+. Lemma 3.1.15 implies that a birecurrent line of ��

is either carried by a strictly smaller free factor system than F(��) or is generic.
Since F(�+) = F(��), each generic line of �+ would be a generic line of �� and
so �+ = ��. This contradicts Proposition 3.3.3 and thereby shows that (1) and (3)
are mutually exclusive. Since the bi-in�nite paths of < Gr�1; �r > and the bi-in�nite
paths of Gr�1 di�er by at most a peripheral curve, (1) and (2) are mutually exclusive.
If  2< Z; �r >, then O

k
#() 2< Z; �r > for all k > 0. Since there is a uniform bound

to the number of Hr-edges in an r-legal path in < Z; �r >,  is not weakly attracted
to �+. We have now shown that (1), (2) and (3) are mutually exclusive.

Let s be the smallest positive value for which  � Gs. Since Gr�1 � Z we may
assume that s � r. The s = r case is proved by Proposition 6.0.8.

Suppose that s > r. If  splits into �nite paths whose endpoints are �xed by f ,
then Proposition 6.0.4 completes the proof. We may therefore assume (Lemma 4.1.4)
that Hs is exponentially growing and that  62< Gs�1; �s >. Let �

+
s and ��

s be the
lamination pair associated to Hs. During the proof of Corollary 6.0.11 we showed
that each generic line of ��

s is contained in < Z; �r >. We may therefore assume that
 is not a generic line of ��

s and hence, by Proposition 6.0.8, is weakly attracted to
�+
s . As in the proof of Proposition 6.0.4, Lemma 6.0.7 allows us to replace  by any

fk#(). We may therefore assume that  contains subpaths of a generic line � of �+
s
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with arbitrarily many Hs-edges. Since f maps the set of endpoints of edges in Hs

into itself, at least one of the vertices is the image of a vertex and is therefore a �xed
point. Lemma 4.2.2 and birecurrence imply that  has a splitting into �nite paths
whose endpoints are �xed by f and again Proposition 6.0.4 completes the proof.

Corollary 6.0.12. If �+ 2 L(O) and �� 2 L(O�1) are paired topmost expanding
laminations and  is a bi-recurrent path that is not a generic line of either �+ or
��, then  is weakly attracted to �+ under the action of O if and only if  is weakly
attracted to �� under the action of O�1.

Proof of Corollary 6.0.12 Choose an improved relative train track map f : G !
G representing an iterate of O, let Hr be the exponentially growing stratum that
determines �+ and let Z be as in Proposition 6.0.1. If  is not weakly attracted to �+

under the action of O, then the same is true for all O�k
# () and so O�k

# () 2< Z; �r >
for all k � 0. Lemma 6.0.5 and the fact that generic leaves of �� are not contained in
< Z; �r > imply that  is not weakly attracted to �� under the action of O�1. The
symmetric argument with the roles of �+ and �� reversed completes the proof.

7 Reduction to UPG(Fn)

In this section we reduce the Tits Alternative for Out(Fn) to Theorem 1.0.2. More
precisely, we prove the following theorem.

Theorem 7.0.1. Suppose that H is a subgroup of Out(Fn) that does not contain a
free subgroup of rank 2. Then there is a �nite index subgroup H0 of H, a �nitely
generated free abelian group A, and a map � : H0 ! A such that Ker(�) is UPG.

We begin by using the Weak Attraction Theorem and Corollary 3.4.3 to analyze
the stabilizers of topmost laminations.

Proposition 7.0.2. Suppose that H is a subgroup of Out(Fn) and that �+ 2 L(O)
and �� 2 L(O�1) are paired topmost laminations for some O 2 H. Then either H
contains a free subgroup of rank two, or at least one of the subgroups, StabH(�

+) or
StabH(�

�), has �nite index.

The proof of Proposition 7.0.2 reduces to the following technical lemma. Before
proving the lemma, we use it to prove the proposition.

Lemma 7.0.3. Suppose that H is a subgroup of Out(Fn), that �+ 2 L(O) and
�� 2 L(O�1) are paired topmost laminations for O 2 H and that f : G ! G is
an improved relative train track map representing O such that (see De�nition 3.2.3)
fF (�+)g = fF (��)g = F(Gr) for some �ltration element Gr. Let Z and �r be as in
Theorem 6.0.1 and let �� be generic lines for ��. Then H has a �nite index subgroup
H0 such that  (�+);  (��) 62< Z; �r > for each  2 H0.
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Proof of Proposition 7.0.2 By Theorem 5.1.5, there is an improved relative train
track map f : G! G and �ltration representing an iterate of O such that fF (�+)g =
fF (��)g = F(Gr) for some �ltration element Gr. LetH0 be the �nite index subgroup
of Lemma 7.0.3 and let  2 H0. Theorem 6.0.1 and Corollary 6.0.12 imply that either
: (i)  (�+) is generic for �+ or for ��; or (ii)  (�+) is weakly attracted to �+ under
the action of O and to �� under the action of O�1. The same statement holds for
 (��). Thus, each  2 H0 satis�es one of the following two conditions.

1. The four laminations  (�+);  (��);�+ and �� are not all distinct.

2.  (�+) and  (��) are weakly attracted to �+ under the action of O and to ��

under the action of O�1

Condition 1 either holds for both  and  �1 or fails for both  and  �1. More-
over, if condition 2 holds for both  and  �1, then  satis�es the hypothesis of
Corollary 3.4.3. Thus either condition 1 holds for all  2 H0, or the hypothesis of
Corollary 3.4.3 are satis�ed for some  2 H0. In the former case, Lemma 7.0.4 below
implies that either StabH0

(�+) or StabH0
(��) has �nite index. In the latter case,

Corollary 3.4.3 implies that H contains a free subgroup of rank two.

Lemma 7.0.4. Suppose that a group H acts on a set Y and that there are points
x; y 2 Y such that

(*) f (x);  (y)g \ fx; yg 6= ;

holds for all  2 H. Then either StabH(x) or StabH(y) has �nite index.

Proof of Lemma 7.0.4 If StabH(x) does not have �nite index, then there exist
hi 2 H; i � 1, such that the hi(x)'s are all distinct; we may assume without loss that
hi(x) 62 fx; yg. Condition (�) implies that each hi(y) is either x or y. Passing to a
subsequence, we may assume that either each hi(y) = x or each hi(y) = y. In the
former case, each h1hi(y) 62 fx; yg and there are at most two values of i for which
h1hi(x) 2 fx; yg. This contradicts (�) and we conclude that each hi(y) = y.

By a completely symmetric argument, we conclude that if StabH(y) does not have
�nite index, then there exist gj 2 H; j � 1, such that the gj(y)'s are distinct elements
of X n fx; yg and such that each gj(x) = x.

But then each g1hi(y) = g1(y) 62 fx; yg and there are at most two values of i for
which g1hi(x) 2 fx; yg. This contradicts (�) and completes the proof.

The proof of Lemma 7.0.3 divides into the geometric and non-geometric cases. We
consider the non-geometric case �rst, using the fact (Lemma 5.1.7) that < Z; �r >
carries the same bi-in�nite paths as a free factor system. The proof is particularly
simple when Rank(H1(Gr)) > Rank(H1(Gr�1))+ 1 and the reader may wish to focus
on this case �rst. For the general case, we pass to �nite covers via Lemma 7.0.5 below
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(which holds trivially with k = 1 in the case that Rank(H1(Gr)) > Rank(H1(Gr�1))+
1).

If ~G is a cover of G and X is a subgraph of G, then we denote the full pre-image
of X by ~X. We denote Euler characteristic by �.

Lemma 7.0.5. Suppose that f : G ! G is an improved relative train track map,
that Hr is an exponentially growing stratum and that Gr is connected. Then there
exists k > 0 and a regular connected k-fold cover ~G such that Rank(H1( ~Gr)) >
Rank(H1( ~Gr�1)) + k. Moreover, we can arrange that every outer automorphism of
Fn �= �1(G) lifts to an outer automorphism of �1( ~G).

Proof of Lemma 7.0.5 If Gr�1 has contractible components then Hr�1 is a zero
stratum and is the union of the contractible components ofGr�1. In that case, rede�ne
the �ltration by declaring each edge ofHr�1 to be an edge ofHr. This may destroy the
relative train track property but f : G ! G is still a topological representativewith
respect to this new shortened �ltration. We may therefore assume that f : G! G is
a topological representative and that each component of Gr�1 is non-contractible.

We may assume that Rank(H1(Gr)) � Rank(H1(Gr�1)) + 1 for otherwise the
lemma is trivially satis�ed with k = 1 and ~G = G. Let m = Rank(H0(Gr�1)) be
the number of components in Gr�1. Lemma 3.2.2 implies that either m � 3 or
Rank(H1(Gr)) = Rank(H1(Gr�1)) + 1 and m = 2.

Choose k1 > m and connected k1-fold covering spaces for each component of
Gr�1. Extend this to a k1-fold covering space Ĝ of G. The key point here is that,
independently of k1, the full pre-image Ĝr�1 of Gr�1 has m components.

Fn has only �nitely many subgroups of index k1, so the intersection N of all such
subgroups is a normal subgroup of �nite index. Let k be the index of N , let ~G be
the regular connected k-fold cover of G corresponding to N , and let k2 be the integer
k
k1
. Then ~G is a k2-fold cover of Ĝ and ~Gr�1 has at most k2m components. It is easy

to see that for all O 2 Out(Fn), N is invariant under the action induced by O on
normal subgroups. In particular, every outer automorphism of �1(G) lifts to an outer
automorphism of �1( ~G). We say that N is characteristic.

To verify the conclusions of the lemma, note that Rank(H1( ~Gi)) =
k � Rank(H1(Gi)) � k � Rank(H0(Gi)) + Rank(H0( ~Gi)). (This follows from � =
Rank(H0)� Rank(H1) and �( ~Gi) = k � �(Gi)). Thus,

Rank(H1( ~Gr))� Rank(H1( ~Gr�1)) =

k � [Rank(H1(Gr))� Rank(H1(Gr�1))] + k � [Rank(H0(Gr�1))� Rank(H0(Gr))]

+[Rank(H0( ~Gr))� Rank(H0( ~Gr�1))]

� k � [Rank(H1(Gr))� Rank(H1(Gr�1))] + k(m� 1) + (1�mk2)

= k � [Rank(H1(Gr))� Rank(H1(Gr�1))] + k[m� 1 +
1

k
�
m

k1
]:
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Since m � 2 and k1 > m, both terms are non-negative. If m � 3, then the second
term is strictly larger than k. If m = 2, then the �rst term equals k and the second
term is positive.

Proof of Lemma 7.0.3 in the non-geometric case Since fF (�+)g = fF (��)g =
F(Gr), Hr is exponentially growing and Gr is connected. Let ~G be a k-fold cover of G
as in Lemma 7.0.5 and let ~�1r; : : : ; ~�

k
r � ~G be the lifts of �r. De�ne H0 � H to be the

�nite index subgroup of elements whose lifts to �1( ~G) act by the identity onH1( ~G;Z2).
If � is a circuit in < Gr�1; �r > that lifts to a circuit ~� in ~G, then ~� can be decomposed
into subpaths that are either single edges in ~Gr�1, some ~�ir or the inverse of some ~�ir.
In particular, the Z2-homology classes generated by all such ~� are contained in a
subspace of H1( ~Gr;Z2) of dimension at most Rank(H1( ~Gr�1)) + k. Lemma 7.0.5
implies that there is a circuit ~� � ~Gr whose Z2-homology class is not represented by
a lift of a circuit in < Gr�1; �r >. Since ~Z \ ~Gr = ~Gr�1, the Z2-homology class of ~�
is not represented by a lift of a circuit in < Z; �r >. Let � � Gr be the projected
image of ~�. For each  2 H0, the Z2-homology class determined by ~ #(~�) can not
be represented by the lift of a circuit in < Z; �r >, so  #(�) 62< Z; �r >. Since
 #(F(Gr)) = fF ( #(�

+))g = fF ( #(�
�))g, every free factor system that contains

 #(�
+) or  #(�

�) must contain  #(�) for every circuit � � Gr. Lemma 5.1.7
therefore implies that  #(�

+) 62< Z; �r > and  #(�
�) 62< Z; �r >.

We now turn to the proof of Lemma 7.0.3 in the case that Hr is a geomet-
ric stratum. The main di�erence between the cases is that we can no longer use
Lemma 5.1.7 to conclude that if  #(�

+) 2< Z; �r > or if  #(�
�) 2< Z; �r > then

 #(�) 2< Z; �r > for every circuit � � Gr. We replace this with Corollary 7.0.8
below.

Suppose that � � G is a bi-in�nite path and that � � G is a circuit. Choose a
lift ~� of � in the universal cover � of G and let T : �! � be the indivisible covering
translation with axis equal to ~�. We say that � is in the span of � if for all positive
integers L, there are lifts ~�i of �, 0 � i � m� 1, such that

(Sp) ~�0 \ ~�1; ~�1 \ ~�2; : : : ; ~�m�2 \ ~�m�1 and ~�m�1 \ T (~�0) each contain at least L
edges.

Lemma 7.0.6. Suppose that f : G! G , Z and �r are as in Theorem 6.0.1. If
� 2< Z; �r > and � � G is in the span of �, then � 2< Z; �r >.

Proof of Lemma 7.0.6. Write ~� = : : :~b�1~b0~b1 : : : where each bj is either a single
edge of Z or is equal to � or ��. We do not assume a priori that this is a decomposition
into subpaths, but there is no loss in assuming that bj 6= �bj. Since the initial edges of
� and of �� lie in Hr and are distinct, no cancellation can occur at the juncture of ~bj
and ~bj+1; we conclude that the ~bj's are subpaths of ~�.
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Let M be the number of edges in �r. Choose ~�i satisfying (Sp) with L = M ;
denote T (~�0) by ~�m. Since ~�i�1 \ ~�i, 1 � i � m, contains at least M edges, there is a
vertex pi 2 ~�i�1 \ ~�i that is a cutting vertex (see the proof of Lemma 6.0.5) for both
~�i�1 and ~�i. For 1 � i � m � 1, let ~i be the subpath of ~�i that is bounded by ~pi
and ~pi+1. Let ~m be the subpath of ~�m that is bounded by ~pm and T (~p1). Then each
i �< Z; � > and � is the circuit obtained by tightening 1 � � � � � m.

Let � : S ! S and � : Y ! Gr be as in the de�nition of geometric stratum.
For each closed geodesic curve �S � S, we say that �#(�S) � Gr is an Hr-geometric
circuit.

Lemma 7.0.7. If Hr is a geometric stratum with generic lines ��, then every Hr-
geometric circuit in Gr is in the span of �+ and in the span of ��.

Proof of Lemma 7.0.7 It su�ces to consider �+. Suppose that an Hr-geometric
circuit � and length L are given. Let �+S and �S be the geodesics is S such that
�#(�

+
S ) = �+ and �#(�S) = �+. We showed during the proof of Proposition 6.0.8

that �+S is a leaf of the expanding lamination �+
S for �. There exists � > 0 and a

length LS so that if a pair of lifts of �+S to the universal cover of S contain �-parallel
subintervals of length LS, then their �#-images in the universal cover � of G have a
common subinterval that contains at least L edges. There exists � > 0 so that any two
lifts of �+S that have points within � of each other, have �-parallel subintervals of length
LS. The lemma now follows from the well known fact that �S is freely homotopic to a
closed curve of the form u0 �s0 �u1 �s1 � � � � �uk�1 �sk�1 where each ui is an interval in �+S
and where each si has length at most �. (To prove this well known fact, note that for
su�ciently small �, the complement SnN�(�

+
S ) of the � neighborhood of the expanding

lamination �+
S in S is a �nite disjoint union of contractible or peripheral sets. The

circuit �S can therefore be homotoped into N�(�
+
S ) and then further homotoped to

have the desired decomposition into subpaths.)

Corollary 7.0.8. Suppose that f : G ! G , Z and �r are as in Theorem 6.0.1,
that Hr is a geometric stratum with generic lines �� and that  2 Out(Fn). If
 #(�

+) 2< Z; �r > or  #(�
�) 2< Z; �r >, then  #(�) 2< Z; �r > for each Hr-

geometric circuit � � Gr.
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Proof of Corollary 7.0.8 Let ~h : � ! � be a lift of a topological representative
h : G ! G representing  . For all L, there exists L1 so that if ~� � � is a path
with edge length at least L1, then ~h#( ~�) is a path with edge length at least L. If
C is the constant of the bounded cancellation lemma applied to ~h : � ! �, and if
~�1 and ~�2 are bi-in�nite paths such that ~�1 \ ~�2 has edge length at least L1, then
~h#(~�1) \ ~h#(~�2) has edge length at least L� 2C.

By Lemma 7.0.7, � is in the span of �+ and in the span of ��. The preceding
argument shows that  #(�) is in the span of  #(�

+) and in the span of  #(�
�).

Lemma 7.0.6 now completes the proof.

The following lemma is a modi�cation of Lemma 7.0.5. We use the notation of
De�nition 5.1.4. Let @AS be the union of the components ��1; : : : ; �

�
m of @S. Every

regular cover ~G of G determines a regular cover ~S of S; we denote the full pre-image
of @AS by @A ~S.

Lemma 7.0.9. If Hr is a geometric stratum, then there is a regular connected k-fold
cover ~G such that the induced cover ~S of S satis�es Rank(H1( ~S))�Rank(H1(@A ~S)) >
k. Moreover, every outer automorphism of Fn �= �1(G) lifts to an outer automorphism
of �1( ~G).

Proof of Lemma 7.0.9 If S is S2 with m + 1 disks removed, then Rank(H1(S))�
Rank(H1(@AS)) = 0. If S is a Mobius band with m disks removed, then Rank(H1(S))
�Rank(H1(@AS)) = 1. In all other cases, Rank(H1(S))�Rank(H1(@AS)) � 2 and we
may choose k = 1 and ~G = G. Since S supports a pseudo-Anosov homeomorphism,
m � 2 and m = 2 only if S is a Mobius band with 2 disks removed. (This last fact
is well known; it follows from Lemma 3.2.2 and the fact that if S is S2 with three
disks removed or if S is the Mobius band with one disk removed, then S deformation
retracts to a one complex made up of @AS and one edge.)

Choose elements ci 2 �1(G), 1 � i � m, whose associated circuit is �i. For j � 1,
denote the concatenation of j copies of ci by c

j
i . Since Fn is residually �nite, there

is a �nite index normal subgroup N that does not contain cji for 1 � i � m and
1 � j � 4, and therefore does not contain any element conjugate to such cji . If

~G is
the regular connected �nite cover of G corresponding to N and if the closed path that
goes k times around �i lifts to a closed circuit in ~G, then k � 5. Thus, if q : ~S ! S is
the covering space of S induced by ~G, then the restriction of q to any component of
@A ~S is at least a �ve fold cover. It follows that Rank(H0(@A ~S)) �

k
5
Rank(H0(@AS)).

As noted in the proof of Lemma 7.0.5, after passing to a further cover if necessary,
we may assume that N is characteristic.

Let m = Rank(H0(@AS)) be the number of components of @AS; since S is con-
nected H0(S) = 1. As in the proof of Lemma 7.0.5,

Rank(H1( ~S))� Rank(H1(@A ~S))

= k � [Rank(H1(S))� Rank(H1(@AS))] + k � [Rank(H0(@AS))� Rank(H0(S))]
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+[Rank(H0( ~S))� Rank(H0(~@AS))]

� k � [Rank(H1(S))� Rank(H1(@AS))] + k(m� 1) + (1�
mk

5
)

= k � [Rank(H1(S))� Rank(H1(@AS))] + k[m� 1 +
1

k
�
m

5
]:

Both terms are non-negative. If m � 3, then the second term is strictly larger
than k. If m = 2, then the �rst term equals k and the second term is positive.

Proof of Lemma 7.0.3 in the geometric case The proof is now essentially the
same as in the non-geometric case. Let ~G be a covering space of G as in Lemma 7.0.9
and let H0 be the �nite index subgroup of H whose lifts to �1( ~G) act by the identity
on H1( ~G;Z2). Since @S = @AS [ ��, there are at most k components in @ ~S n @A ~S.
It is therefore possible to choose a circuit ~�S in ~S whose Z2-homology class is not
represented by peripheral curves. There are induced covering spaces ~Y ; ~Q and ~S and
there is an induced homotopy equivalence ~� : Y ! ~G. The peripheral homology
H1(@A ~S;Z2) is a direct summand of the homology H1( ~S;Z2); H1( ~Y ;Z2) is formed
from H1( ~S;Z2)

L
H1( ~Q;Z2) by identifying H1(@A ~S;Z2) with its image in H1( ~Q;Z2).

It follows that ~� = ~�#(~�S) determines a non-zero element of H1( ~Gr;Z2) that is not
represented by a lift of a circuit in < Gr�1; �r > and hence is not represented by a lift
of a circuit in < Z; �r >. If � is the projection of ~�, then  #(�) is not in < Z; �r >
and Corollary 7.0.8 completes the proof.

Lemma 7.0.10. Assume that H � Out(Fn) does not contain a free subgroup of rank
two. Then there is a �nite collection L of attracting laminations for elements of
H and a �nite index subgroup H0 of H that stabilizes each element of L with the
following feature. If  2 H0 and if �+ 2 L( ) and �� 2 L( �1) are paired topmost
laminations, then at least one of �+ and �� is in L.

Proof of Lemma 7.0.10 Among all free factor systems other than f[[Fn]]g that
are invariant under the action of a �nite index subgroup of H, choose one, F1, of
maximal complexity (as de�ned in subsection 2.6). If H0 is a �nite index subgroup
of H that stabilizes F1, then, by induction applied to H0jF1, we may assume that
there is a �nite collection L1 of attracting laminations that are carried by F1 and
a �nite index subgroup (also called H0) that stabilizes each element of L1 with the
following feature. If  2 H0 and if �+ 2 L( ) and �� 2 L( �1) are paired topmost
laminations that are carried by F1, then either �+ 2 L1 or �

� 2 L1.
If every topmost lamination pair for elements of H0 is carried by F1, then we are

done. Otherwise, choose O 2 H0 and a topmost lamination pair �+ 2 L(O) and
�� 2 L(O) that is not carried by F1. Proposition 7.0.2 implies, after passing to a
smaller �nite index subgroup if necessary, that at least one of �+ or �� is stabilized
by H0. We assume without loss that �+ is stabilized by H0; if possible, choose H0 to
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stabilize both �+ and ��. De�ne L to be the union of L1 with �+ and with �� if it
is stabilized by H0.

Choose an improved relative train track map f : G ! G for some iterate of O
such that F1 = F(Gl) for some �ltration element Gl. Since F1 and �+ are both
H0-invariant, so is the unique smallest free factor system containing F1 and carrying
�+. Our choice of F1 therefore guarantees that this smallest free factor system is
f[[Fn]]g. It follows that �+ is associated to the highest stratum Gr = G.

Suppose that  2 H0 and that �+ 2 L( ) and �� 2 L( �1) are paired topmost
laminations. If �� are carried by F1, then either �+ 2 L1 � L or �� 2 L1 � L.
Suppose then that �� are not carried by F1. Proposition 7.0.2 implies that either �+

or ��, say ��, is stabilized by a �nite index subgroup of H0. After replacing f by
an iterate if necessary, f# stabilizes ��.

Let �� be a generic line for ��. Since f[[Fn]]g is the only free factor system that
contains F1 and carries ��, �� 6� Gr�1. Theorem 6.0.1 and Remark 6.0.2 therefore
imply that either �� is ��-generic or �� is weakly attracted to �+ under the action of
f#. In the former case, �� = �� 2 L. In the latter case, every subpath of a generic
line + of �+ is contained in some line fm# (�

�) of ��, so + is a line in ��. By
our previous arguments,  is represented by an improved relative train track map in
which �� is associated to the highest stratum and in which the next highest stratum
realizes F1. Since 

+ is not carried by F1, Lemma 3.1.15 implies that + is a generic
line for �� and hence that �+ = �� 2 L.

Proof of Theorem 7.0.1 Let L = f�1; : : :�kg and H0 be as in Lemma 7.0.10.
De�ne � =

L
PF�+

i

: H0 ! Z
k where each PF�+

i

is as in Corollary 3.3.1. By

Corollary 5.7.6, it su�ces to show that Ker(�) is contained in PG(Fn). If  2
H0 is not in PG(Fn), then there exist paired topmost laminations �+ 2 L( ) and
�� 2 L( ). Proposition 3.3.3 implies that neither PF�+( ) nor PF��( ) is zero so
Lemma 7.0.10 implies that  62 Ker(�).
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