Last update:
Fri Oct 13 09:02:38 MDT 2017
Vassili N. Kolokoltsov Introduction . . . . . . . . . . . . . . 1--16 Vassili N. Kolokoltsov Gaussian diffusions . . . . . . . . . . 17--39 Vassili N. Kolokoltsov Boundary value problem for Hamiltonian systems . . . . . . . . . . . . . . . . 40--96 Vassili N. Kolokoltsov Semiclassical approximation for regular diffusion . . . . . . . . . . . . . . . 97--135 Vassili N. Kolokoltsov Invariant degenerate diffusion on cotangent bundles . . . . . . . . . . . 136--145 Vassili N. Kolokoltsov Transition probability densities for stable jump-diffusions . . . . . . . . . 146--190 Vassili N. Kolokoltsov Semiclassical asymptotics for the localised Feller--Courr\`ege processes 191--222 Vassili N. Kolokoltsov Complex stochastic diffusion or stochastic Schrödinger equation . . . . . 223--238 Vassili N. Kolokoltsov Some topics in semiclassical spectral analysis . . . . . . . . . . . . . . . . 239--254 Vassili N. Kolokoltsov Path integration for the Schrödinger, heat and complex diffusion equations . . 255--279
Dieter A. Wolf-Gladrow 1. Introduction . . . . . . . . . . . . 1--13 Dieter A. Wolf-Gladrow 2. Cellular Automata . . . . . . . . . . 15--37 Dieter A. Wolf-Gladrow 3. Lattice-gas cellular automata . . . . 39--138 Dieter A. Wolf-Gladrow 4. Some statistical mechanics . . . . . 139--158 Dieter A. Wolf-Gladrow 5. Lattice Boltzmann Models . . . . . . 159--246 Dieter A. Wolf-Gladrow 6. Appendix . . . . . . . . . . . . . . 247--270 Dieter A. Wolf-Gladrow Subject Index . . . . . . . . . . . . . 271--274 Dieter A. Wolf-Gladrow References . . . . . . . . . . . . . . . 275--308
Vojislav Mari\'c Introduction . . . . . . . . . . . . . . 1--8 Vojislav Mari\'c Existence of regular solutions . . . . . 9--47 Vojislav Mari\'c Asymptotic behaviour of regular solutions . . . . . . . . . . . . . . . 49--70 Vojislav Mari\'c Equations of Thomas--Fermi type . . . . 71--104 Vojislav Mari\'c An equation arising in boundary-layer theory . . . . . . . . . . . . . . . . . 105--114
Peter Kravanja and Marc Van Barel Zeros of analytic functions . . . . . . 1--59 Peter Kravanja and Marc Van Barel Clusters of zeros of analytic functions 61--81 Peter Kravanja and Marc Van Barel Zeros and poles of meromorphic functions 83--89 Peter Kravanja and Marc Van Barel Systems of analytic equations . . . . . 91--103
P. Del Moral and L. Miclo Branching and interacting particle systems approximations of Feynman--Kac formulae with applications to non-linear filtering . . . . . . . . . . . . . . . 1--145 Nathalie Eisenbaum Exponential inequalities for Bessel processes . . . . . . . . . . . . . . . 146--150 D. Khoshnevisan On sums of iid random variables indexed by $N$ parameters . . . . . . . . . . . 151--156 Stéphane Attal and Robin L. Hudson Series of iterated quantum stochastic integrals . . . . . . . . . . . . . . . 157--170 Jay Rosen and Haya Kaspi $p$-Variation for families of local times on lines . . . . . . . . . . . . . 171--184 Zbigniew J. Jurek and Liming Wu Large deviations for some Poisson random integrals . . . . . . . . . . . . . . . 185--197 Laurent Denis and Axel Grorud and Monique Pontier Formes de Dirichlet sur un Espace de Wiener--Poisson. Application au grossissement de filtration. (French) [] 198--217 A. Maitra and W. Sudderth Saturations of gambling houses . . . . . 218--238 Simon C. Harris Convergence of a `Gibbs--Boltzmann' random measure for a typed branching diffusion . . . . . . . . . . . . . . . 239--256 Masao Nagasawa and Hiroshi Tanaka Time dependent subordination and Markov processes with jumps . . . . . . . . . . 257--288 David G. Hobson Marked excursions and random trees . . . 289--301 Laurent Serlet Laws of the iterated logarithm for the Brownian snake . . . . . . . . . . . . . 302--312 Mireille Capitaine On the Onsager--Machlup functional for elliptic diffusion processes . . . . . . 313--328 Yaozhong Hu A unified approach to several inequalities for Gaussian and diffusion measures . . . . . . . . . . . . . . . . 329--335 Laurent Miclo and Cyril Roberto Trous spectraux pour certains algorithmes de Metropolis sur $ \mathbb {R} $. (French) [] . . . . . . . . . . . 336--352 Frédéric Mouton Comportement asymptotique des fonctions harmoniques sur les arbres. (French) [] 353--373 Y. Isozaki and S. Kotani Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion . . . . . 374--387 Siva Athreya Monotonicity property for a class of semilinear partial differential equations . . . . . . . . . . . . . . . 388--392 Davar Khoshnevisan and Zhan Shi Fast sets and points for fractional Brownian motion . . . . . . . . . . . . 393--416 L. Vostrikova and M. Yor Some invariance properties (of the laws) of Ocone's martingales . . . . . . . . . 417--431
Siegfried Graf and Harald Luschgy Introduction . . . . . . . . . . . . . . 1--5 Siegfried Graf and Harald Luschgy General properties of the quantization for probability distributions . . . . . 7--75 Siegfried Graf and Harald Luschgy Asymptotic quantization for nonsingular probability distributions . . . . . . . 77--154 Siegfried Graf and Harald Luschgy Asymptotic quantization for singular probability distributions . . . . . . . 155--207
Tim Hsu Introduction . . . . . . . . . . . . . . 1--8 Tim Hsu Background material . . . . . . . . . . 9--26 Tim Hsu Quilts . . . . . . . . . . . . . . . . . 28--53 Tim Hsu Norton systems and their quilts . . . . 55--70 Tim Hsu Examples of quilts . . . . . . . . . . . 71--79 Tim Hsu The combinatorics of quilts . . . . . . 81--91 Tim Hsu Classical interpretations of quilts . . 93--98 Tim Hsu Presentations and the structure problem 100--117 Tim Hsu Small snug quilts . . . . . . . . . . . 119--125 Tim Hsu Monodromy systems . . . . . . . . . . . 127--131 Tim Hsu Quilts for groups involved in the monster . . . . . . . . . . . . . . . . 133--149 Tim Hsu Some results on the structure problem 151--156 Tim Hsu Further directions . . . . . . . . . . . 157--178
Karsten Keller Introduction . . . . . . . . . . . . . . 1--23 Karsten Keller Abstract Julia sets . . . . . . . . . . 25--71 Karsten Keller The Abstract Mandelbrot set . . . . . . 73--139 Karsten Keller Abstract and concrete theory . . . . . . 141--180
Klaus Ritter Introduction . . . . . . . . . . . . . . 1--9 Klaus Ritter Linear problems: Definitions and a classical example . . . . . . . . . . . 11--31 Klaus Ritter Second-order results for linear problems 33--65 Klaus Ritter Integration and approximation of univariate functions . . . . . . . . . . 67--121 Klaus Ritter Linear problems for univariate functions with noisy data . . . . . . . . . . . . 123--131 Klaus Ritter Integration and approximation of multivariate functions . . . . . . . . . 133--182 Klaus Ritter Nonlinear methods for linear problems 183--211 Klaus Ritter Nonlinear problems . . . . . . . . . . . 213--225
Antonio Fasano Some general facts about filtration through porous media . . . . . . . . . . 1--8 Magne S. Espedal and Kenneth Hvistendahl Karlsen Numerical solution of reservoir flow models based on large time step operator splitting algorithms . . . . . . . . . . 9--77 Antonio Fasano Filtration problems in various industrial processes . . . . . . . . . . 79--126 Andro Mikeli\'c Homogenization theory and applications to filtration through porous media . . . 127--214
Dmitri R. Yafaev Basic concepts . . . . . . . . . . . . . 1--13 Dmitri R. Yafaev Short-range interactions. asymptotic completeness . . . . . . . . . . . . . . 14--23 Dmitri R. Yafaev Short-range interactions. Miscellaneous 24--29 Dmitri R. Yafaev Long-range interactions. The scheme of smooth perturbations . . . . . . . . . . 30--39 Dmitri R. Yafaev The generalized Fourier transform . . . 40--46 Dmitri R. Yafaev Long-range matrix potentials . . . . . . 47--52 Dmitri R. Yafaev A stationary representation . . . . . . 53--58 Dmitri R. Yafaev The short-range case . . . . . . . . . . 59--66 Dmitri R. Yafaev The long-range case . . . . . . . . . . 67--79 Dmitri R. Yafaev The relative scattering matrix . . . . . 80--85 Dmitri R. Yafaev Setting the scattering problem . . . . . 86--95 Dmitri R. Yafaev Resolvent equations for three-particle systems . . . . . . . . . . . . . . . . 96--105 Dmitri R. Yafaev Asymptotic completeness. A sketch of proof . . . . . . . . . . . . . . . . . 106--117 Dmitri R. Yafaev The scattering matrix and eigenfunctions for multiparticle systems . . . . . . . 118--127 Dmitri R. Yafaev New channels of scattering . . . . . . . 128--136 Dmitri R. Yafaev The Heisenberg model . . . . . . . . . . 137--144 Dmitri R. Yafaev Infinite obstacle scattering . . . . . . 145--153
Bengt Ove Turesson Preliminaries . . . . . . . . . . . . . 1--14 Bengt Ove Turesson Sobolev spaces . . . . . . . . . . . . . 15--68 Bengt Ove Turesson Potential theory . . . . . . . . . . . . 69--140 Bengt Ove Turesson Applications of potential theory to Sobolev spaces . . . . . . . . . . . . . 141--162
Seiichiro Wakabayashi Hyperfunctions . . . . . . . . . . . . . 5--39 Seiichiro Wakabayashi Basic calculus of Fourier integral operators and pseudodifferential operators . . . . . . . . . . . . . . . 41--114 Seiichiro Wakabayashi Analytic wave front sets and microfunctions . . . . . . . . . . . . . 115--204 Seiichiro Wakabayashi Microlocal uniqueness . . . . . . . . . 205--258 Seiichiro Wakabayashi Local solvability . . . . . . . . . . . 259--293
Michel Emery Introduction . . . . . . . . . . . . . . 3--4 Michel Emery Variétés, vecteurs, covecteurs, diffuseurs, codiffuseurs. (French) [] 5--21 Michel Emery Semimartingales dans une variété et géométrie d'ordre 2. (French) [] . . . . . 22--37 Michel Emery Connexions et martingales. (French) [] 38--51 Michel Emery Fonctions convexes et comportement des martingales. (French) [] . . . . . . . . 52--72 Michel Emery Mouvements browniens et applications harmoniques. (French) [] . . . . . . . . 73--84 Arkadi Nemirovski Preface . . . . . . . . . . . . . . . . 88--88 Arkadi Nemirovski Estimating regression functions from Hölder balls . . . . . . . . . . . . . . 89--112 Arkadi Nemirovski Estimating regression functions from Sobolev balls . . . . . . . . . . . . . 113--131 Arkadi Nemirovski Spatial adaptive estimation on Sobolev balls . . . . . . . . . . . . . . . . . 132--154 Arkadi Nemirovski Estimating signals satisfying differential inequalities . . . . . . . 155--182 Arkadi Nemirovski Aggregation of estimates, I . . . . . . 183--206 Arkadi Nemirovski Aggregation of estimates, II . . . . . . 207--227 Arkadi Nemirovski Estimating functionals, I . . . . . . . 228--257 Arkadi Nemirovski Estimating functionals, II . . . . . . . 258--277 Dan Voiculescu Introduction . . . . . . . . . . . . . . 283--284 Dan Voiculescu Noncommutative probability and operator algebra background . . . . . . . . . . . 284--294 Dan Voiculescu Addition of freely independent noncommutative random variables . . . . 294--308 Dan Voiculescu Multiplication of freely independent noncommutative random variables . . . . 308--313 Dan Voiculescu Generalized canonical form, noncrossing partitions . . . . . . . . . . . . . . . 313--316
Rainer E. Burkard Trees and paths: graph optimisation problems with industrial applications 1--38 Vincenzo Capasso Mathematical models for polymer crystallization processes . . . . . . . 39--67 P. Deuflhard Differential equations in technology and medicine: Computational concepts, adaptive algorithms, and virtual labs 69--125 Heinz W. Engl Inverse problems and their regularization . . . . . . . . . . . . . 127--150 Antony Jameson and Luigi Martinelli Aerodynamic shape optimization techniques based on control theory . . . 151--221 J.-L. Lions Complexity in industrial problems. Some remarks . . . . . . . . . . . . . . . . 223--266 K. Laevsky and B. J. van der Linden and R. M. M. Mattheij Flow and heat transfer in pressing of glass products . . . . . . . . . . . . . 267--285 J.-W. He and M. Chevalier and R. Glowinski and R. Metcalfe and A. Nordlander and J. Periaux Drag reduction by active control for flow past cylinders . . . . . . . . . . 287--363 Gilbert Strang Signal processing for everyone . . . . . 366--412
Arrigo Cellina Introduction . . . . . . . . . . . . . . 1--5 Bernd Kawohl Some nonconvex shape optimization problems . . . . . . . . . . . . . . . . 7--46 Luc Tartar An introduction to the homogenization method in optimal design . . . . . . . . 47--156 Jean-Paul Zolésio Shape analysis and weak flow . . . . . . 157--341 Olivier Pironneau Optimal shape design by local boundary variations . . . . . . . . . . . . . . . 343--384
Eric Lombardi Introduction . . . . . . . . . . . . . . 1--19 Eric Lombardi `Exponential tools' for evaluating oscillatory integrals . . . . . . . . . 22--76 Eric Lombardi Resonances of reversible vector fields 78--100 Eric Lombardi Analytic description of periodic orbits bifurcating from a pair of simple purely imaginary eigenvalues . . . . . . . . . 101--122 Eric Lombardi Constructive Floquet theory for periodic matrices near a constant one . . . . . . 123--134 Eric Lombardi Inversion of affine equations around reversible homoclinic connections . . . 135--184 Eric Lombardi The $ 0^{2+} i \omega $ resonance . . . 186--325 Eric Lombardi The $ 0^{2+} i \omega $ resonance in infinite dimensions. Application to water waves . . . . . . . . . . . . . . 327--357 Eric Lombardi The $ (i \omega_0)^2 i \omega_1 $ resonance . . . . . . . . . . . . . . . 359--403
André Unterberger Introduction . . . . . . . . . . . . . . 1--9 André Unterberger Distributions associated with the non-unitary principal series . . . . . . 11--15 André Unterberger Modular distributions . . . . . . . . . 17--23 André Unterberger The principal series of $ {\rm SL}(2, \mathbb {R}) $ and the Radon transform 25--31 André Unterberger Another look at the composition of Weyl symbols . . . . . . . . . . . . . . . . 33--44 André Unterberger The Roelcke--Selberg decomposition and the Radon transform . . . . . . . . . . 45--59 André Unterberger Recovering the Roelcke--Selberg coefficients of a function in $ L^2 (\Gamma \setminus \Pi) $ . . . . . . . . 61--68 André Unterberger The ``product'' of two Eisenstein distributions . . . . . . . . . . . . . 69--75 André Unterberger The Roelcke--Selberg expansion of the product of two Eisenstein series: the continuous part . . . . . . . . . . . . 77--90 André Unterberger A digression on Kloosterman sums . . . . 91--96 André Unterberger The Roelcke--Selberg expansion of the product of two Eisenstein series: the discrete part . . . . . . . . . . . . . 97--109 André Unterberger The expansion of the Poisson bracket of two Eisenstein series . . . . . . . . . 111--117 André Unterberger Automorphic distributions on $ \mathbb {R}^2 $ . . . . . . . . . . . . . . . . 119--130 André Unterberger The Hecke decomposition of products or Poisson brackets of two Eisenstein series . . . . . . . . . . . . . . . . . 131--147 André Unterberger A generating series of sorts for Maass cusp-forms . . . . . . . . . . . . . . . 149--161 André Unterberger Some arithmetic distributions . . . . . 163--176 André Unterberger Quantization, products and Poisson brackets . . . . . . . . . . . . . . . . 177--190 André Unterberger Moving to the forward light-cone: the Lax--Phillips theory revisited . . . . . 191--212 André Unterberger Automorphic functions associated with quadratic $ {\rm PSL}(2, \mathbb {Z}) $-orbits in $ P_1 (\mathbb {R}) $ . . . 213--230 André Unterberger Quadratic orbits: a dual problem . . . . 231--246
Lutz Habermann Preliminaries . . . . . . . . . . . . . 1--9 Lutz Habermann A canonical metric for flat conformal manifolds . . . . . . . . . . . . . . . 11--31 Lutz Habermann Kleinian groups and moduli spaces . . . 33--53 Lutz Habermann Asymptotics: The flat case . . . . . . . 55--82 Lutz Habermann Generalization in low dimensions . . . . 83--100 Lutz Habermann The moduli space of all conformal structures . . . . . . . . . . . . . . . 101--107
Markus Kunze Introduction . . . . . . . . . . . . . . 1--6 Markus Kunze Some general theory of differential inclusions . . . . . . . . . . . . . . . 7--18 Markus Kunze Bounded, unbounded, periodic, and almost periodic solutions . . . . . . . . . . . 19--61 Markus Kunze Lyapunov exponents for non-smooth dynamical systems . . . . . . . . . . . 63--140 Markus Kunze On the application of Conley index theory to non-smooth dynamical systems 141--162 Markus Kunze On the application of KAM theory to non-smooth dynamical systems . . . . . . 163--184 Markus Kunze Planar non-smooth dynamical systems . . 185--196 Markus Kunze Melnikov's method for non-smooth dynamical systems . . . . . . . . . . . 197--201 Markus Kunze Further topics and notes . . . . . . . . 203--209
M. Anttila The transportation cost for the cube . . 1--11 J. Arias-de-Reyna and R. Villa The uniform concentration of measure phenomenon in $ \ell_p^n $ $ (1 \leq p \leq 2) $ . . . . . . . . . . . . . . . 13--18 G. Schechtman An editorial comment on the preceding paper . . . . . . . . . . . . . . . . . 19--20 K. Ball A remark on the slicing problem . . . . 21--26 S. G. Bobkov Remarks on the growth of $ L^p $-norms of polynomials . . . . . . . . . . . . . 27--35 J. Bourgain Positive Lyapounov exponents for most energies . . . . . . . . . . . . . . . . 37--66 J. Bourgain and S. Jitomirskaya Anderson localization for the band model 67--79 A. A. Giannopoulos and V. D. Milman and M. Rudelson Convex bodies with minimal mean width 81--93 O. Guédon and A. E. Litvak Euclidean projections of a $p$-convex body . . . . . . . . . . . . . . . . . . 95--108 B. Klartag Remarks on Minkowski symmetrizations . . 109--117 A. Koldobsky and M. Lifshits Average volume of sections of star bodies . . . . . . . . . . . . . . . . . 119--146 R. Lata\la and K. Oleszkiewicz Between Sobolev and Poincaré . . . . . . 147--168 A. E. Litvak and N. Tomczak-Jaegermann Random aspects of high-dimensional convex bodies . . . . . . . . . . . . . 169--190 V. D. Milman and S. J. Szarek A geometric lemma and duality of entropy numbers . . . . . . . . . . . . . . . . 191--222 V. D. Milman and N. Tomczak-Jaegermann Stabilized asymptotic structures and envelopes in Banach spaces . . . . . . . 223--237 G. Paouris On the isotropic constant of Non-symmetric convex bodies . . . . . . 239--243 G. Schechtman and J. Zinn Concentration on the $ \ell_p^n $ ball 245--256 S. J. Szarek and D. Voiculescu Shannon's entropy power inequality via restricted Minkowski sums . . . . . . . 257--262 R. Wagner Notes on an inequality by Pisier for functions on the discrete cube . . . . . 263--268 A. Zvavitch More on embedding subspaces of $ L_p $ into $ \ell_p^N $, $ 0 < p < 1 $ . . . . . 269--280
Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Introduction . . . . . . . . . . . . . . vii--xiii Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Topology of involutions . . . . . . . . 1--28 Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Integral lattices and quadratic forms 29--52 Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Algebraic surfaces . . . . . . . . . . . 53--78 Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Real surfaces: the topological aspects 79--87 Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Summary: Deformation Classes . . . . . . 88--96 Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Topology of real Enriques surfaces . . . 97--126 Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Moduli of real Enriques surfaces . . . . 127--144 Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Deformation types: the hyperbolic and parabolic cases . . . . . . . . . . . . 145--168 Alexander Degtyarev and Ilia Itenberg and Viatcheslav Kharlamov Deformation types: the elliptic and parabolic cases . . . . . . . . . . . . 169--190
Lars Winther Christensen Introduction . . . . . . . . . . . . . . 1--2 Lars Winther Christensen Synopsis . . . . . . . . . . . . . . . . 3--8 Lars Winther Christensen Conventions and prerequisites . . . . . 9--15 Lars Winther Christensen The classical Gorenstein dimension . . . 17--40 Lars Winther Christensen $G$-dimension and reflexive complexes 41--63 Lars Winther Christensen Auslander categories . . . . . . . . . . 65--90 Lars Winther Christensen $G$-projectivity . . . . . . . . . . . . 91--112 Lars Winther Christensen $G$-flatness . . . . . . . . . . . . . . 113--134 Lars Winther Christensen $G$-injectivity . . . . . . . . . . . . 135--158
Michael R\ru\vzi\vcka Modeling of electrorheological fluids 1--37 Michael R\ru\vzi\vcka Mathematical framework . . . . . . . . . 39--59 Michael R\ru\vzi\vcka Electrorheological fluids with shear dependent viscosities: Steady flows . . 61--103 Michael R\ru\vzi\vcka Electrorheological fluids with shear dependent viscosities: Unsteady flows 105--151
Martin Fuchs and Gregory Seregin Introduction . . . . . . . . . . . . . . 1--4 Martin Fuchs and Gregory Seregin Weak solutions to boundary value problems in the deformation theory of perfect elastoplasticity . . . . . . . . 5--39 Martin Fuchs and Gregory Seregin Differentiability properties of weak solutions to boundary value problems in the deformation theory of plasticity . . 40--130 Martin Fuchs and Gregory Seregin Quasi-static fluids of generalized Newtonian type . . . . . . . . . . . . . 131--206 Martin Fuchs and Gregory Seregin Fluids of Prandtl--Eyring type and plastic materials with logarithmic hardening law . . . . . . . . . . . . . 207--259
Nigel J. Cutland 1. Loeb Measures . . . . . . . . . . . . 1--28 Nigel J. Cutland 2. Stochastic Fluid Mechanics . . . . . 29--60 Nigel J. Cutland 3. Stochastic Calculus of Variations . . 61--84 Nigel J. Cutland 4. Mathematical Finance Theory . . . . . 85--101 Nigel J. Cutland References . . . . . . . . . . . . . . . 103--107 Nigel J. Cutland Index . . . . . . . . . . . . . . . . . 109--111
Gilles Pisier 0. Introduction. Description of contents 1--13 Gilles Pisier 1. Von Neumann's inequality and Ando's generalization . . . . . . . . . . . . . 14--30 Gilles Pisier 2. Non-unitarizable uniformly bounded group representations . . . . . . . . . 31--57 Gilles Pisier 3. Completely bounded maps . . . . . . . 58--74 Gilles Pisier 4. Completely bounded homomorphisms and derivations . . . . . . . . . . . . . . 75--98 Gilles Pisier 5. Schur multipliers and Grothendieck's inequality . . . . . . . . . . . . . . . 99--113 Gilles Pisier 6. Hankelian Schur multipliers. Herz--Schur multipliers . . . . . . . . 114--123 Gilles Pisier 7. The similarity problem for cyclic homomorphisms on a $ C^* $-algebra . . . 124--141 Gilles Pisier 8. Completely bounded maps in the Banach space setting . . . . . . . . . . . . . 142--151 Gilles Pisier 9. The Sz.-Nagy--Halmos similarity problem . . . . . . . . . . . . . . . . 152--167 Gilles Pisier 10. The Kadison Similarity Problem . . . 168--181 Gilles Pisier References . . . . . . . . . . . . . . . 182--193 Gilles Pisier Subject and Notation Index . . . . . . . 194--196
John Douglas Moore Front Matter . . . . . . . . . . . . . . i--viii John Douglas Moore Preliminaries . . . . . . . . . . . . . 1--44 John Douglas Moore Spin geometry on four-manifolds . . . . 45--72 John Douglas Moore Global analysis of the Seiberg--Witten equations . . . . . . . . . . . . . . . 73--116 John Douglas Moore Back Matter . . . . . . . . . . . . . . 117--121
Pol Vanhaecke Introduction . . . . . . . . . . . . . . 1--16 Pol Vanhaecke Integrable Hamiltonian systems on affine Poisson varieties . . . . . . . . . . . 17--70 Pol Vanhaecke Integrable Hamiltonian systems and symmetric products of curves . . . . . . 71--96 Pol Vanhaecke Interludium: the geometry of Abelian varieties . . . . . . . . . . . . . . . 97--125 Pol Vanhaecke Algebraic completely integrable Hamiltonian systems . . . . . . . . . . 127--142 Pol Vanhaecke The Mumford systems . . . . . . . . . . 143--173 Pol Vanhaecke Two-dimensional a.c.i. systems and applications . . . . . . . . . . . . . . 175--241
Yuri V. Nesterenko and Patrice Philippon $ \Theta (\tau, z) $ and Transcendence 1--11 Yuri V. Nesterenko and Patrice Philippon Mahler's conjecture and other transcendence Results . . . . . . . . . 13--26 Yuri V. Nesterenko and Patrice Philippon Algebraic independence for values of Ramanujan Functions . . . . . . . . . . 27--46 Yuri V. Nesterenko and Patrice Philippon Some remarks on proofs of algebraic independence . . . . . . . . . . . . . . 47--51 Yuri V. Nesterenko and Patrice Philippon Élimination multihomog\`ene. (French) [Multihomogeneous elimination] . . . . . 53--81 Yuri V. Nesterenko and Patrice Philippon Diophantine geometry . . . . . . . . . . 83--94 Yuri V. Nesterenko and Patrice Philippon Géométrie diophantienne multiprojective. (French) [Multiprojective Diophantine geometry] . . . . . . . . . . . . . . . 95--131 Yuri V. Nesterenko and Patrice Philippon Criteria for algebraic independence . . 133--141 Yuri V. Nesterenko and Patrice Philippon Upper bounds for (geometric) Hilbert functions . . . . . . . . . . . . . . . 143--148 Yuri V. Nesterenko and Patrice Philippon Multiplicity estimates for solutions of algebraic differential equations . . . . 149--165 Yuri V. Nesterenko and Patrice Philippon Zero Estimates on Commutative Algebraic Groups . . . . . . . . . . . . . . . . . 167--185 Yuri V. Nesterenko and Patrice Philippon Measures of algebraic independence for Mahler functions . . . . . . . . . . . . 187--197 Yuri V. Nesterenko and Patrice Philippon Algebraic Independence in Algebraic Groups. Part I: Small Transcendence Degrees . . . . . . . . . . . . . . . . 199--211 Yuri V. Nesterenko and Patrice Philippon Algebraic Independence in Algebraic Groups. Part II: Large Transcendence Degrees . . . . . . . . . . . . . . . . 213--225 Yuri V. Nesterenko and Patrice Philippon Some metric results in Transcendental Numbers Theory . . . . . . . . . . . . . 227--237 Yuri V. Nesterenko and Patrice Philippon The Hilbert Nullstellensatz, Inequalities for Polynomials, and Algebraic Independence . . . . . . . . . 239--248
Masao Nagasawa and Hiroshi Tanaka The Principle of Variation for Relativistic Quantum Particles . . . . . 1--27 Nicolas Privault Quantum stochastic calculus for the uniform measure and Boolean convolution 28--47 Anthony Phan Martingales D'Azéma Asymétriques. Description Élémentaire et Unicité. (French) [] . . . . . . . . . . . . . . 48--86 Tsung-Ming Chao and Ching-Shung Chou Some remarks on the martingales satisfying the structure equation $ [X, X]_t = t + \int^t_0 \beta X_{s^-} d X_s $ . . . . . . . . . . . . . . . . . . . 87--97 David Kurtz Une caractérization des martingales d'Azéma bidimensionnelles de type (II). (French) [] . . . . . . . . . . . . . . 98--119 David Kurtz and Anthony Phan Correction \`a un Article d'Attal et Émery sur les Martingales d'Azéma Bidimendionnelles. (French) [] . . . . . 120--122 M. Émery A Discrete Approach to the Chaotic Representation Property . . . . . . . . 123--138 Yuri Kabanov and Christophe Sticker On equivalent martingale measures with bounded densities . . . . . . . . . . . 139--148 Yuri Kabanov and Christophe Sticker A teacher's note on no-arbitrage criteria . . . . . . . . . . . . . . . . 149--152 P. J. Fitzsimmons Hermite Martingales . . . . . . . . . . 153--157 Ma\lgorzata Kuchta and Micha\l Morayne and S\lawomir Solecki A Martingale Proof of the Theorem by Jessen, Marcinkiewicz and Zygmund on Strong Differentiation of Integrals . . 158--161 Liliana Forzani and Roberto Scotto and Wilfredo Urbina A simple proof of the $ L^p $ continuity of the higher order Riesz Transforms with respect to the Gaussian measure $ {\gamma }d $ . . . . . . . . . . . . . . 162--166 M. Ledoux Logarithmic Sobolev Inequalities for Unbounded Spin Systems Revisited . . . . 167--194 Richard F. Bass and Edwin A. Perkins On the martingale problem for super-Brownian motion . . . . . . . . . 195--201 Martin Barlow and Krzysztof Burdzy and Haya Kaspi and Avi Mandelbaum Coalescence of Skew Brownian Motions . . 202--205 Nathanaël Enriquez and Jacques Franchi and Yves Le Jan Canonical Lift and Exit Law of the Fundamental Diffusion Associated with a Kleinian Group . . . . . . . . . . . . . 206--219 J. J. Alibert and K. Bahlali Genericity in Deterministic and Stochastic Differential Equations . . . 220--240 Anne Estrade and Monique Pontier Backward Stochastic Differential Equations in a Lie Group . . . . . . . . 241--259 M. Malric Filtrations Quotients de la Filtration Brownienne. (French) [] . . . . . . . . 260--264 Michel Émery and Walter Schachermayer On Vershik's Standardness Criterion and Tsirelson's Notion of Cosiness . . . . . 265--305
Peter E. Zhidkov Introduction . . . . . . . . . . . . . . 1--4 Peter E. Zhidkov Notation . . . . . . . . . . . . . . . . 5--7 Peter E. Zhidkov Evolutionary equations. Results on existence . . . . . . . . . . . . . . . 9--38 Peter E. Zhidkov Stationary problems . . . . . . . . . . 39--78 Peter E. Zhidkov Stability of solutions . . . . . . . . . 79--104 Peter E. Zhidkov Invariant measures . . . . . . . . . . . 105--136
Robert R. Phelps Introduction. The Krein--Milman theorem as an integral representation theorem 1--8 Robert R. Phelps Application of the Krein--Milman theorem to completely monotonic functions . . . 9--12 Robert R. Phelps Choquet's theorem: The metrizable case 13--16 Robert R. Phelps The Choquet--Bishop--de Leeuw existence theorem . . . . . . . . . . . . . . . . 17--23 Robert R. Phelps Applications to Rainwater's and Haydon's theorems . . . . . . . . . . . . . . . . 25--26 Robert R. Phelps A new setting: The Choquet boundary . . 27--33 Robert R. Phelps Applications of the Choquet boundary to resolvents . . . . . . . . . . . . . . . 35--38 Robert R. Phelps The Choquet boundary for uniform algebras . . . . . . . . . . . . . . . . 39--45 Robert R. Phelps The Choquet boundary and approximation theory . . . . . . . . . . . . . . . . . 47--49 Robert R. Phelps Uniqueness of representing measures . . 51--63 Robert R. Phelps Properties of the resultant map . . . . 65--71 Robert R. Phelps Application to invariant and ergodic measures . . . . . . . . . . . . . . . . 73--78 Robert R. Phelps A method for extending the representation theorems: Caps . . . . . 79--87 Robert R. Phelps A different method for extending the representation theorems . . . . . . . . 88--91 Robert R. Phelps Orderings and dilations of measures . . 93--99 Robert R. Phelps Additional Topics . . . . . . . . . . . 101--113
Nicolas Monod Introduction . . . . . . . . . . . . . . 1--7 Nicolas Monod Banach modules, $ L_\infty $ spaces . . 9--30 Nicolas Monod Relative injectivity and amenable actions . . . . . . . . . . . . . . . . 31--60 Nicolas Monod Definition and characterization of continuous bounded cohomology . . . . . 61--127 Nicolas Monod Cohomological techniques . . . . . . . . 129--168 Nicolas Monod Towards applications . . . . . . . . . . 169--201
Damir Filipovi\'c 1. Introduction . . . . . . . . . . . . 1--11 Damir Filipovi\'c 2. Stochastic Equations in Infinite Dimensions . . . . . . . . . . . . . . . 13--27 Damir Filipovi\'c 3. Consistent State Space Processes . . 29--56 Damir Filipovi\'c 4. The HJM Methodology Revisited . . . . 57--73 Damir Filipovi\'c 5. The Forward Curve Spaces $ H_w $ . . 75--94 Damir Filipovi\'c 6. Invariant Manifolds for Stochastic Equations . . . . . . . . . . . . . . . 95--111 Damir Filipovi\'c 7. Consistent HJM Models . . . . . . . . 113--125 Damir Filipovi\'c 8. Appendix: a Summary of Conditions . . 127--128 Damir Filipovi\'c References . . . . . . . . . . . . . . . 129--131 Damir Filipovi\'c Index . . . . . . . . . . . . . . . . . 133--134
Clemens Adelmann Introduction . . . . . . . . . . . . . . 1--4 Clemens Adelmann Decomposition Laws . . . . . . . . . . . 5--24 Clemens Adelmann Elliptic Curves . . . . . . . . . . . . 25--39 Clemens Adelmann Elliptic Modular Curves . . . . . . . . 41--58 Clemens Adelmann Torsion Point Fields . . . . . . . . . . 59--86 Clemens Adelmann Invariants and Resolvent Polynomials . . 87--106
Sandra Cerrai Introduction . . . . . . . . . . . . . . 1--18 Sandra Cerrai Kolmogorov equations in $ \mathbb {R}^d $ with unbounded coefficients . . . . . 21--63 Sandra Cerrai Asymptotic behaviour of solutions . . . 65--80 Sandra Cerrai Analyticity of the semigroup in a degenerate case . . . . . . . . . . . . 81--101 Sandra Cerrai Smooth dependence on data for the SPDE: the Lipschitz case . . . . . . . . . . . 105--141 Sandra Cerrai Kolmogorov equations in Hilbert spaces 143--170 Sandra Cerrai Smooth dependence on data for the SPDE: the non-Lipschitz case (I) . . . . . . . 171--203 Sandra Cerrai Smooth dependence on data for the SPDE: the non-Lipschitz case (II) . . . . . . 205--220 Sandra Cerrai Ergodicity . . . . . . . . . . . . . . . 221--235 Sandra Cerrai Hamilton--Jacobi--Bellman equations in Hilbert spaces . . . . . . . . . . . . . 237--279 Sandra Cerrai Application to stochastic optimal control problems . . . . . . . . . . . . 281--300
Jean-Louis Loday and Frédéric Chapoton and Alessandra Frabetti and François Goichot Introduction . . . . . . . . . . . . . . 1--6 Jean-Louis Loday Dialgebras . . . . . . . . . . . . . . . 7--66 Alessandra Rabetti Dialgebra (co)homology with coefficients 67--103 Frédéric Chapoton Un endofoncteur de la catégorie des opérades. (French) [] . . . . . . . . . . 105--110 François Goichot Un théoréme de Milnor--Moore pour les alg\`ebres de Leibniz. (French) [] . . . 111--133
Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . i--xiv Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 2--2 Ana Cannas da Silva Symplectic Forms . . . . . . . . . . . . 3--8 Ana Cannas da Silva Symplectic Form on the Cotangent Bundle 9--14 Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 16--16 Ana Cannas da Silva Lagrangian Submanifolds . . . . . . . . 17--23 Ana Cannas da Silva Generating Functions . . . . . . . . . . 25--31 Ana Cannas da Silva Recurrence . . . . . . . . . . . . . . . 33--37 Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 40--40 Ana Cannas da Silva Preparation for the Local Theory . . . . 41--47 Ana Cannas da Silva Moser Theorems . . . . . . . . . . . . . 49--53 Ana Cannas da Silva Darboux--Moser--Weinstein Theory . . . . 55--60 Ana Cannas da Silva Weinstein Tubular Neighborhood Theorem 61--66 Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 68--68 Ana Cannas da Silva Contact Forms . . . . . . . . . . . . . 69--74 Ana Cannas da Silva Contact Dynamics . . . . . . . . . . . . 75--79 Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 82--82 Ana Cannas da Silva Almost Complex Structures . . . . . . . 83--88 Ana Cannas da Silva Compatible Triples . . . . . . . . . . . 89--92 Ana Cannas da Silva Dolbeault Theory . . . . . . . . . . . . 93--98 Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 100--100 Ana Cannas da Silva Complex Manifolds . . . . . . . . . . . 101--107 Ana Cannas da Silva Kähler Forms . . . . . . . . . . . . . . 109--116 Ana Cannas da Silva Compact Kähler Manifolds . . . . . . . . 117--123 Ana Cannas da Silva Front Matter . . . . . . . . . . . . . . 126--126 Ana Cannas da Silva Hamiltonian Vector Fields . . . . . . . 127--134 Ana Cannas da Silva Variational Principles . . . . . . . . . 135--142 Ana Cannas da Silva Legendre Transform . . . . . . . . . . . 143--148
Thomas Kerler and Volodymyr V. Lyubashenko Introduction and Summary of Results . . 1--14 Thomas Kerler and Volodymyr V. Lyubashenko The Double Category of Framed, Relative $3$-Cobordisms . . . . . . . . . . . . . 15--95 Thomas Kerler and Volodymyr V. Lyubashenko Tangle-Categories and Presentation of Cobordisms . . . . . . . . . . . . . . . 97--172 Thomas Kerler and Volodymyr V. Lyubashenko Isomorphism between Tangle and Cobordism Double Categories . . . . . . . . . . . 173--215 Thomas Kerler and Volodymyr V. Lyubashenko Monoidal categories and monoidal $2$-categories . . . . . . . . . . . . . 217--259 Thomas Kerler and Volodymyr V. Lyubashenko Coends and construction of Hopf algebras 261--282 Thomas Kerler and Volodymyr V. Lyubashenko Construction of TQFT-Double Functors . . 283--311 Thomas Kerler and Volodymyr V. Lyubashenko Generalization of a modular functor . . 313--334 Thomas Kerler and Volodymyr V. Lyubashenko From Quantum Field Theory to Axiomatics 335--342 Thomas Kerler and Volodymyr V. Lyubashenko Double Categories and Double Functors 343--352 Thomas Kerler and Volodymyr V. Lyubashenko Thick tangles . . . . . . . . . . . . . 353--368
Lo\"\ic Herve Generalization to the Non-Ergodic Case 115--140
Jie Xiao Fundamental Material . . . . . . . . . . 1--12 Jie Xiao Composite Embedding . . . . . . . . . . 13--22 Jie Xiao Series Expansions . . . . . . . . . . . 23--34 Jie Xiao Modified Carleson Measures . . . . . . . 35--44 Jie Xiao Inner-Outer Structure . . . . . . . . . 45--56 Jie Xiao Pseudo-holomorphic Extension . . . . . . 57--66 Jie Xiao Representation via $ \partial $-equation 67--86 Jie Xiao Dyadic Localization . . . . . . . . . . 87--104
Markus J. Pflaum Introduction . . . . . . . . . . . . . . 1--9 Markus J. Pflaum Notation . . . . . . . . . . . . . . . . 11--14 Markus J. Pflaum Stratified Spaces and Functional Structures . . . . . . . . . . . . . . . 15--62 Markus J. Pflaum Differential Geometric Objects on Singular Spaces . . . . . . . . . . . . 63--90 Markus J. Pflaum Control Theory . . . . . . . . . . . . . 91--149 Markus J. Pflaum Orbit Spaces . . . . . . . . . . . . . . 151--168 Markus J. Pflaum De Rham Cohomology . . . . . . . . . . . 169--181 Markus J. Pflaum Homology of Algebras of Smooth Functions 183--199
Maria Alberich-Carramiñana 1. Preliminaries . . . . . . . . . . . . 1--28 Maria Alberich-Carramiñana 2. Plane Cremona maps . . . . . . . . . 29--71 Maria Alberich-Carramiñana 3. Clebsch's theorems and Jacobian . . . 73--100 Maria Alberich-Carramiñana 4. Composition . . . . . . . . . . . . . 101--125 Maria Alberich-Carramiñana 5. Characteristic matrices . . . . . . . 127--176 Maria Alberich-Carramiñana 6. Total principal and special homaloidal curves . . . . . . . . . . . 177--205 Maria Alberich-Carramiñana 7. Inverse Cremona map . . . . . . . . . 207--225 Maria Alberich-Carramiñana 8. Noether's factorization theorem . . . 227--247 Maria Alberich-Carramiñana References . . . . . . . . . . . . . . . 249--251 Maria Alberich-Carramiñana Subject and Index Notation . . . . . . . 253--256
Heide Gluesing-Luerssen 1. Introduction . . . . . . . . . . . . 1--5 Heide Gluesing-Luerssen 2. The Algebraic Framework for Delay-Differential Equations . . . . . . 7--21 Heide Gluesing-Luerssen 3. The Algebraic Structure of $ \mathcal {H}_0 $ . . . . . . . . . . . . . . . . 23--72 Heide Gluesing-Luerssen 4. Behaviors of Delay-Differential Systems . . . . . . . . . . . . . . . . 73--134 Heide Gluesing-Luerssen 5. First-Out Representations . . . . . . 135--167 Heide Gluesing-Luerssen References . . . . . . . . . . . . . . . 169--174 Heide Gluesing-Luerssen Subject Index and Notation Index . . . . 175--176
Michel Émery and Marc Yor A short presentation of the selected articles . . . . . . . . . . . . . . . . 1--8 C. Dellacherie Ensembles Aléatoires I. (French) [] . . . 9--26 C. Dellacherie Ensembles Aléatoires II. (French) [] . . 27--48 P.-A. Meyer Guide Détaillé de la Théorie \flqqGénérale\frqq des Processus. (French) [] . . . . . . . . . . . . . . . . . . . 49--74 C. Dellacherie Sur les Théorémes Fondamentaux de la Théorie Générale des Processus. (French) [] 75--84 C. Dellacherie Un Ensemble Progressivement Mesurable 85--87 Marc Yor Grossissement d'une Filtration et Semi-martingales: Théor\`emes Généraux. (French) [] . . . . . . . . . . . . . . 88--96 P.-A. Meyer Intégrales Stochastiques I. (French) [] 97--119 P.-A. Meyer Intégrales Stochastiques II. (French) [] 120--142 C. Doléans-Dade and P.-A. Meyer Intégrales Stochastiques par Rapport aux Martingales Locales. (French) [] . . . . 143--173 P.-A. Meyer Un Cours sur les Intégrales Stochastiques. (French) [] . . . . . . . 174--329 Marc Yor Sur Quelques Approximations d'Intégrales Stochastiques. (French) [] . . . . . . . 330--340 Marc Yor Sur les Intégrales Stochastiques Optionelles et une Suite Remarquable de Formules Exponentielles. (French) [] . . 341--360 E. Lenglart and D. Lepingle and M. Pratelli Présentation Unifiée de Certaines Inégalités de la Théorie des Martingales. (French) [] . . . . . . . . . . . . . . . . . . . 361--383 P.-A. Meyer Le Dual de \flqq$ H^1 $\frqq est \flqqBMO\frqq (Cas Continu). (French) [] 384--393 A. Bernard and B. Maisonneuve Decomposition Atomique de Martingales de la Classe $ H^1 $. (French) [] . . . . . 394--414 C. Dellacherie Intégrals Stochastiques par Rapport aux Processus de Wiener ou de Poisson . . . 415--416 Chou Ching-Sung and P.-A. Meyer Sur la Représentation des Martingales comme Intégrales Stochastiques dans les Processus Ponctuels. (French) [] . . . . 417--427 Marc Yor Sous-Espaces Denses dans $ L^1 $ ou $ H^1 $ et Représentation des Martingales. (French) [] . . . . . . . . . . . . . . 428--472 C. Delacherie and C. Doleans-Dade Un contre-exemple au probl\`eme des laplaciens approchés. (French) [] . . . . 473--483
Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 1. Quaternions . . . . . . . . . . . . . 1--4 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 2. Linear Algebra over the Quaternions 5--8 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 3. Projective Spaces . . . . . . . . . . 9--14 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 4. Vector Bundles . . . . . . . . . . . 15--22 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 5. The Mean Curvature Sphere . . . . . . 23--30 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 6. Willmore Surfaces . . . . . . . . . . 31--38 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 7. Metric and Affine Conformal Geometry 39--46 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 8. Twistor Projections . . . . . . . . . 47--52 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 9. Bäcklund Transforms of Willmore Surfaces . . . . . . . . . . . . . . . . 53--59 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 10. Willmore Surfaces in $ S^3 $ . . . . 61--66 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 11. Spherical Willmore Surfaces in $ \mathbb {H} P^1 $ . . . . . . . . . . . 67--72 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 12. Darboux transforms . . . . . . . . . 73--81 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall 13. Appendix . . . . . . . . . . . . . . 83--86 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall References . . . . . . . . . . . . . . . 87--87 Francis E. Burstall and Franz Pedit and Dirk Ferus and Katrin Leschke and Ulrich Pinkall Index . . . . . . . . . . . . . . . . . 89--89
Z. Arad and M. Muzychuk Introduction . . . . . . . . . . . . . . 1--11 Z. Arad and M. Muzychuk and H. Arisha and E. Fisman Integral Table Algebras with a Faithful Nonreal Element of Degree $4$ . . . . . 13--41 Z. Arad and F. Bünger and E. Fisman and M. Muzychuk Standard Integral Table Algebras with a Faithful Nonreal Element of Degree $5$ 43--81 F. Bünger Standard Integral Table Algebras with a Faithful Real Element of Degree $5$ and Width $3$ . . . . . . . . . . . . . . . 83--103 Mitsugu Hirasaka The Enumeration of Primitive Commutative Association Schemes with a Non-symmetric Relation of Valency, at Most $4$ . . . . 105--119
Volker Runde 0. Paradoxical decompositions . . . . . 1--15 Volker Runde 1. Amenable, locally compact groups . . 17--36 Volker Runde 2. Amenable Banach algebras . . . . . . 37--61 Volker Runde 3. Examples of amenable Banach algebras 63--81 Volker Runde 4. Amenability-like properties . . . . . 83--117 Volker Runde 5. Banach homology . . . . . . . . . . . 119--139 Volker Runde 6. $ C^* $- and $ W^* $-algebras . . . . 141--190 Volker Runde 7. Operator amenability . . . . . . . . 191--207 Volker Runde 8. Geometry of spaces of homomorphisms 209--219 Volker Runde Open problems . . . . . . . . . . . . . 221--229 Volker Runde A Abstract harmonic analysis . . . . . . 231--241 Volker Runde B Tensor products . . . . . . . . . . . 243--254 Volker Runde C Banach space properties . . . . . . . 255--263 Volker Runde D Operator spaces . . . . . . . . . . . 265--274 Volker Runde List of Symbols . . . . . . . . . . . . 275--280 Volker Runde References . . . . . . . . . . . . . . . 281--288 Volker Runde Index . . . . . . . . . . . . . . . . . 289--296
William H. Meeks III Minimal surfaces in Flat Three-Dimensional Spaces . . . . . . . . 1--14 Joaquín Pérez and Antonio Ros Properly embedded minimal surfaces with finite total curvature . . . . . . . . . 15--66 Harold Rosenberg Bryant Surfaces . . . . . . . . . . . . 67--111
K. Behrend Introduction . . . . . . . . . . . . . . 1--2 K. Behrend Localization and Gromov--Witten Invariants . . . . . . . . . . . . . . . 3--38 César Gómez and Rafael Hernández Fields, Stings and Branes . . . . . . . 39--191 Vitaly Tarasov $q$-Hypergeometric Functions and Representation Theory . . . . . . . . . 193--267 Gang Tian Constructing symplectic invariants . . . 269--311
Eduardo García-Río and Demir N. Kupeli and Ramón Vázquez-Lorenzo 1. The Osserman Conditions in Semi-Riemannian Geometry . . . . . . . . 1--20 Eduardo García-Río and Demir N. Kupeli and Ramón Vázquez-Lorenzo 2. The Osserman Conjecture in Riemannian Geometry . . . . . . . . . . . . . . . . 21--37 Eduardo García-Río and Demir N. Kupeli and Ramón Vázquez-Lorenzo 3. Lorentzian--Osserman Manifolds . . . 39--61 Eduardo García-Río and Demir N. Kupeli and Ramón Vázquez-Lorenzo 4. Four-Dimensional Semi-Riemannian Osserman Manifolds with Metric Tensors of Signature $ (2, 2) $ . . . . . . . . 63--94 Eduardo García-Río and Demir N. Kupeli and Ramón Vázquez-Lorenzo 5. Semi-Riemannian Osserman Manifolds 95--136 Eduardo García-Río and Demir N. Kupeli and Ramón Vázquez-Lorenzo 6. Generalizations and Osserman-Related Conditions . . . . . . . . . . . . . . . 137--156 Eduardo García-Río and Demir N. Kupeli and Ramón Vázquez-Lorenzo References . . . . . . . . . . . . . . . 157--163 Eduardo García-Río and Demir N. Kupeli and Ramón Vázquez-Lorenzo Index . . . . . . . . . . . . . . . . . 165--166
Hubert Kiechle Introduction . . . . . . . . . . . . . . 1--5 Hubert Kiechle 1. Preliminaries . . . . . . . . . . . . 7--22 Hubert Kiechle 2. Left Loops and Transversals . . . . . 23--42 Hubert Kiechle 3. The Left Inverse Property and Kikkawa Loops . . . . . . . . . . . . . . . . . 43--52 Hubert Kiechle 4. Isotopy Theory . . . . . . . . . . . 53--58 Hubert Kiechle 5. Nuclei and the Autotopism Group . . . 59--64 Hubert Kiechle 6. Bol Loops and $K$-Loops . . . . . . . 65--81 Hubert Kiechle 7. Frobenius Groups with Many Involutions . . . . . . . . . . . . . . 83--102 Hubert Kiechle 8. Loops with Fibrations . . . . . . . . 103--106 Hubert Kiechle 9. $K$-Loops from Classical Groups over Ordered Fields . . . . . . . . . . . . . 107--136 Hubert Kiechle 10. Relativistic Velocity Addition . . . 137--142 Hubert Kiechle 11. $K$-loops from the General Linear Groups over Rings . . . . . . . . . . . 143--150 Hubert Kiechle 12. Derivations . . . . . . . . . . . . 151--164 Hubert Kiechle Appendix . . . . . . . . . . . . . . . . 165--170 Hubert Kiechle References . . . . . . . . . . . . . . . 171--180 Hubert Kiechle Index . . . . . . . . . . . . . . . . . 181--186
Igor \vChue\vshov Introduction . . . . . . . . . . . . . . 1--7 Igor \vChue\vshov 1. General Facts about Random Dynamical Systems . . . . . . . . . . . . . . . . 9--53 Igor \vChue\vshov 2. Generation of Random Dynamical Systems . . . . . . . . . . . . . . . . 55--81 Igor \vChue\vshov 3. Order-Preserving Random Dynamical Systems . . . . . . . . . . . . . . . . 83--111 Igor \vChue\vshov 4. Sublinear Random Dynamical Systems 113--141 Igor \vChue\vshov 5. Cooperative Random Differential Equations . . . . . . . . . . . . . . . 143--183 Igor \vChue\vshov 6. Cooperative Stochastic Differential Equations . . . . . . . . . . . . . . . 185--225 Igor \vChue\vshov References . . . . . . . . . . . . . . . 227--231 Igor \vChue\vshov Index . . . . . . . . . . . . . . . . . 233--234
Jan Hendrik Bruinier Introduction . . . . . . . . . . . . . . 1--13 Jan Hendrik Bruinier 1. Vector valued modular forms for the metaplectic group . . . . . . . . . . . 15--38 Jan Hendrik Bruinier 2. The regularized theta lift . . . . . 39--61 Jan Hendrik Bruinier 3. The Fourier expansion of the theta lift . . . . . . . . . . . . . . . . . . 63--94 Jan Hendrik Bruinier 4. Some Riemann geometry on $ {\rm O}(2, l) $ . . . . . . . . . . . . . . . . . . 95--118 Jan Hendrik Bruinier 5. Chern classes of Heegner divisors . . 119--140 Jan Hendrik Bruinier References . . . . . . . . . . . . . . . 141--144 Jan Hendrik Bruinier Subject Index and Notation Index . . . . 145--152
Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Front Matter . . . . . . . . . . . . . . 4--4 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Introduction . . . . . . . . . . . . . . 5--6 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins On the construction of the three-dimensional polymer measure . . . 7--38 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Self-attracting random walks . . . . . . 39--104 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins One-dimensional pinning-depinning transitions . . . . . . . . . . . . . . 105--120 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Back Matter . . . . . . . . . . . . . . 121--125 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Front Matter . . . . . . . . . . . . . . 127--127 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Introduction . . . . . . . . . . . . . . 132--134 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Branching Particle Systems and Dawson--Watanabe Superprocesses . . . . 135--192 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Sample Path Properties of Superprocesses 193--246 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Interactive Drifts . . . . . . . . . . . 247--280 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Spatial Interactions . . . . . . . . . . 281--317 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Back Matter . . . . . . . . . . . . . . 318--329 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Front Matter . . . . . . . . . . . . . . 332--332 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Introduction, Tangent Sets . . 336--345 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Lower Bounds . . . . . . . . . 346--356 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Calculus of Scores . . . . . . 357--369 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Gaussian Approximations . . . . 370--382 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Empirical Processes and Consistency of $Z$-Estimators . . . . . 383--394 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Empirical Processes and Normality of $Z$-Estimators . . . . . . 395--411 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Efficient Score and One-step Estimators . . . . . . . . . . . . . . . 412--423 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Rates of Convergence . . . . . 424--432 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Maximum and Profile Likelihood 433--445 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Lecture: Infinite-dimensional $Z$-Estimators . . . . . . . . . . . . . 446--454 Erwin Bolthausen and Aad van der Vaart and Edwin Perkins Back Matter . . . . . . . . . . . . . . 455--457
Cho-Ho Chu and Anthony To-Ming Lau Introduction . . . . . . . . . . . . . . 1--4 Cho-Ho Chu and Anthony To-Ming Lau Harmonic functions on locally compact groups . . . . . . . . . . . . . . . . . 5--50 Cho-Ho Chu and Anthony To-Ming Lau Harmonic functions on Fourier algebras 51--89 Cho-Ho Chu and Anthony To-Ming Lau References . . . . . . . . . . . . . . . 90--97 Cho-Ho Chu and Anthony To-Ming Lau List of symbols and Subject Index . . . 98--100
Lars Grüne 1. Introduction: Dynamics, Perturbation and Discretization . . . . . . . . . . . 1--12 Lars Grüne 2. Setup and Preliminaries . . . . . . . 13--25 Lars Grüne 3. Strongly Attracting Sets . . . . . . 27--68 Lars Grüne 4. Weakly Attracting Sets . . . . . . . 69--112 Lars Grüne 5. Relation between Discretization and Perturbation . . . . . . . . . . . . . . 113--136 Lars Grüne 6. Discretizations of Attracting Sets 137--156 Lars Grüne 7. Domains of Attraction . . . . . . . . 157--194 Lars Grüne Appendix A: Viscosity Solutions . . . . 195--200 Lars Grüne Appendix B: Comparison Functions . . . . 201--205 Lars Grüne Appendix C: Numerical Examples . . . . . 207--217 Lars Grüne Notation . . . . . . . . . . . . . . . . 219--220 Lars Grüne References . . . . . . . . . . . . . . . 221--227 Lars Grüne Index . . . . . . . . . . . . . . . . . 229--231
Hakan Eliasson and Sergei Kuksin and Stefano Marmi and Jean-Christophe Yoccoz Front Matter . . . . . . . . . . . . . . I--XIII L. Hakan Eliasson Perturbations of linear quasi-periodic system . . . . . . . . . . . . . . . . . 1--60 Sergei B. Kuksin KAM-persistence of finite-gap solutions 61--123 Jean-Christophe Yoccoz Analytic linearization of circle diffeomorphisms . . . . . . . . . . . . 125--173 Stefano Marmi and Jean-Christophe Yoccoz Some open problems related to small divisors . . . . . . . . . . . . . . . . 175--191 Stefano Marmi and Jean-Christophe Yoccoz Back Matter . . . . . . . . . . . . . . 193--199
Juan Arias de Reyna 1. Hardy--Littlewood maximal function 3--10 Juan Arias de Reyna 2. Fourier Series . . . . . . . . . . . 11--29 Juan Arias de Reyna 3. Hilbert Transform . . . . . . . . . . 31--44 Juan Arias de Reyna The Charleson--Hunt Theorem . . . . . . 47--49 Juan Arias de Reyna 4. The Basic Step . . . . . . . . . . . 51--72 Juan Arias de Reyna 5. Maximal Inequalities . . . . . . . . 73--76 Juan Arias de Reyna 6. Growth of Partial Sums . . . . . . . 77--84 Juan Arias de Reyna 7. Carleson analysis of the function . . 85--91 Juan Arias de Reyna 8. Allowed Pairs . . . . . . . . . . . . 93--102 Juan Arias de Reyna 9. Pair Interchange Theorems . . . . . . 103--115 Juan Arias de Reyna 10. All together . . . . . . . . . . . . 117--123 Juan Arias de Reyna 11. Spaces of functions . . . . . . . . 127--143 Juan Arias de Reyna 12. The Maximal Operator of Fourier series . . . . . . . . . . . . . . . . . 145--162 Juan Arias de Reyna 13. Fourier Transform on the line . . . 163--166 Juan Arias de Reyna References . . . . . . . . . . . . . . . 167--169 Juan Arias de Reyna Comments and Subject Index . . . . . . . 171--175
Steven Dale Cutkosky 1. Introduction . . . . . . . . . . . . 1--8 Steven Dale Cutkosky 2. Local Monomialization . . . . . . . . 9--10 Steven Dale Cutkosky 3. Monomialization of Morphisms in Low Dimensions . . . . . . . . . . . . . . . 11--13 Steven Dale Cutkosky 4. An Overview of the Proof of Monomialization of Morphisms From $3$ Folds to Surfaces . . . . . . . . . . . 14--18 Steven Dale Cutkosky 5. Notations . . . . . . . . . . . . . . 19--19 Steven Dale Cutkosky 6. The Invariant $ \nu $ . . . . . . . . 20--55 Steven Dale Cutkosky 7. The Invariant $ \nu $ Under Quadratic Transforms . . . . . . . . . . . . . . . 56--76 Steven Dale Cutkosky 8. Permissible Monoidal Transforms Centered at Curves . . . . . . . . . . . 77--92 Steven Dale Cutkosky 9. Power Series in $2$ Variables . . . . 93--108 Steven Dale Cutkosky 10. $ \bf {A_r(X)} $ . . . . . . . . . . 109--109 Steven Dale Cutkosky 11. Reduction of $ \nu $ in a Special Case . . . . . . . . . . . . . . . . . . 110--130 Steven Dale Cutkosky 12. Reduction of $ \nu $ in a Second Special Case . . . . . . . . . . . . . . 131--149 Steven Dale Cutkosky 13. Resolution 1 . . . . . . . . . . . . 150--162 Steven Dale Cutkosky 14. Resolution 2 . . . . . . . . . . . . 163--175 Steven Dale Cutkosky 15. Resolution 3 . . . . . . . . . . . . 176--184 Steven Dale Cutkosky 16. Resolution 4 . . . . . . . . . . . . 185--187 Steven Dale Cutkosky 17. Proof of the Main Theorem . . . . . 188--188 Steven Dale Cutkosky 18. Monomialization . . . . . . . . . . 189--223 Steven Dale Cutkosky 19. Toroidalization . . . . . . . . . . 224--231 Steven Dale Cutkosky 20. Glossary of Notations and Definitions . . . . . . . . . . . . . . 232--233
Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu 1. Generalities . . . . . . . . . . . . 3--37 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu 2. Doi--Koppinen Hopf modules and entwined modules . . . . . . . . . . . . 39--87 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu 3. Frobenius and separable functors for entwined modules . . . . . . . . . . . . 89--157 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu 4. Applications . . . . . . . . . . . . 159--213 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu 5. Yetter--Drinfeld modules and the quantum Yang--Baxter equation . . . . . 217--243 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu 6. Hopf modules and the pentagon equation . . . . . . . . . . . . . . . . 245--300 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu 7. Long dimodules and the Long equation 301--316 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu 8. The Frobenius-Separability equation 317--343 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu References . . . . . . . . . . . . . . . 345--352 Stefaan Caenepeel and Gigel Militaru and Shenglin Zhu Index . . . . . . . . . . . . . . . . . 353--354
Alexander Vasil'ev 1. Introduction . . . . . . . . . . . . 1--5 Alexander Vasil'ev 2. Moduli of Families of Curves and Extremal Partitions . . . . . . . . . . 7--55 Alexander Vasil'ev 3. Moduli in Extremal Problems for Conformal Mapping . . . . . . . . . . . 57--139 Alexander Vasil'ev 4. Moduli in Extremal Problems for Quasiconformal Mapping . . . . . . . . . 141--174 Alexander Vasil'ev 5. Moduli on Teichmüller Spaces . . . . . 175--196 Alexander Vasil'ev References . . . . . . . . . . . . . . . 197--206 Alexander Vasil'ev List of symbols and Index . . . . . . . 207--211
Yorck Sommerhäuser Introduction . . . . . . . . . . . . . . 1--6 Yorck Sommerhäuser 1. Preliminaries . . . . . . . . . . . . 7--24 Yorck Sommerhäuser 2. Clifford theory . . . . . . . . . . . 25--33 Yorck Sommerhäuser 3. Examples . . . . . . . . . . . . . . 35--47 Yorck Sommerhäuser 4. Isomorphisms . . . . . . . . . . . . 49--65 Yorck Sommerhäuser 5. Constructions . . . . . . . . . . . . 67--89 Yorck Sommerhäuser 6. Commutative Yetter--Drinfel'd Hopf algebras . . . . . . . . . . . . . . . . 91--102 Yorck Sommerhäuser 7. Cocommutative Yetter--Drinfel'd Hopf algebras . . . . . . . . . . . . . . . . 103--113 Yorck Sommerhäuser 8. Semisimple Hopf algebras of dimension $ p^3 $ . . . . . . . . . . . . . . . . 115--129 Yorck Sommerhäuser 9. Semisimple Hopf algebras of dimension $ p q $ . . . . . . . . . . . . . . . . 131--140 Yorck Sommerhäuser 10. Applications . . . . . . . . . . . . 141--145 Yorck Sommerhäuser References . . . . . . . . . . . . . . . 147--150 Yorck Sommerhäuser Subject and Symbol Index . . . . . . . . 151--157
Xingzhi Zhan 1. Inequalities in the Löwner Partial Order . . . . . . . . . . . . . . . . . 1--15 Xingzhi Zhan 2. Majorization and Eigenvalues . . . . 17--25 Xingzhi Zhan 3. Singular Values . . . . . . . . . . . 27--54 Xingzhi Zhan 4. Norm Inequalities . . . . . . . . . . 55--98 Xingzhi Zhan 5. Solution of the van der Waerden Conjecture . . . . . . . . . . . . . . . 99--109 Xingzhi Zhan References . . . . . . . . . . . . . . . 110--114 Xingzhi Zhan Index . . . . . . . . . . . . . . . . . 115--116
Manfred Knebusch and Digen Zhang Introduction . . . . . . . . . . . . . . 1--6 Manfred Knebusch and Digen Zhang Summary . . . . . . . . . . . . . . . . 7--7 Manfred Knebusch and Digen Zhang Chapter I: Basics on Manis valuations and Prüfer extensions . . . . . . . . . . 9--81 Manfred Knebusch and Digen Zhang Chapter II: Multiplicative ideal theory 83--176 Manfred Knebusch and Digen Zhang Chapter III: PM-valuations and valuations of weaker type . . . . . . . 177--250 Manfred Knebusch and Digen Zhang Appendix . . . . . . . . . . . . . . . . 251--256 Manfred Knebusch and Digen Zhang References . . . . . . . . . . . . . . . 257--262 Manfred Knebusch and Digen Zhang Subject and Symbol Index . . . . . . . . 263--267
Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong Introduction . . . . . . . . . . . . . . 1--3 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong 1. Mathematical preliminaries . . . . . 5--16 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong 2. Regularization of moment problems by truncated expansion and by the Tikhonov method . . . . . . . . . . . . . . . . . 17--49 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong 3. Backus-Gilbert regularization of a moment problem . . . . . . . . . . . . . 51--81 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong 4. The Hausdorff moment problem: regularization and error estimates . . . 83--97 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong 5. Analytic functions: reconstruction and Sinc approximations . . . . . . . . 99--130 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong 6. Regularization of some inverse problems in potential theory . . . . . . 131--146 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong 7. Regularization of some inverse problems in heat conduction . . . . . . 147--169 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong 8. Epilogue . . . . . . . . . . . . . . 171--173 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong References . . . . . . . . . . . . . . . 175--180 Dang Dinh Ang and Rudolf Gorenflo and Vy Khoi Le and Dang Duc Trong Index . . . . . . . . . . . . . . . . . 181--183
Jorge Cortés Monforte Front Matter . . . . . . . . . . . . . . I--XV Jorge Cortés Monforte 1. Introduction . . . . . . . . . . . . 1--12 Jorge Cortés Monforte 2. Basic geometric tools . . . . . . . . 13--37 Jorge Cortés Monforte 3. Nonholonomic systems . . . . . . . . 39--61 Jorge Cortés Monforte 4. Symmetries of nonholonomic systems 63--102 Jorge Cortés Monforte 5. Chaplygin systems . . . . . . . . . . 103--120 Jorge Cortés Monforte 6. A class of hybrid nonholonomic systems . . . . . . . . . . . . . . . . 121--140 Jorge Cortés Monforte 7. Nonholonomic integrators . . . . . . 141--170 Jorge Cortés Monforte 8. Control of mechanical systems . . . . 171--202 Jorge Cortés Monforte References . . . . . . . . . . . . . . . 203--216 Jorge Cortés Monforte Back Matter . . . . . . . . . . . . . . 203--224 Jorge Cortés Monforte Index . . . . . . . . . . . . . . . . . 217--219
N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Basic notions on substitutions . . . . . 1--32 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Substitutions, arithmetic and finite automata: an introduction . . . . . . . 35--52 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Automatic sequences and transcendence 53--80 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Substitutions and partitions of the set of positive integers . . . . . . . . . . 81--98 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Substitutions and symbolic dynamical systems . . . . . . . . . . . . . . . . 101--142 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Sturmian Sequences . . . . . . . . . . . 143--198 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Spectral theory and geometric representation of substitutions . . . . 199--252 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Diophantine approximations, substitutions, and fractals . . . . . . 253--292 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Infinite words generated by invertible substitutions . . . . . . . . . . . . . 295--320 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Polynomial dynamical systems associated with substitutions . . . . . . . . . . . 321--342 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Piecewise linear transformations of the unit interval and Cantor sets . . . . . 343--361 N. Pytheas Fogg and Valéré Berthé and Sébastien Ferenczi and Christian Mauduit and Anne Siegel Some open problems . . . . . . . . . . . 363--374 J. Rivat A. Undecomposable matrices in dimension $3$ . . . . . . . . . . . . . . . . . . 375--376
Huishi Li Introduction . . . . . . . . . . . . . . 1--4 Huishi Li Chapter I: Basic Structural Tricks and Examples . . . . . . . . . . . . . . . . 5--32 Huishi Li Chapter II: Gröbner Bases in Associative Algebras . . . . . . . . . . . . . . . . 33--65 Huishi Li Chapter III: Gröbner Bases and Basic Algebraic--Algorithmic Structures . . . 67--90 Huishi Li Chapter IV: Filtered-Graded Transfer of Gröbner Bases . . . . . . . . . . . . . . 91--105 Huishi Li Chapter V: GK-dimension of Modules over Quadric Solvable Polynomial Algebras and Elimination of Variables . . . . . . . . 107--132 Huishi Li Chapter VI: Multiplicity Computation of Modules over Quadric Solvable Polynomial Algebras . . . . . . . . . . . . . . . . 133--151 Huishi Li Chapter VII: $ (\partial)$-Holonomic Modules and Functions over Quadric Solvable Polynomial Algebras . . . . . . 153--173 Huishi Li Chapter VIII: Regularity and $ K_0 $-group of Quadric Solvable Polynomial Algebras . . . . . . . . . . . . . . . . 175--186 Huishi Li References . . . . . . . . . . . . . . . 187--193 Huishi Li Index . . . . . . . . . . . . . . . . . 195--197
Jens M. Melenk 1. Introduction . . . . . . . . . . . . 1--20 Jens M. Melenk 2. hp-FEM for Reaction Diffusion Problems: Principal Results . . . . . . 23--72 Jens M. Melenk 3. hp Approximation . . . . . . . . . . 73--138 Jens M. Melenk 4. The Countably Normed Spaces $ {\cal B}^l_{\beta, \varepsilon } $ . . . . . . 141--168 Jens M. Melenk 5. Regularity Theory in Countably Normed Spaces . . . . . . . . . . . . . . . . . 169--224 Jens M. Melenk 6. Exponentially Weighted Countably Normed Spaces . . . . . . . . . . . . . 227--254 Jens M. Melenk 7. Regularity through Asymptotic Expansions . . . . . . . . . . . . . . . 255--295 Jens M. Melenk Appendix . . . . . . . . . . . . . . . . 297--310 Jens M. Melenk References . . . . . . . . . . . . . . . 311--316 Jens M. Melenk Index . . . . . . . . . . . . . . . . . 317--318
Bernhard Schmidt 1. Introduction . . . . . . . . . . . . 1--25 Bernhard Schmidt 2. The field descent . . . . . . . . . . 27--51 Bernhard Schmidt 3. Exponent bounds . . . . . . . . . . . 53--78 Bernhard Schmidt 4. Two-weight irreducible cyclic codes 79--90 Bernhard Schmidt Bibliography . . . . . . . . . . . . . . 91--98 Bernhard Schmidt Index . . . . . . . . . . . . . . . . . 99--100
Waldyr Muniz Oliva Introduction . . . . . . . . . . . . . . 1--2 Waldyr Muniz Oliva 1. Differentiable manifolds . . . . . . 3--12 Waldyr Muniz Oliva 2. Vector fields, differential forms and tensor fields . . . . . . . . . . . . . 13--21 Waldyr Muniz Oliva 3. Pseudo-Riemannian manifolds . . . . . 23--53 Waldyr Muniz Oliva 4. Newtonian mechanics . . . . . . . . . 55--60 Waldyr Muniz Oliva 5. Mechanical systems on Riemannian manifolds . . . . . . . . . . . . . . . 61--110 Waldyr Muniz Oliva 6. Mechanical systems with non-holonomic constraints . . . . . . . . . . . . . . 111--126 Waldyr Muniz Oliva 7. Hyperbolicity and Anosov systems. Vakonomic mechanics . . . . . . . . . . 127--143 Waldyr Muniz Oliva 8. Special relativity . . . . . . . . . 145--163 Waldyr Muniz Oliva 9. General relativity . . . . . . . . . 165--181 Waldyr Muniz Oliva A. Hamiltonian and Lagrangian formalisms 183--193 Waldyr Muniz Oliva B. Möbius transformations and the Lorentz group . . . . . . . . . . . . . . . . . 195--221 Waldyr Muniz Oliva C. Quasi-Maxwell form of Einstein's equation . . . . . . . . . . . . . . . . 223--244 Waldyr Muniz Oliva D. Viscosity solutions and Aubry--Mather theory . . . . . . . . . . . . . . . . . 245--257 Waldyr Muniz Oliva References . . . . . . . . . . . . . . . 259--261 Waldyr Muniz Oliva Index . . . . . . . . . . . . . . . . . 263--270
Hervé Pajot 1. Some geometric measure theory . . . . 1--15 Hervé Pajot 2. P. Jones' traveling salesman theorem 17--27 Hervé Pajot 3. Menger curvature . . . . . . . . . . 29--54 Hervé Pajot 4. The Cauchy singular integral operator on Ahlfors regular sets . . . . . . . . 55--65 Hervé Pajot 5. Analytic capacity and the Painlevé problem . . . . . . . . . . . . . . . . 67--79 Hervé Pajot 6. The Denjoy and Vitushkin conjectures 81--103 Hervé Pajot 7. The capacity $ \gamma_{ + } $ and the Painlevé Problem . . . . . . . . . . . . 105--114 Hervé Pajot Bibliography . . . . . . . . . . . . . . 115--118 Hervé Pajot Index . . . . . . . . . . . . . . . . . 119--119
Ivan Cherednik and Yavor Markov Hankel transform via double Hecke algebra . . . . . . . . . . . . . . . . 1--25 Roger Howe Lecture Notes by Cathy Kriloff . . . . . 27--69 George Lusztig Notes on affine Hecke algebras . . . . . 71--103
Ofer Gabber and Lorenzo Ramero 1. Introduction . . . . . . . . . . . . 1--10 Ofer Gabber and Lorenzo Ramero 2. Homological theory . . . . . . . . . 11--49 Ofer Gabber and Lorenzo Ramero 3. Almost ring theory . . . . . . . . . 50--91 Ofer Gabber and Lorenzo Ramero 4. Fine study of almost projective modules . . . . . . . . . . . . . . . . 92--129 Ofer Gabber and Lorenzo Ramero 5. Henselization and completion of almost algebras . . . . . . . . . . . . 130--194 Ofer Gabber and Lorenzo Ramero 6. Valuation theory . . . . . . . . . . 195--241 Ofer Gabber and Lorenzo Ramero 7. Analytic geometry . . . . . . . . . . 242--286 Ofer Gabber and Lorenzo Ramero 8. Appendix . . . . . . . . . . . . . . 287--300 Ofer Gabber and Lorenzo Ramero References and Index . . . . . . . . . . 301--303
A. Guionnet and B. Zegarlinksi Lectures on Logarithmic Sobolev Inequalities . . . . . . . . . . . . . . 1--134 Leonid Pastur and Antonie Lejay Matrices aléatoires: Statistique asymptotique des valeurs propres. (French) [] . . . . . . . . . . . . . . 135--164 Neil O'Connell Random matrices, non-colliding processes and queues . . . . . . . . . . . . . . . 165--182 Azzouz Dermoune and Octave Moutsinga Generalized variational principles . . . 183--193 Djalil Chafa\"\i Gaussian maximum of entropy and reversed log-Sobolev inequality . . . . . . . . . 194--200 Laurent Miclo About projections of logarithmic Sobolev inequalities . . . . . . . . . . . . . . 201--221 Laurent Miclo Sur l'inégalité de Sobolev logarithmique des opérateurs de Laguerre \`a petit param\`etre. (French) [] . . . . . . . . 222--229 Abdellatif Bentaleb Sur les fonctions extrémales des inégalités de Sobolev des opérateurs de diffusion. (French) [] . . . . . . . . . . . . . . 230--250 Catherine Donati-Martin and Yueyun Hu Penalization of the Wiener Measure and Principal Values . . . . . . . . . . . . 251--269 Christophe Leuridan Théor\`eme de Ray--Knight dans un arbre: Une approche algébrique. (French) [] . . 270--301 Richard F. Bass Stochastic differential equations driven by symmetric stable processes . . . . . 302--313 Thomas Simon Support d'une équation d'Itô avec sauts en dimension $1$. (French) [] . . . . . . . 314--330 Nathalie Eisenbaum A Gaussian sheet connected to symmetric Markov chains . . . . . . . . . . . . . 331--334 Christophe Leuridan Filtration d'une Marche aléatoire stationnaire sur le cercle. (French) [] 335--347 Samia Beghdadi-Sakrani Une martingale non pure, dont la filtration est brownienne. (French) [] 348--359 Jan Hannig On filtrations related to purely discontinuous martingales . . . . . . . 360--365 Samia Beghdadi-Sakrani Calcul stochastique pour des mesures signées. (French) [] . . . . . . . . . . 366--382 Jean Jacod On processes with conditional independent increments and stable convergence in law . . . . . . . . . . . 383--401 Valentin Grecea Duality and quasy-continuity for supermartingales . . . . . . . . . . . . 402--412 Yuri Kabanov and Christophe Stricker On the true submartingale property, d'apr\`es Schachermayer . . . . . . . . 413--414
Vincenzo Capasso and Alessandra Micheletti Stochastic Geometry of Spatially Structured Birth and Growth Processes. Application to Crystallization Processes 1--39 Ely Merzbach An Introduction to the General Theory of Set-Indexed Martingales . . . . . . . . 41--84 B. Gail Ivanoff Set-Indexed Processes: Distributions and Weak Convergence . . . . . . . . . . . . 85--125 Marco Dozzi Occupation Density and Sample Path Properties . . . . . . . . . . . . . . . 127--166 Robert C. Dalang Level Sets and Excursions of the Brownian Sheet . . . . . . . . . . . . . 167--208 Thomas S. Mountford Critical Reversible Attractive Nearest Particle Systems . . . . . . . . . . . . 209--241
Georg Dolzmann 1. Introduction . . . . . . . . . . . . 1--10 Georg Dolzmann 2. Semiconvex Hulls of Compact Sets . . 11--68 Georg Dolzmann 3. Macroscopic Energy for Nematic Elastomers . . . . . . . . . . . . . . . 69--81 Georg Dolzmann 4. Uniqueness and Stability of Microstructure . . . . . . . . . . . . . 83--126 Georg Dolzmann 5. Applications to Martensic Transformations . . . . . . . . . . . . 127--152 Georg Dolzmann 6. Algorithmic Aspects . . . . . . . . . 153--175 Georg Dolzmann 7. Bibliographic Remarks . . . . . . . . 177--182 Georg Dolzmann A. Convexity Conditions and Rank-one Connections . . . . . . . . . . . . . . 183--192 Georg Dolzmann B. Elements of Crystallography . . . . . 193--196 Georg Dolzmann C. Notation . . . . . . . . . . . . . . 197--200 Georg Dolzmann References . . . . . . . . . . . . . . . 201--209 Georg Dolzmann Index . . . . . . . . . . . . . . . . . 211--212
Frédéric Cao 1. Curve evolution and image processing 3--21 Frédéric Cao 2. Rudimentary bases of curve geometry 23--28 Frédéric Cao 3. Geometric curve shortening flow . . . 31--53 Frédéric Cao 4. Curve evolution and level sets . . . 55--103 Frédéric Cao 5. Classical numerical methods for curve evolution . . . . . . . . . . . . . . . 107--110 Frédéric Cao 6. A geometrical scheme for curve evolution . . . . . . . . . . . . . . . 111--166 Frédéric Cao Conclusion and perspectives . . . . . . 167--169 Frédéric Cao A. Proof of Thm. 4.34 . . . . . . . . . 171--176 Frédéric Cao References . . . . . . . . . . . . . . . 177--184 Frédéric Cao Index . . . . . . . . . . . . . . . . . 185--187
Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter 1. Introduction . . . . . . . . . . . . 1--18 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter 2. Method I: Planar reduction . . . . . 21--44 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter 3. Method II: The energy-momentum map 45--68 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter 4. Birkhoff normalization . . . . . . . 71--84 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter 5. Singularity theory . . . . . . . . . 85--96 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter 6. Gröbner bases and Standard bases . . . 97--132 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter 7. Computing normalizing transformations 133--151 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter A. Appendix . . . . . . . . . . . . . . 153--158 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter References . . . . . . . . . . . . . . . 159--165 Henk Broer and Igor Hoveijn and Gerton Lunter and Gert Vegter Index . . . . . . . . . . . . . . . . . 167--169
F. Barthe and M. Csörnyei and A. Naor A Note on Simultaneous Polar and Cartesian Decomposition . . . . . . . . 1--19 Alexander Barvinok Approximating a Norm by a Polynomial . . 20--26 S. G. Bobkov Concentration of Distributions of the Weighted Sums with Bernoullian Coefficients . . . . . . . . . . . . . . 27--36 S. G. Bobkov Spectral Gap and Concentration for Some Spherically Symmetric Probability Measures . . . . . . . . . . . . . . . . 37--43 S. G. Bobkov and A. Koldobsky On the Central Limit Property of Convex Bodies . . . . . . . . . . . . . . . . . 44--52 S. G. Bobkov and F. L. Nazarov On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis . . . . . . . . . . . . . . . . . 53--69 J. Bourgain Random Lattice Schrödinger Operators with Decaying Potential: Some Higher Dimensional Phenomena . . . . . . . . . 70--98 J. Bourgain On Long-Time Behaviour of Solutions of Linear Schrödinger Equations with Smooth Time-Dependent Potential . . . . . . . . 99--113 J. Bourgain On the Isotropy-Constant Problem for ``PSI-2''-Bodies . . . . . . . . . . . . 114--121 E. D. Gluskin On the Sum of Intervals . . . . . . . . 122--130 E. Gluskin and V. Milman Note on the Geometric-Arithmetic Mean Inequality . . . . . . . . . . . . . . . 131--135 Olivier Guédon and Artem Zvavitch Supremum of a Process in Terms of Trees 136--147 Olga Maleva Point Preimages under Ball Non-Collapsing Mappings . . . . . . . . 148--157 Vitali Milman and Roy Wagner Some Remarks on a Lemma of Ran Raz . . . 158--168 Fedor Nazarov On the Maximal Perimeter of a Convex Set in $ \mathbb {R}^n $ with Respect to a Gaussian Measure . . . . . . . . . . . . 169--187 Krzysztof Oleszkiewicz On $p$-Pseudostable Random Variables, Rosenthal Spaces and $ l_p^n$ Ball Slicing . . . . . . . . . . . . . . . . 188--210 G. Paouris $ \Psi_2 $-Estimates for Linear Functionals on Zonoids . . . . . . . . . 211--222 G. Schechtman and N. Tomczak-Jaegermann and R. Vershynin Maximal $ \ell_p^n$-Structures in Spaces with Extremal Parameters . . . . . . . . 223--240 Carsten Schütt and Elisabeth Werner Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body . . . 241--422
Werner Schindler 1. Introduction . . . . . . . . . . . . 1--9 Werner Schindler 2. Main Theorems . . . . . . . . . . . . 11--54 Werner Schindler 3. Significance, Applicability and Advantages . . . . . . . . . . . . . . . 55--62 Werner Schindler 4. Applications . . . . . . . . . . . . 63--153 Werner Schindler References . . . . . . . . . . . . . . . 155--158 Werner Schindler Glossary and Index . . . . . . . . . . . 159--167
Olaf Steinbach Introduction . . . . . . . . . . . . . . 1--5 Olaf Steinbach 1. Preliminaries . . . . . . . . . . . . 7--24 Olaf Steinbach 2. Stability Results . . . . . . . . . . 25--51 Olaf Steinbach 3. The Dirichlet--Neumann Map for Elliptic Boundary Value Problems . . . . 53--70 Olaf Steinbach 4. Mixed Discretization Schemes . . . . 71--83 Olaf Steinbach 5. Hybrid Coupled Domain Decomposition Methods . . . . . . . . . . . . . . . . 85--115 Olaf Steinbach References . . . . . . . . . . . . . . . 117--120
Jochen Wengenroth 1. Introduction . . . . . . . . . . . . 1--6 Jochen Wengenroth 2. Notions from homological algebra . . 7--15 Jochen Wengenroth 3. The projective limit functor for countable spectra . . . . . . . . . . . 17--57 Jochen Wengenroth 4. Uncountable projective spectra . . . 59--76 Jochen Wengenroth 5. The derived functors of Hom . . . . . 77--107 Jochen Wengenroth 6. Inductive spectra of locally convex spaces . . . . . . . . . . . . . . . . . 109--118 Jochen Wengenroth 7. The duality functor . . . . . . . . . 119--127 Jochen Wengenroth References . . . . . . . . . . . . . . . 129--132 Jochen Wengenroth Index . . . . . . . . . . . . . . . . . 133--134
Jan Stevens Introduction . . . . . . . . . . . . . . 1--4 Jan Stevens 1. Deformations of singularities . . . . 5--14 Jan Stevens 2. Standard bases . . . . . . . . . . . 15--22 Jan Stevens 3. Infinitesimal deformations . . . . . 23--31 Jan Stevens 4. Example: the fat point of multiplicity four . . . . . . . . . . . 33--38 Jan Stevens 5. Deformations of algebras . . . . . . 39--44 Jan Stevens 6. Formal deformation theory . . . . . . 45--53 Jan Stevens 7. Deformations of compact manifolds . . 55--61 Jan Stevens 8. How to solve the deformation equation 63--66 Jan Stevens 9. Convergence for isolated singularities . . . . . . . . . . . . . 67--70 Jan Stevens 10. Quotient singularities . . . . . . . 71--77 Jan Stevens 11. The projection method . . . . . . . 79--92 Jan Stevens 12. Formats . . . . . . . . . . . . . . 93--104 Jan Stevens 13. Smoothing components of curves . . . 105--111 Jan Stevens 14. Kollár's conjectures . . . . . . . . 113--124 Jan Stevens 15. Cones over curves . . . . . . . . . 125--136 Jan Stevens 16. The versal deformation of hyperelliptic cones . . . . . . . . . . 137--146 Jan Stevens References . . . . . . . . . . . . . . . 147--153 Jan Stevens Index . . . . . . . . . . . . . . . . . 155--157
Luigi Ambrosio Lecture Notes on Optimal Transport Problems . . . . . . . . . . . . . . . . 1--52 Klaus Deckelnick and Gerhard Dziuk Numerical Approximation of Mean Curvature Flow of Graphs and Level Sets 53--87 Masayasu Mimura Reaction-Diffusion Systems Arising in Biological and Chemical Systems: Application of Singular Limit Procedures 89--121 Vsevolod A. Solonnikov Lectures on Evolution Free Boundary Problems: Classical Solutions . . . . . 123--175 Halil Mete Soner Variational and Dynamic Problems for the Ginzburg--Landau Functional . . . . . . 177--233
Luis A. Caffarelli The Monge--Amp\`ere Equation and Optimal Transportation, an elementary review . . 1--10 Giuseppe Buttazzo and Luigi De Pascale Optimal Shapes and Masses, and Optimal Transportation Problems . . . . . . . . 11--51 Cedric Villani Optimal transportation, dissipative PDE's and functional inequalities . . . 53--89 Yann Brenier Extended Monge--Kantorovich Theory . . . 91--121 Luigi Ambrosio and Aldo Pratelli Existence and stability results in the $ L^1 $ theory of optimal transportation 123--160
Peter Bank and Hans Föllmer American Options, Multi--armed Bandits, and Optimal Consumption Plans: a Unifying View . . . . . . . . . . . . . 1--42 Fabrice Baudoin Modeling Anticipations on Financial Markets . . . . . . . . . . . . . . . . 43--94 L. C. G. Rogers Duality in constrained optimal investment and consumption problems: a synthesis . . . . . . . . . . . . . . . 95--131 H. Mete Soner and Nizar Touzi The Problem of Super-replication under Constraints . . . . . . . . . . . . . . 133--172
Alexei Borodin Asymptotic representation theory and Riemann--Hilbert problem . . . . . . . . 3--19 Percy Deift Four Lectures on Random Matrix Theory 21--52 R. Speicher Free Probability Theory and Random Matrices . . . . . . . . . . . . . . . . 53--73 Akihito Hora A Noncommutative Version of Kerov's Gaussian Limit for the Plancherel Measure of the Symmetric Group . . . . . 77--88 Andrei Okounkov Random trees and moduli of curves . . . 89--126 Grigori Olshanski An introduction to harmonic analysis on the infinite symmetric group . . . . . . 127--160 A. Vershik Two lectures on the asymptotic representation theory and statistics of Young diagrams . . . . . . . . . . . . . 161--182 Philippe Biane Characters of symmetric groups and free cumulants . . . . . . . . . . . . . . . 185--200 Marek Bo\.zejko and Ryszard Szwarc Algebraic length and Poincaré series on reflection groups with applications to representations theory . . . . . . . . . 201--221 Maxim Nazarov Mixed hook-length formula for degenerate a fine Hecke algebras . . . . . . . . . 223--236
Wolfram Koepf Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions . . . . . . . . . . . . . . . 1--24 Joris Van der Jeugt $ 3 n j$-Coefficients and Orthogonal Polynomials of Hypergeometric Type . . . 25--92 Margit Rösler Dunkl Operators: Theory and Applications 93--135 Dennis Stanton Enumeration and Special Functions . . . 137--166 Arno B. J. Kuijlaars Riemann--Hilbert Analysis for Orthogonal Polynomials . . . . . . . . . . . . . . 167--210 Adri B. Olde Daalhuis Exponential Asymptotics . . . . . . . . 211--244
Michael Bildhauer 1. Introduction . . . . . . . . . . . . 1--12 Michael Bildhauer 2. Variational problems with linear growth: the general setting . . . . . . 13--39 Michael Bildhauer 3. Variational integrands with $ (s, \mu, q)$-growth . . . . . . . . . . . . 41--96 Michael Bildhauer 4. Variational problems with linear growth: the case of $ \mu $-elliptic integrands . . . . . . . . . . . . . . . 97--139 Michael Bildhauer 5. Bounded solutions for convex variational problems with a wide range of anisotropy . . . . . . . . . . . . . 141--159 Michael Bildhauer 6. Anisotropic linear/superlinear growth in the scalar case . . . . . . . . . . . 161--172 Michael Bildhauer A. Some remarks on relaxation . . . . . 173--183 Michael Bildhauer B. Some density results . . . . . . . . 185--198 Michael Bildhauer C. Brief comments on steady states of generalized Newtonian fluids . . . . . . 199--203 Michael Bildhauer D. Notation and conventions . . . . . . 205--206 Michael Bildhauer References . . . . . . . . . . . . . . . 207--213 Michael Bildhauer Index . . . . . . . . . . . . . . . . . 215--217
David Masser and Yuri V. Nesterenko and Hans Peter Schlickewei and Wolfgang Schmidt and Michel Waldschmidt Front Matter . . . . . . . . . . . . . . I--XI David Masser Heights, Transcendence, and Linear Independence on Commutative Group Varieties . . . . . . . . . . . . . . . 1--51 Yuri Nesterenko Linear Forms in Logarithms of Rational Numbers . . . . . . . . . . . . . . . . 53--106 Hans Peter Schlickewei Approximation of Algebraic Numbers . . . 107--170 Wolfgang M. Schmidt Linear Recurrence Sequences . . . . . . 171--247 Michel Waldschmidt Linear Independence Measures for Logarithms of Algebraic Numbers . . . . 249--344 Michel Waldschmidt Back Matter . . . . . . . . . . . . . . 345--351
Fumio Hiai and Hideki Kosaki 1. Introduction . . . . . . . . . . . . 1--6 Fumio Hiai and Hideki Kosaki 2. Double integral transformations . . . 7--32 Fumio Hiai and Hideki Kosaki 3. Means of operators and their comparison . . . . . . . . . . . . . . . 33--55 Fumio Hiai and Hideki Kosaki 4. Convergence of means . . . . . . . . 57--63 Fumio Hiai and Hideki Kosaki 5. A-L-G interpolation means $ M_\alpha $ . . . . . . . . . . . . . . . . . . . 65--78 Fumio Hiai and Hideki Kosaki 6. Heinz-type means $ A_\alpha $ . . . . 79--87 Fumio Hiai and Hideki Kosaki 7. Binomial means $ B_\alpha $ . . . . . 89--104 Fumio Hiai and Hideki Kosaki 8. Certain alternating sums of operators 105--121 Fumio Hiai and Hideki Kosaki A Appendices . . . . . . . . . . . . . . 123--139 Fumio Hiai and Hideki Kosaki References . . . . . . . . . . . . . . . 141--144
Stefan Teufel 1. Introduction . . . . . . . . . . . . 1--31 Stefan Teufel 2. First order adiabatic theory . . . . 33--69 Stefan Teufel 3. Space-adiabatic perturbation theory 71--104 Stefan Teufel 4. Applications and extensions . . . . . 105--140 Stefan Teufel 5. Quantum dynamics in periodic media 141--171 Stefan Teufel 6. Adiabatic decoupling without spectral gap . . . . . . . . . . . . . . . . . . 173--201 Stefan Teufel Appendix . . . . . . . . . . . . . . . . 203--224 Stefan Teufel List of symbols and References . . . . . 225--234
Shui-Nee Chow Lattice Dynamical Systems . . . . . . . 1--102 Roberto Conti and Marcello Galeotti Totally Bounded Cubic Systems in $ \mathbb {R}^2 $ . . . . . . . . . . . . 103--171 Russell Johnson and Francesca Mantellini Non-Autonomous Differential Equations 173--229 John Mallet-Paret Traveling Waves in Spatially Discrete Dynamical Systems of Diffusive Type . . 231--298 Roger D. Nussbaum Limiting Profiles for Solutions of Differential-Delay Equations . . . . . . 299--342
A. M. Anile and G. Mascali and V. Romano Recent Developments in Hydrodynamical Modeling of Semiconductors . . . . . . . 1--56 Walter Allegretto Drift-Diffusion Equations and Applications . . . . . . . . . . . . . . 57--95 Christian Ringhofer Kinetic and Gas- Dynamic Models for Semiconductor Transport . . . . . . . . 97--131
Juan A. Navarro González and Juan B. Sancho de Salas Introduction . . . . . . . . . . . . . . 1--5 Juan A. Navarro González and Juan B. Sancho de Salas 1. Differentiable Manifolds . . . . . . 7--20 Juan A. Navarro González and Juan B. Sancho de Salas 2. Differentiable Algebras . . . . . . . 21--38 Juan A. Navarro González and Juan B. Sancho de Salas 3. Differentiable Spaces . . . . . . . . 39--49 Juan A. Navarro González and Juan B. Sancho de Salas 4. Topology of Differentiable Spaces . . 51--56 Juan A. Navarro González and Juan B. Sancho de Salas 5. Embeddings . . . . . . . . . . . . . 57--68 Juan A. Navarro González and Juan B. Sancho de Salas 6. Topological Tensor Products . . . . . 69--77 Juan A. Navarro González and Juan B. Sancho de Salas 7. Fibred Products . . . . . . . . . . . 79--87 Juan A. Navarro González and Juan B. Sancho de Salas 8. Topological Localization . . . . . . 89--97 Juan A. Navarro González and Juan B. Sancho de Salas 9. Finite Morphisms . . . . . . . . . . 99--111 Juan A. Navarro González and Juan B. Sancho de Salas 10. Smooth Morphisms . . . . . . . . . . 113--125 Juan A. Navarro González and Juan B. Sancho de Salas 11. Quotients by Compact Lie Groups . . 127--150 Juan A. Navarro González and Juan B. Sancho de Salas Appendix . . . . . . . . . . . . . . . . 151--179 Juan A. Navarro González and Juan B. Sancho de Salas References . . . . . . . . . . . . . . . 181--183
Albert Cohen Theoretical, Applied and Computational Aspects of Nonlinear Approximation . . . 1--29 Wolfgang Dahmen Multiscale and Wavelet Methods for Operator Equations . . . . . . . . . . . 31--96 James H. Bramble Multilevel Methods in Finite Elements 97--151
Klaus Dohmen 1. Introduction and Overview . . . . . . 1--4 Klaus Dohmen 2. Preliminaries . . . . . . . . . . . . 5--8 Klaus Dohmen 3. Bonferroni Inequalities via Abstract Tubes . . . . . . . . . . . . . . . . . 9--18 Klaus Dohmen 4. Abstract Tubes via Closure and Kernel Operators . . . . . . . . . . . . . . . 19--43 Klaus Dohmen 5. Recursive Schemes . . . . . . . . . . 44--46 Klaus Dohmen 6. Reliability Applications . . . . . . 47--81 Klaus Dohmen 7. Combinatorial Applications and Related Topics . . . . . . . . . . . . . 82--99 Klaus Dohmen Bibliography . . . . . . . . . . . . . . 100--109
Kevin M. Pilgrim 1. Introduction . . . . . . . . . . . . 1--35 Kevin M. Pilgrim 2. Preliminaries . . . . . . . . . . . . 37--48 Kevin M. Pilgrim 3. Combinations . . . . . . . . . . . . 49--57 Kevin M. Pilgrim 4. Uniqueness of combinations . . . . . 59--68 Kevin M. Pilgrim 5. Decomposition . . . . . . . . . . . . 69--77 Kevin M. Pilgrim 6. Uniqueness of decompositions . . . . 79--81 Kevin M. Pilgrim 7. Counting classes of annulus maps . . 83--88 Kevin M. Pilgrim 8. Applications to mapping class groups 89--94 Kevin M. Pilgrim 9. Examples . . . . . . . . . . . . . . 95--103 Kevin M. Pilgrim 10. Canonical Decomposition Theorem . . 105--109 Kevin M. Pilgrim References . . . . . . . . . . . . . . . 111--116
David J. Green Introduction . . . . . . . . . . . . . . 1--9 David J. Green Part I: 1. Bases for finite-dimensional algebras and modules . . . . . . . . . . 13--20 David J. Green Part I: 2. The Buchberger Algorithm for modules . . . . . . . . . . . . . . . . 21--32 David J. Green Part I: 3. Constructing minimal resolutions . . . . . . . . . . . . . . 33--46 David J. Green Part II: 4. Gröbner bases for graded commutative algebras . . . . . . . . . . 49--65 David J. Green Part II: 5. The visible ring structure 67--80 David J. Green Part II: 6. The completeness of the presentation . . . . . . . . . . . . . . 81--90 David J. Green Part III: 7. Experimental results . . . 93--100 David J. Green A Sample cohomology calculations . . . . 101--130 David J. Green Epilogue and References . . . . . . . . 131--135
Eitan Altman and Bruno Gaujal and Arie Hordijk Introduction . . . . . . . . . . . . . . 1--6 Eitan Altman and Bruno Gaujal and Arie Hordijk Multimodularity, Convexity and Optimization . . . . . . . . . . . . . . 11--38 Eitan Altman and Bruno Gaujal and Arie Hordijk Part I: 2. Balanced Sequences . . . . . 39--54 Eitan Altman and Bruno Gaujal and Arie Hordijk Part I: 3. Stochastic Event Graphs . . . 55--74 Eitan Altman and Bruno Gaujal and Arie Hordijk Part II: 4. Admission control in stochastic event graphs . . . . . . . . 79--103 Eitan Altman and Bruno Gaujal and Arie Hordijk Part II: 5. Applications in queuing networks . . . . . . . . . . . . . . . . 105--109 Eitan Altman and Bruno Gaujal and Arie Hordijk Part II: 6. Optimal routing . . . . . . 111--118 Eitan Altman and Bruno Gaujal and Arie Hordijk Part II: 7. Optimal routing in two deterministic queues . . . . . . . . . . 119--149 Eitan Altman and Bruno Gaujal and Arie Hordijk Part III: 8. Networks with no buffers 155--181 Eitan Altman and Bruno Gaujal and Arie Hordijk Vacancies, service allocation and polling . . . . . . . . . . . . . . . . 183--204 Eitan Altman and Bruno Gaujal and Arie Hordijk Part III: 10. Monotonicity of feedback control . . . . . . . . . . . . . . . . 205--223 Eitan Altman and Bruno Gaujal and Arie Hordijk Part IV: 11. Comparison of queues with discrete-time arrival processes . . . . 229--241 Eitan Altman and Bruno Gaujal and Arie Hordijk Part IV: 12. Simplex convexity . . . . . 243--259 Eitan Altman and Bruno Gaujal and Arie Hordijk Part IV: 13. Orders and bounds for multimodular functions . . . . . . . . . 261--282 Eitan Altman and Bruno Gaujal and Arie Hordijk Part IV: 14. Regular Ordering . . . . . 283--304 Eitan Altman and Bruno Gaujal and Arie Hordijk References . . . . . . . . . . . . . . . 305--310
Michael I. Gil' 1. Preliminaries . . . . . . . . . . . . 1--9 Michael I. Gil' 2. Norms of Matrix-Valued Functions . . 11--34 Michael I. Gil' 3. Invertibility of Finite Matrices . . 35--48 Michael I. Gil' 4. Localization of Eigenvalues of Finite Matrices . . . . . . . . . . . . . . . . 49--63 Michael I. Gil' 5. Block Matrices and $ \pi $-Triangular Matrices . . . . . . . . . . . . . . . . 65--74 Michael I. Gil' 6. Norm Estimates for Functions of Compact Operators in a Hilbert Space . . 75--96 Michael I. Gil' 7. Functions of Non-compact Operators 97--121 Michael I. Gil' 8. Bounded Perturbations of Nonselfadjoint Operators . . . . . . . . 123--134 Michael I. Gil' 9. Spectrum Localization of Nonself-adjoint Operators . . . . . . . 135--149 Michael I. Gil' 10. Multiplicative Representations of Resolvents . . . . . . . . . . . . . . . 151--161 Michael I. Gil' 11. Relatively $p$-Triangular Operators 163--172 Michael I. Gil' 12. Relatively Compact Perturbations of Normal Operators . . . . . . . . . . . . 173--180 Michael I. Gil' 13. Infinite Matrices in Hilbert Spaces and Differential Operators . . . . . . . 181--188 Michael I. Gil' 14. Integral Operators in Space $ L^2 $ 189--197 Michael I. Gil' 15. Operator Matrices . . . . . . . . . 199--213 Michael I. Gil' 16. Hille--Tamarkin Integral Operators 215--226 Michael I. Gil' 17. Integral Operators in Space $ L^{{[prescription - R]}} $ . . . . . . . 227--234 Michael I. Gil' 18. Hille--Tamarkin Matrices . . . . . . 235--241 Michael I. Gil' 19. Zeros of Entire Functions . . . . . 243--252
Antoine Lejay An Introduction to Rough Paths . . . . . 1--59 Dominique Bakry and Olivier Mazet Characterization of Markov semigroups on $ \mathbb {R} $ Associated to Some Families of Orthogonal Polynomials . . . 60--80 Patrick Cheridito Representations of Gaussian measures that are equivalent to Wiener measure 81--89 Leonid Galtchouk On the reduction of a multidimensional continuous martingale to a Brownian motion . . . . . . . . . . . . . . . . . 90--93 Isaac Meilijson The time to a given drawdown in Brownian Motion . . . . . . . . . . . . . . . . . 94--108 Aimé Lachal Application de la théorie des excursions \`a l'intégrale du mouvement brownien. (French) [] . . . . . . . . . . . . . . 109--195 Thomas S. Mountford Brownian Sheet Local Time and Bubbles 196--215 Katsuhiro Hirano On the maximum of a diffusion process in a random Lévy environment . . . . . . . . 216--235 Davar Khoshnevisan The Codimension of the Zeros of a Stable Process in Random Scenery . . . . . . . 236--245 Jean Brossard Deux notions équivalentes d'unicité en loi pour les équations différentielles stochastiques. (French) [] . . . . . . . 246--250 Zdzis\law Brze\'zniak and Andrew Carroll Approximations of the Wong--Zakai type for stochastic differential equations in $M$-type $2$ Banach spaces with applications to loop spaces . . . . . . 251--289 François Delarue Estimates of the Solutions of a System of Quasi-linear PDEs. A Probabilistic Scheme . . . . . . . . . . . . . . . . . 290--332 Grégory Miermont and Jason Schweinsberg Self-similar fragmentations and stable subordinators . . . . . . . . . . . . . 333--359 Michel Ledoux A Remark on Hypercontractivity and Tail Inequalities for the Largest Eigenvalues of Random Matrices . . . . . . . . . . . 360--369 Yan Doumerc A note on representations of eigenvalues of classical Gaussian matrices . . . . . 370--384 Eva Strasser Necessary and sufficient conditions for the supermartingale property of a stochastic integral with respect to a local martingale . . . . . . . . . . . . 385--393 Miklós Rásonyi A remark on the superhedging theorem under transaction costs . . . . . . . . 394--398 Ioanid Rosu and Dan Stroock On the Derivation of the Black--Scholes Formula . . . . . . . . . . . . . . . . 399--414 Pierre Del Moral and Arnaud Doucet On a Class of Genealogical and Interacting Metropolis Models . . . . . 415--446
Alain Connes and Joachim Cuntz and Erik Guentner and Nigel Higson and Jerome Kaminker and John E. Roberts Front Matter . . . . . . . . . . . . . . I--XIV Alain Connes Cyclic Cohomology, Noncommutative Geometry and Quantum Group Symmetries 1--71 Joachim Cuntz Cyclic Theory and the Bivariant Chern--Connes Character . . . . . . . . 73--135 Nigel Higson and Erik Guentner Group $ C* $-Algebras and $K$-Theory . . 137--251 Erik Guentner and Jerome Kaminker Geometric and Analytic Properties of Groups . . . . . . . . . . . . . . . . . 253--262 John E. Roberts More Lectures on Algebraic Quantum Field Theory . . . . . . . . . . . . . . . . . 263--342 John E. Roberts Back Matter . . . . . . . . . . . . . . 343--354
Da-Quan Jiang and Min Qian and Min-Ping Qian Introduction . . . . . . . . . . . . . . 1--10 Da-Quan Jiang and Min Qian and Min-Ping Qian 1. Circulation Distribution, Entropy Production and Irreversibility of Denumerable Markov Chains . . . . . . . 11--44 Da-Quan Jiang and Min Qian and Min-Ping Qian 2. Circulation Distribution, Entropy Production and Irreversibility of Finite Markov Chains with Continuous Parameter 45--66 Da-Quan Jiang and Min Qian and Min-Ping Qian 3. General Minimal Diffusion Process: its Construction, Invariant Measure, Entropy Production and Irreversibility 67--92 Da-Quan Jiang and Min Qian and Min-Ping Qian 4. Measure-theoretic Discussion on Entropy Production of Diffusion Processes and Fluctuation-dissipation Theorem . . . . . . . . . . . . . . . . 93--120 Da-Quan Jiang and Min Qian and Min-Ping Qian 5. Entropy Production, Rotation Numbers and Irreversibility of Diffusion Processes on Manifolds . . . . . . . . . 121--148 Da-Quan Jiang and Min Qian and Min-Ping Qian 6. On a System of Hyperstable Frequency Locking Persistence under White Noise 149--158 Da-Quan Jiang and Min Qian and Min-Ping Qian 7. Entropy Production and Information Gain in Axiom $A$ Systems . . . . . . . 159--188 Da-Quan Jiang and Min Qian and Min-Ping Qian 8. Lyapunov Exponents of Hyperbolic Attractors . . . . . . . . . . . . . . . 189--214 Da-Quan Jiang and Min Qian and Min-Ping Qian 9. Entropy Production, Information Gain and Lyapunov Exponents of Random Hyperbolic Dynamical Systems . . . . . . 215--252 Da-Quan Jiang and Min Qian and Min-Ping Qian References . . . . . . . . . . . . . . . 253--276
Yosef Yomdin and Georges Comte 1. Introduction and Content . . . . . . 1--22 Yosef Yomdin and Georges Comte 2. Entropy . . . . . . . . . . . . . . . 23--32 Yosef Yomdin and Georges Comte 3. Multidimensional Variations . . . . . 33--45 Yosef Yomdin and Georges Comte 4. Semialgebraic and Tame Sets . . . . . 47--58 Yosef Yomdin and Georges Comte 5. Variations of Semialgebraic and Tame Sets . . . . . . . . . . . . . . . . . . 59--73 Yosef Yomdin and Georges Comte 6. Some Exterior Algebra . . . . . . . . 75--82 Yosef Yomdin and Georges Comte 7. Behaviour of Variations under Polynomial Mappings . . . . . . . . . . 83--98 Yosef Yomdin and Georges Comte 8. Quantitative Transversality and Cuspidal Values . . . . . . . . . . . . 99--107 Yosef Yomdin and Georges Comte 9. Mappings of Finite Smoothness . . . . 109--130 Yosef Yomdin and Georges Comte 10. Some Applications and Related Topics 131--169 Yosef Yomdin and Georges Comte Glossary and References . . . . . . . . 171--186
Bruno Kahn Cohomologie non ramifiée des quadriques. (French) [] . . . . . . . . . . . . . . 1--23 Alexander Vishik Motives of Quadrics with Applications to the Theory of Quadratic Forms . . . . . 25--101 Nikita A. Karpenko Motives and Chow Groups of Quadrics with Application to the $u$-invariant (after Oleg Izhboldin) . . . . . . . . . . . . 103--129 Oleg T. Izhboldin Virtual Pfister Neighbors and First Witt Index . . . . . . . . . . . . . . . . . 131--142 Oleg T. Izhboldin Some New Results Concerning Isotropy of Low-dimensional Forms . . . . . . . . . 143--150 Nikita A. Karpenko Izhboldin's Results on Stably Birational Equivalence of Quadrics . . . . . . . . 151--183 Alexander S. Merkurjev Appendix: My Recollections About Oleg Izhboldin . . . . . . . . . . . . . . . 185--187
Constantin Nastasescu and Freddy Van Oystaeyen 1. The Category of Graded Rings . . . . 1--18 Constantin Nastasescu and Freddy Van Oystaeyen 2. The Category of Graded Modules . . . 19--79 Constantin Nastasescu and Freddy Van Oystaeyen 3. Modules over Strongly Graded Rings 81--113 Constantin Nastasescu and Freddy Van Oystaeyen 4. Graded Clifford Theory . . . . . . . 115--145 Constantin Nastasescu and Freddy Van Oystaeyen 5. Internal Homogenization . . . . . . . 147--165 Constantin Nastasescu and Freddy Van Oystaeyen 6. External Homogenization . . . . . . . 167--185 Constantin Nastasescu and Freddy Van Oystaeyen 7. Smash Products . . . . . . . . . . . 187--221 Constantin Nastasescu and Freddy Van Oystaeyen 8. Localization of Graded Rings . . . . 223--240 Constantin Nastasescu and Freddy Van Oystaeyen 9. Application to Gradability . . . . . 241--276 Constantin Nastasescu and Freddy Van Oystaeyen Appendix . . . . . . . . . . . . . . . . 277--289 Constantin Nastasescu and Freddy Van Oystaeyen Bibliography . . . . . . . . . . . . . . 291--302
Simon Tavaré Part I: Ancestral Inference in Population Genetics . . . . . . . . . . 1--188 Ofer Zeitouni Part II: Random Walks in Random Environment . . . . . . . . . . . . . . 189--312
Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 1. The Single Server Queue . . . . . . . 1--21 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 2. Large Deviations in Euclidean Spaces 23--45 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 3. More on the Single Server Queue . . . 47--55 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 4. Introduction to Abstract Large Deviations . . . . . . . . . . . . . . . 57--76 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 5. Continuous Queueing Maps . . . . . . 77--104 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 6. Large-Buffer Scalings . . . . . . . . 105--150 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 7. Many-Flows Scalings . . . . . . . . . 151--181 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 8. Long Range Dependence . . . . . . . . 183--198 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 9. Moderate Deviations Scalings . . . . 199--209 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik 10. Interpretations . . . . . . . . . . 211--238 Ayalvadi Ganesh and Neil O'Connell and Damon Wischik Bibliography . . . . . . . . . . . . . . 239--248
Rolf Gohm Introduction . . . . . . . . . . . . . . 1--7 Rolf Gohm 1. Extensions and Dilations . . . . . . 9--36 Rolf Gohm 2. Markov Processes . . . . . . . . . . 37--71 Rolf Gohm 3. Adaptedness . . . . . . . . . . . . . 73--111 Rolf Gohm 4. Examples and Applications . . . . . . 113--147 Rolf Gohm Appendix A: Some Facts about Unital Completely Positive Maps . . . . . . . . 149--163 Rolf Gohm References . . . . . . . . . . . . . . . 165--168
Boris Tsirelson Part I: Scaling Limit, Noise, Stability 1--106 Wendelin Werner Part II: Random Planar Curves and Schramm--Loewner Evolutions . . . . . . 107--195
Wolfgang Reichel 1. Introduction . . . . . . . . . . . . 1--7 Wolfgang Reichel 2. Uniqueness of critical points (I) . . 9--26 Wolfgang Reichel 3. Uniqueness of critical points (II) 27--57 Wolfgang Reichel 4. Variational problems on Riemannian manifolds . . . . . . . . . . . . . . . 59--87 Wolfgang Reichel 5. Scalar problems in Euclidean space 89--125 Wolfgang Reichel 6. Vector problems in Euclidean space 127--138 Wolfgang Reichel Appendix . . . . . . . . . . . . . . . . 139--143 Wolfgang Reichel References . . . . . . . . . . . . . . . 145--149
Trygve Johnsen and Andreas Leopold Knutsen 1. Introduction . . . . . . . . . . . . 1--14 Trygve Johnsen and Andreas Leopold Knutsen 2. Surfaces in Scrolls . . . . . . . . . 15--18 Trygve Johnsen and Andreas Leopold Knutsen 3. The Clifford index of smooth curves in $ |L| $ and the definition of the scrolls $ \mathcal {T}(c, D, \{ D_\lambda \}) $ . . . . . . . . . . . . 19--29 Trygve Johnsen and Andreas Leopold Knutsen 4. Two existence theorems . . . . . . . 31--33 Trygve Johnsen and Andreas Leopold Knutsen 5. The singular locus of the surface $ S' $ and the scroll $ \mathcal {T} $ . . 35--45 Trygve Johnsen and Andreas Leopold Knutsen 6. Postponed proofs . . . . . . . . . . 47--57 Trygve Johnsen and Andreas Leopold Knutsen 7. Projective models in smooth scrolls 59--61 Trygve Johnsen and Andreas Leopold Knutsen 8. Projective models in singular scrolls 63--98 Trygve Johnsen and Andreas Leopold Knutsen 9. More on projective models in smooth scrolls of $ K 3 $ surfaces of low Clifford-indices . . . . . . . . . . . . 99--120 Trygve Johnsen and Andreas Leopold Knutsen 10. BN general and Clifford general $ K 3 $ surfaces . . . . . . . . . . . . . . 121--128 Trygve Johnsen and Andreas Leopold Knutsen 11. Projective models of $ K 3 $ surfaces of low genus . . . . . . . . . 129--154 Trygve Johnsen and Andreas Leopold Knutsen 12. Some applications and open questions 155--158 Trygve Johnsen and Andreas Leopold Knutsen References . . . . . . . . . . . . . . . 159--162
Brian Jefferies 1. Introduction . . . . . . . . . . . . 1--11 Brian Jefferies 2. Weyl Calculus . . . . . . . . . . . . 13--25 Brian Jefferies 3. Clifford Analysis . . . . . . . . . . 27--38 Brian Jefferies 4. Functional Calculus for Noncommuting Operators . . . . . . . . . . . . . . . 39--66 Brian Jefferies 5. The Joint Spectrum of Matrices . . . 67--121 Brian Jefferies 6. The Monogenic Calculus for Sectorial Operators . . . . . . . . . . . . . . . 123--155 Brian Jefferies 7. Feynman's Operational Calculus . . . 157--171 Brian Jefferies References . . . . . . . . . . . . . . . 173--179
Karl Friedrich Siburg 1. Aubry--Mather theory . . . . . . . . 1--13 Karl Friedrich Siburg 2. Mather--Mañé theory . . . . . . . . . . 15--35 Karl Friedrich Siburg 3. The minimal action and convex billiards . . . . . . . . . . . . . . . 37--57 Karl Friedrich Siburg 4. The minimal action near fixed points and invariant tori . . . . . . . . . . . 59--80 Karl Friedrich Siburg 5. The minimal action and Hofer's geometry . . . . . . . . . . . . . . . . 81--95 Karl Friedrich Siburg 6. The minimal action and symplectic geometry . . . . . . . . . . . . . . . . 97--119 Karl Friedrich Siburg References . . . . . . . . . . . . . . . 121--125
Min Ho Lee Introduction . . . . . . . . . . . . . . 1--9 Min Ho Lee 1. Mixed Automorphic Forms . . . . . . . 11--34 Min Ho Lee 2. Line Bundles and Elliptic Varieties 35--58 Min Ho Lee 3. Mixed Automorphic Forms and Cohomology . . . . . . . . . . . . . . . 59--82 Min Ho Lee 4. Mixed Hilbert and Siegel Modular Forms . . . . . . . . . . . . . . . . . 83--107 Min Ho Lee 5. Mixed Automorphic Forms on Semisimple Lie Groups . . . . . . . . . . . . . . . 109--139 Min Ho Lee 6. Families of Abelian Varieties . . . . 141--175 Min Ho Lee 7. Jacobi Forms . . . . . . . . . . . . 177--207 Min Ho Lee 8. Twisted Torus Bundles . . . . . . . . 209--230 Min Ho Lee References . . . . . . . . . . . . . . . 231--236
Habib Ammari and Hyeonbae Kang 1. Introduction . . . . . . . . . . . . 1--4 Habib Ammari and Hyeonbae Kang Part I: Detection of Small Conductivity Inclusions . . . . . . . . . . . . . . . 5--9 Habib Ammari and Hyeonbae Kang 2. Transmission Problem . . . . . . . . 11--39 Habib Ammari and Hyeonbae Kang 3. Generalized Polarization Tensors . . 41--64 Habib Ammari and Hyeonbae Kang 4. Derivation of the Full Asymptotic Formula . . . . . . . . . . . . . . . . 65--78 Habib Ammari and Hyeonbae Kang 5. Detection of Inclusions . . . . . . . 79--101 Habib Ammari and Hyeonbae Kang Part II: Detection of Small Elastic Inclusions . . . . . . . . . . . . . . . 103--107 Habib Ammari and Hyeonbae Kang 6. Transmission Problem for Elastostatics . . . . . . . . . . . . . 109--127 Habib Ammari and Hyeonbae Kang 7. Elastic Moment Tensor . . . . . . . . 129--149 Habib Ammari and Hyeonbae Kang 8. Derivation of Full Asymptotic Expansions . . . . . . . . . . . . . . . 151--157 Habib Ammari and Hyeonbae Kang 9. Detection of Inclusions . . . . . . . 159--173 Habib Ammari and Hyeonbae Kang Part III: Detection of Small Electromagnetic Inclusions . . . . . . . 175--178 Habib Ammari and Hyeonbae Kang 10. Well-Posedness . . . . . . . . . . . 179--183 Habib Ammari and Hyeonbae Kang 11. Representation of Solutions . . . . 185--195 Habib Ammari and Hyeonbae Kang 12. Derivation of Asymptotic Formulae 197--205 Habib Ammari and Hyeonbae Kang 13. Reconstruction Algorithms . . . . . 207--214 Habib Ammari and Hyeonbae Kang A. Appendices . . . . . . . . . . . . . 215--221 Habib Ammari and Hyeonbae Kang References . . . . . . . . . . . . . . . 223--236 Habib Ammari and Hyeonbae Kang Index . . . . . . . . . . . . . . . . . 237--238
Tomasz R. Bielecki and Monique Jeanblanc and Marek Rutkowski Hedging of Defaultable Claims . . . . . 1--132 Tomas Björk On the Geometry of Interest Rate Models 133--215 José Scheinkman and Wei Xiong Heterogeneous Beliefs, Speculation and Trading in Financial Markets . . . . . . 217--250
Marco Abate Angular Derivatives in Several Complex Variables . . . . . . . . . . . . . . . 1--47 John Erik Fornæss Real Methods in Complex Dynamics . . . . 49--107 Xiaojun Huang Local Equivalence Problems for Real Submanifolds in Complex Spaces . . . . . 109--163 Jean-Pierre Rosay Introduction to a General Theory of Boundary Values . . . . . . . . . . . . 165--189 Alexander Tumanov Extremal Discs and the Geometry of CR Manifolds . . . . . . . . . . . . . . . 191--212
Martin L. Brown 1. Introduction . . . . . . . . . . . . 1--11 Martin L. Brown 2. Preliminaries . . . . . . . . . . . . 13--30 Martin L. Brown 3. Bruhat-Tits trees with complex multiplication . . . . . . . . . . . . . 31--74 Martin L. Brown 4. Heegner sheaves . . . . . . . . . . . 75--103 Martin L. Brown 5. The Heegner module . . . . . . . . . 105--222 Martin L. Brown 6. Cohomology of the Heegner module . . 223--327 Martin L. Brown 7. Finiteness of Tate--Shafarevich groups . . . . . . . . . . . . . . . . . 329--434 Martin L. Brown Appendix . . . . . . . . . . . . . . . . 435--505 Martin L. Brown References . . . . . . . . . . . . . . . 507--510 Martin L. Brown Index . . . . . . . . . . . . . . . . . 511--517
S. Alesker A Topological Obstruction to Existence of Quaternionic Plücker Map . . . . . . . 1--7 S. Alesker Hard Lefschetz Theorem for Valuations and Related Questions of Integral Geometry . . . . . . . . . . . . . . . . 9--20 S. Alesker $ {\rm SU}(2) $-Invariant Valuations . . 21--29 S. Artstein The Change in the Diameter of a Convex Body under a Random Sign-Projection . . 31--39 K. Ball An Elementary Introduction to Monotone Transportation . . . . . . . . . . . . . 41--52 F. Barthe A Continuous Version of the Brascamp--Lieb Inequalities . . . . . . 53--63 F. Barthe and D. Cordero-Erausquin Inverse Brascamp--Lieb Inequalities along the Heat Equation . . . . . . . . 65--71 I. Benjamini and O. Schramm Pinched Exponential Volume Growth Implies an Infinite Dimensional Isoperimetric Inequality . . . . . . . . 73--76 J. Bourgain On Localization for Lattice Schrödinger Operators Involving Bernoulli Variables 77--99 J. Bourgain and B. Klartag and V. Milman Symmetrization and Isotropic Constants of Convex Bodies . . . . . . . . . . . . 101--115 E. Gluskin On the Multivariable Version of Ball's Slicing Cube Theorem . . . . . . . . . . 117--121 E. Gluskin and V. Milman Geometric Probability and Random Cotype $2$ . . . . . . . . . . . . . . . . . . 123--138 W. B. Johnson and G. Schechtman Several Remarks Concerning the Local Theory of $ L_p $ Spaces . . . . . . . . 139--148 B. Klartag On John-Type Ellipsoids . . . . . . . . 149--158 A. E. Litvak and V. D. Milman and N. Tomczak-Jaegermann Isomorphic Random Subspaces and Quotients of Convex and Quasi-Convex Bodies . . . . . . . . . . . . . . . . . 159--178 Yu I. Lyubich Almost Euclidean Subspaces of Real $ \ell_p^n $ with $p$ an Even Integer . . 179--192 S. Mendelson Geometric Parameters in Learning Theory 193--235 V. D. Milman and A. Pajor Essential Uniqueness of an $M$-Ellipsoid of a Given Convex Body . . . . . . . . . 237--241 L. Pastur On the Thermodynamic Limit for Disordered Spin Systems . . . . . . . . 243--268 G. Pisier On Read's Proof that $ B(\ell_1) $ Is Not Amenable . . . . . . . . . . . . . . 269--275
Olivier Catoni Introduction . . . . . . . . . . . . . . 1--4 Olivier Catoni 1. Universal lossless data compression 5--54 Olivier Catoni 2. Links between data compression and statistical estimation . . . . . . . . . 55--69 Olivier Catoni 3. Non cumulated mean risk . . . . . . . 71--95 Olivier Catoni 4. Gibbs estimators . . . . . . . . . . 97--154 Olivier Catoni 5. Randomized estimators and empirical complexity . . . . . . . . . . . . . . . 155--197 Olivier Catoni 6. Deviation inequalities . . . . . . . 199--222 Olivier Catoni 7. Markov chains with exponential transitions . . . . . . . . . . . . . . 223--260 Olivier Catoni References . . . . . . . . . . . . . . . 261--265 Olivier Catoni Index . . . . . . . . . . . . . . . . . 267--269 Olivier Catoni List of participants and List of short lectures . . . . . . . . . . . . . . . . 271--273
Alexander S. Kechris and Benjamin D. Miller I. Orbit Equivalence . . . . . . . . . . 1--6 Alexander S. Kechris and Benjamin D. Miller II. Amenability and Hyperfiniteness . . 7--53 Alexander S. Kechris and Benjamin D. Miller III. Costs of Equivalence Relations and Groups . . . . . . . . . . . . . . . . . 55--128 Alexander S. Kechris and Benjamin D. Miller References . . . . . . . . . . . . . . . 129--130 Alexander S. Kechris and Benjamin D. Miller Index . . . . . . . . . . . . . . . . . 131--134
Charles Favre and Mattias Jonsson Front Matter . . . . . . . . . . . . . . I--XV Charles Favre and Mattias Jonsson Introduction . . . . . . . . . . . . . . 1--7 Charles Favre and Mattias Jonsson 1. Generalities . . . . . . . . . . . . 9--24 Charles Favre and Mattias Jonsson 2. MacLane's Method . . . . . . . . . . 25--42 Charles Favre and Mattias Jonsson 3. Tree Structures . . . . . . . . . . . 43--80 Charles Favre and Mattias Jonsson 4. Valuations Through Puiseux Series . . 81--96 Charles Favre and Mattias Jonsson 5. Topologies . . . . . . . . . . . . . 97--110 Charles Favre and Mattias Jonsson 6. The Universal Dual Graph . . . . . . 111--150 Charles Favre and Mattias Jonsson 7. Tree Measures . . . . . . . . . . . . 151--192 Charles Favre and Mattias Jonsson 8. Applications of the Tree Analysis . . 193--209 Charles Favre and Mattias Jonsson Appendix . . . . . . . . . . . . . . . . 211--225 Charles Favre and Mattias Jonsson References . . . . . . . . . . . . . . . 227--229 Charles Favre and Mattias Jonsson Index . . . . . . . . . . . . . . . . . 231--234 Charles Favre and Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 241--241 Charles Favre and Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 241--243 Charles Favre and Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 243--243 Charles Favre and Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 243--243 Charles Favre and Mattias Jonsson Errata . . . . . . . . . . . . . . . . . 243--244
Osamu Saeki Introduction . . . . . . . . . . . . . . 1--5 Osamu Saeki Part I: Classification of Singular Fibers . . . . . . . . . . . . . . . . . 7--57 Osamu Saeki Part II: Universal Complex of Singular Fibers . . . . . . . . . . . . . . . . . 59--120 Osamu Saeki Part III: Epilogue . . . . . . . . . . . 121--129 Osamu Saeki References . . . . . . . . . . . . . . . 131--134 Osamu Saeki List of Symbols and Index . . . . . . . 135--145
Giuseppe Da Prato An Introduction to Markov Semigroups . . 1--63 Peer C. Kunstmann and Lutz Weis Maximal $ L_p $-regularity for Parabolic Equations, Fourier Multiplier Theorems and $ H^\infty $-functional Calculus . . 65--311 Irena Lasiecka Optimal Control Problems and Riccati Equations for Systems with Unbounded Controls and Partially Analytic Generators-Applications to Boundary and Point Control Problems . . . . . . . . . 313--369 Alessandra Lunardi An Introduction to Parabolic Moving Boundary Problems . . . . . . . . . . . 371--399 Roland Schnaubelt Asymptotic Behaviour of Parabolic Nonautonomous Evolution Equations . . . 401--472
Kerry Back Incomplete and Asymmetric Information in Asset Pricing Theory . . . . . . . . . . 1--25 Tomasz R. Bielecki and Monique Jeanblanc and Marek Rutkowski Modeling and Valuation of Credit Risk 27--126 Christian Hipp Stochastic Control with Application in Insurance . . . . . . . . . . . . . . . 127--164 Shige Peng Nonlinear Expectations, Nonlinear Evaluations and Risk Measures . . . . . 165--253 Walter Schachermayer Utility Maximisation in Incomplete Markets . . . . . . . . . . . . . . . . 255--293
Ronald A. Doney Tanaka's Construction for Random Walks and Lévy Processes . . . . . . . . . . . 1--4 Ronald A. Doney Some Excursion Calculations for Spectrally One-sided Lévy Processes . . . 5--15 Andreas E. Kyprianou and Zbigniew Palmowski A Martingale Review of some Fluctuation Theory for Spectrally Negative Lévy Processes . . . . . . . . . . . . . . . 16--29 Martijn R. Pistorius A Potential-theoretical Review of some Exit Problems of Spectrally Negative Lévy Processes . . . . . . . . . . . . . . . 30--41 Laurent Nguyen-Ngoc and Marc Yor Some Martingales Associated to Reflected Lévy Processes . . . . . . . . . . . . . 42--69 K. Bruce Erickson and Ross A. Maller Generalised Ornstein--Uhlenbeck Processes and the Convergence of Lévy Integrals . . . . . . . . . . . . . . . 70--94 Pierre Foug\`eres Spectral Gap for log-Concave Probability Measures on the Real Line . . . . . . . 95--123 Laurent Godefroy Propriété de Choquet-Deny et fonctions harmoniques sur les hypergroupes commutatifs. (French) [] . . . . . . . . 124--134 Mioara Buiculescu Exponential Decay Parameters Associated with Excessive Measures . . . . . . . . 135--144 Valentin Grecea Positive Bilinear Mappings Associated with Stochastic Processes . . . . . . . 145--157 Adam Jakubowski An Almost Sure Approximation for the Predictable Process in the Doob--Meyer Decomposition Theorem . . . . . . . . . 158--164 Alexander Cherny and Albert Shiryaev On Stochastic Integrals up to Infinity and Predictable Criteria for Integrability . . . . . . . . . . . . . 165--185 Yuri Kabanov and Christophe Stricker Remarks on the true No-arbitrage Property . . . . . . . . . . . . . . . . 186--194 Hans Bühler Information-equivalence: On Filtrations Created by Independent Increments . . . 195--204 Moshe Zakai Rotations and Tangent Processes on Wiener Space . . . . . . . . . . . . . . 205--225 Ichiro Shigekawa $ L^p $ Multiplier Theorem for the Hodge--Kodaira Operator . . . . . . . . 226--246 Giovanni Peccati and Ciprian A. Tudor Gaussian Limits for Vector-valued Multiple Stochastic Integrals . . . . . 247--262 Jay Rosen Derivatives of Self-intersection Local Times . . . . . . . . . . . . . . . . . 263--281 Nathalie Eisenbaum and Ciprian A. Tudor On Squared Fractional Brownian Motions 282--289 Antoine Ayache and Albert Benassi and Serge Cohen and Jacques Lévy Véhel Regularity and Identification of Generalized Multifractional Gaussian Processes . . . . . . . . . . . . . . . 290--312
Alexander S. Cherny and Hans-Jürgen Engelbert Introduction . . . . . . . . . . . . . . 1--4 Alexander S. Cherny and Hans-Jürgen Engelbert 1. Stochastic Differential Equations . . 5--25 Alexander S. Cherny and Hans-Jürgen Engelbert 2. One-Sided Classification of Isolated Singular Points . . . . . . . . . . . . 27--64 Alexander S. Cherny and Hans-Jürgen Engelbert 3. Two-Sided Classification of Isolated Singular Points . . . . . . . . . . . . 65--79 Alexander S. Cherny and Hans-Jürgen Engelbert 4. Classification at Infinity and Global Solutions . . . . . . . . . . . . . . . 81--91 Alexander S. Cherny and Hans-Jürgen Engelbert 5. Several Special Cases . . . . . . . . 93--103 Alexander S. Cherny and Hans-Jürgen Engelbert Appendix . . . . . . . . . . . . . . . . 105--118 Alexander S. Cherny and Hans-Jürgen Engelbert References . . . . . . . . . . . . . . . 119--121 Alexander S. Cherny and Hans-Jürgen Engelbert Index of Notation and Index of Terms . . 123--128
Emmanuel Letellier 1. Introduction . . . . . . . . . . . . 1--4 Emmanuel Letellier 2. Connected Reductive Groups and Their Lie Algebras . . . . . . . . . . . . . . 5--31 Emmanuel Letellier 3. Deligne--Lusztig Induction . . . . . 33--43 Emmanuel Letellier 4. Local Systems and Perverse Sheaves 45--60 Emmanuel Letellier 5. Geometrical Induction . . . . . . . . 61--113 Emmanuel Letellier 6. Deligne--Lusztig Induction and Fourier Transforms . . . . . . . . . . . 115--149 Emmanuel Letellier 7. Fourier Transforms of the Characteristic Functions of the Adjoint Orbits . . . . . . . . . . . . . . . . . 151--158 Emmanuel Letellier References . . . . . . . . . . . . . . . 159--162 Emmanuel Letellier Index . . . . . . . . . . . . . . . . . 163--165
Avner Friedman Introduction to Neurons . . . . . . . . 1--20 David Terman An Introduction to Dynamical Systems and Neuronal Dynamics . . . . . . . . . . . 21--68 Bard Ermentrout Neural Oscillators . . . . . . . . . . . 69--106 Alla Borisyuk Physiology and Mathematical Modeling of the Auditory System . . . . . . . . . . 107--168
Giancarlo Benettin Physical Applications of Nekhoroshev Theorem and Exponential Estimates . . . 1--76 Jacques Henrard The Adiabatic Invariant Theory and Applications . . . . . . . . . . . . . . 77--141 Sergei Kuksin Lectures on Hamiltonian Methods in Nonlinear PDEs . . . . . . . . . . . . . 143--164
Bernard Helffer and Francis Nier 1. Introduction . . . . . . . . . . . . 1--9 Bernard Helffer and Francis Nier 2. Kohn's Proof of the Hypoellipticity of the Hörmander Operators . . . . . . . 11--18 Bernard Helffer and Francis Nier 3. Compactness Criteria for the Resolvent of Schrödinger Operators . . . 19--26 Bernard Helffer and Francis Nier 4. Global Pseudo-differential Calculus 27--42 Bernard Helffer and Francis Nier 5. Analysis of Some Fokker--Planck Operator . . . . . . . . . . . . . . . . 43--64 Bernard Helffer and Francis Nier 6. Return to Equilibrium for the Fokker--Planck Operator . . . . . . . . 65--72 Bernard Helffer and Francis Nier 7. Hypoellipticity and Nilpotent Groups 73--78 Bernard Helffer and Francis Nier 8. Maximal Hypoellipticity for Polynomial of Vector Fields and Spectral Byproducts . . . . . . . . . . . . . . . 79--87 Bernard Helffer and Francis Nier 9. On Fokker--Planck Operators and Nilpotent Techniques . . . . . . . . . . 89--95 Bernard Helffer and Francis Nier 10. Maximal Microhypoellipticity for Systems and Applications to Witten Laplacians . . . . . . . . . . . . . . . 97--112 Bernard Helffer and Francis Nier 11. Spectral Properties of the Witten--Laplacians in Connection with Poincaré Inequalities for Laplace Integrals . . . . . . . . . . . . . . . 113--131 Bernard Helffer and Francis Nier 12. Semi-classical Analysis for the Schrödinger Operator: Harmonic Approximation . . . . . . . . . . . . . 133--145 Bernard Helffer and Francis Nier 13. Decay of Eigenfunctions and Application to the Splitting . . . . . . 147--161 Bernard Helffer and Francis Nier 14. Semi-classical Analysis and Witten Laplacians: Morse Inequalities . . . . . 163--172 Bernard Helffer and Francis Nier 15. Semi-classical Analysis and Witten Laplacians: Tunneling Effects . . . . . 173--180 Bernard Helffer and Francis Nier 16. Accurate Asymptotics for the Exponentially Small Eigenvalues of $ \Delta_{f, h}^{(0)} $ . . . . . . . . . 181--188 Bernard Helffer and Francis Nier 17. Application to the Fokker--Planck Equation . . . . . . . . . . . . . . . . 189--191 Bernard Helffer and Francis Nier 18. Epilogue . . . . . . . . . . . . . . 193--193 Bernard Helffer and Francis Nier References and Index . . . . . . . . . . 195--209
Hartmut Führ 1. Introduction . . . . . . . . . . . . 1--13 Hartmut Führ 2. Wavelet Transforms and Group Representations . . . . . . . . . . . . 15--58 Hartmut Führ 3. The Plancherel Transform for Locally Compact Groups . . . . . . . . . . . . . 59--103 Hartmut Führ 4. Plancherel Inversion and Wavelet Transforms . . . . . . . . . . . . . . . 105--138 Hartmut Führ 5. Admissible Vectors for Group Extensions . . . . . . . . . . . . . . . 139--168 Hartmut Führ 6. Sampling Theorems for the Heisenberg Group . . . . . . . . . . . . . . . . . 169--184 Hartmut Führ References and Index . . . . . . . . . . 185--193
Konstantinos Efstathiou Introduction . . . . . . . . . . . . . . 1--8 Konstantinos Efstathiou 1. Four Hamiltonian Systems . . . . . . 9--33 Konstantinos Efstathiou 2. Small Vibrations of Tetrahedral Molecules . . . . . . . . . . . . . . . 35--58 Konstantinos Efstathiou 3. The Hydrogen Atom in Crossed Fields 59--85 Konstantinos Efstathiou 4. Quadratic Spherical Pendula . . . . . 87--111 Konstantinos Efstathiou 5. Fractional Monodromy in the $ 1 \colon - 2 $ Resonance System . . . . . 113--127 Konstantinos Efstathiou Appendix . . . . . . . . . . . . . . . . 129--138 Konstantinos Efstathiou References and Index . . . . . . . . . . 139--149
David Applebaum Lévy Processes in Euclidean Spaces and Groups . . . . . . . . . . . . . . . . . 1--98 Johan Kustermans Locally compact quantum groups . . . . . 99--180 J. Martin Lindsay Quantum Stochastic Analysis -- an Introduction . . . . . . . . . . . . . . 181--271 B. V. Rajarama Bhat Dilations, Cocycles and Product Systems 273--291
M. J. Sanderson Basic Concepts of Ca$^{2+}$ Signaling in Cells and Tissues . . . . . . . . . . . 1--13 J. Sneyd Modeling $ {\rm IP}_3 $-Dependent Calcium Dynamics in Non-Excitable Cells 15--61 T. R. Shannon Integrated Calcium Management in Cardiac Myocytes . . . . . . . . . . . . . . . . 63--95 R. L. Winslow and R. Hinch and J. L. Greenstein Mechanisms and Models of Cardiac Excitation-Contraction Coupling . . . . 97--131 E. Pate Mathematical Analysis of the Generation of Force and Motion in Contracting Muscle . . . . . . . . . . . . . . . . . 133--153 J. Reisert Signal Transduction in Vertebrate Olfactory Receptor Cells . . . . . . . . 155--171 R. Bertram Mathematical Models of Synaptic Transmission and Short-Term Plasticity 173--202
Jay Jorgenson and Serge Lang $ {\rm GL}_n(R) $ Action on $ {\rm Pos}_n(R) $ . . . . . . . . . . . . . . 1--22 Jay Jorgenson and Serge Lang Measures, Integration and Quadratic Model . . . . . . . . . . . . . . . . . 23--47 Jay Jorgenson and Serge Lang Special Functions on $ {\rm Pos}_n $ . . 49--74 Jay Jorgenson and Serge Lang Invariant Differential Operators on $ {\rm Pos}_n(R) $ . . . . . . . . . . . . 75--94 Jay Jorgenson and Serge Lang Poisson Duality and Zeta Functions . . . 95--106 Jay Jorgenson and Serge Lang Eisenstein Series First Part . . . . . . 107--120 Jay Jorgenson and Serge Lang Geometric and Analytic Estimates . . . . 121--132 Jay Jorgenson and Serge Lang Eisenstein Series Second Part . . . . . 133--162
Amir Dembo and Tadahisa Funaki Favorite Points, Cover Times and Fractals . . . . . . . . . . . . . . . . 1--101 Amir Dembo and Tadahisa Funaki Stochastic Interface Models . . . . . . 103--274 Amir Dembo and Tadahisa Funaki Back Matter . . . . . . . . . . . . . . ??
Vladimir I. Gurariy and Wolfgang Lusky Disposition of Subspaces . . . . . . . . 1--21 Vladimir I. Gurariy and Wolfgang Lusky Sequences in Normed Spaces . . . . . . . 23--43 Vladimir I. Gurariy and Wolfgang Lusky Isomorphisms, Isometries and Embeddings 45--51 Vladimir I. Gurariy and Wolfgang Lusky Spaces of Universal Disposition . . . . 53--60 Vladimir I. Gurariy and Wolfgang Lusky Bounded Approximation Properties . . . . 61--69 Vladimir I. Gurariy and Wolfgang Lusky Coefficient Estimates and the Müntz Theorem . . . . . . . . . . . . . . . . 71--92 Vladimir I. Gurariy and Wolfgang Lusky Classification and Elementary Properties of Müntz Sequences . . . . . . . . . . . 93--103 Vladimir I. Gurariy and Wolfgang Lusky More on the Geometry of Müntz Sequences and Müntz Polynomials . . . . . . . . . . 105--116 Vladimir I. Gurariy and Wolfgang Lusky Operators of Finite Rank and Bases in Müntz Spaces . . . . . . . . . . . . . . 117--136 Vladimir I. Gurariy and Wolfgang Lusky Projection Types and the Isomorphism Problem for Müntz Spaces . . . . . . . . 137--145 Vladimir I. Gurariy and Wolfgang Lusky The Classes $ [M], A, P $ and $ P_\epsilon $ . . . . . . . . . . . . . . 147--154 Vladimir I. Gurariy and Wolfgang Lusky Finite Dimensional Müntz Limiting Spaces in $C$ . . . . . . . . . . . . . . . . . 155--161
Uwe Franz and Rolf Rolf Random Walks on Finite Quantum Groups 1--32 Ole E. Barndorff-Nielsen and Steen Thorbjòrnsen Classical and Free Infinite Divisibility and Lévy Processes . . . . . . . . . . . 33--159 Uwe Franz Lévy Processes on Quantum Groups and Dual Groups . . . . . . . . . . . . . . . . . 161--257 Burkhard Kümmerer Quantum Markov Processes and Applications in Physics . . . . . . . . 259--330
Peter Constantin Euler Equations, Navier--Stokes Equations and Turbulence . . . . . . . . 1--43 Giovanni Gallavotti CKN Theory of Singularities of Weak Solutions of the Navier--Stokes Equations . . . . . . . . . . . . . . . 45--74 Alexandre V. Kazhikhov Approximation of Weak Limits and Related Problems . . . . . . . . . . . . . . . . 75--100 Yves Meyer Oscillating Patterns in Some Nonlinear Evolution Equations . . . . . . . . . . 101--187 Seiji Ukai Asymptotic Analysis of Fluid Equations 189--250 Seiji Ukai Back Matter . . . . . . . . . . . . . . ??
Baltazar D. Aguda Modeling the Cell Division Cycle . . . . 1--22 Howard A. Levine and Marit Nilsen-Hamilton Angiogenesis --- a Biochemical/Mathematical Perspective . . 23--76 Georgios Lolas Mathematical Modelling of Proteolysis and Cancer Cell Invasion of Tissue . . . 77--129 Mark Chaplain and Anastasios Matzavinos Mathematical Modelling of Spatio-temporal Phenomena in Tumour Immunology . . . . . . . . . . . . . . . 131--183 Marek Kimmel and Andrzej Swierniak Control Theory Approach to Cancer Chemotherapy: Benefiting from Phase Dependence and Overcoming Drug Resistance . . . . . . . . . . . . . . . 185--221 Avner Friedman Cancer Models and Their Mathematical Analysis . . . . . . . . . . . . . . . . 223--246 Avner Friedman Back Matter . . . . . . . . . . . . . . ??
Roger Mansuy and Marc Yor Notation and Convention . . . . . . . . 1--39 Roger Mansuy and Marc Yor Stopping and Non-stopping Times . . . . 41--51 Roger Mansuy and Marc Yor On the Martingales which Vanish on the Set of Brownian Zeroes . . . . . . . . . 53--69 Roger Mansuy and Marc Yor Predictable and Chaotic Representation Properties for Some Remarkable Martingales Including the Azéma and the Dunkl Martingales . . . . . . . . . . . 71--86 Roger Mansuy and Marc Yor Unveiling the Brownian Path (or history) as the Level Rises . . . . . . . . . . . 87--102 Roger Mansuy and Marc Yor Weak and Strong Brownian Filtrations . . 103--116 Roger Mansuy and Marc Yor Sketches of Solutions for the Exercises 117--139
Meyer Paul André Titres et Travaux: Postface. (French) [] 1--12 Marc Yor The Life and Scientific Work of Paul André Meyer (August 21st, 1934--January 30th, 2003) ``Un mod\`ele pour nous tous'' . . . . . . . . . . . . . . . . . 13--26 Stéphane Attal Disparition de Paul-André Meyer. (French) [] . . . . . . . . . . . . . . . . . . . 27--34 Jacques Azéma and Claude Dellacherie and Catherine Doléans-Dade and Michel Émery and Yves Le Jan and Bernard Maisonneuve and Yves Meyer and Jacques Neveu and Nicolas Privault and Daniel Revuz Témoignages. (French) [] . . . . . . . . 35--46 Yan Pautrat Kernel and Integral Representations of Operators on Infinite Dimensional Toy Fock Spaces . . . . . . . . . . . . . . 47--60 Philippe Biane Le Théor\`eme de Pitman, le Groupe Quantique $ {\rm SU}_q(2) $, et une Question de P.-A. Meyer. (French) [] . . 61--75 Jia-An Yan A Simple Proof of Two Generalized Borel--Cantelli Lemmas . . . . . . . . . 77--79 François Coquet and Adam Jakubowski and Jean Mémin and Leszek S\lominski Natural Decomposition of Processes and Weak Dirichlet Processes . . . . . . . . 81--116 John B. Walsh A Lost Scroll . . . . . . . . . . . . . 117--118 Marzia De Donno and Maurizio Pratelli Stochastic Integration with Respect to a Sequence of Semimartingales . . . . . . 119--135 Rajeeva L. Karandikar On Almost Sure Convergence Results in Stochastic Calculus . . . . . . . . . . 137--147 Shinichi Kotani On a Condition that One-Dimensional Diffusion Processes are Martingales . . 149--156 Dilip B. Madan and Marc Yor Itô's Integrated Formula for Strict Local Martingales . . . . . . . . . . . . . . 157--170 David Applebaum Martingale-Valued Measures, Ornstein--Uhlenbeck Processes with Jumps and Operator Self-Decomposability in Hilbert Space . . . . . . . . . . . . . 171--196 Michel Émery Sandwiched Filtrations and Lévy Processes 197--208 Yuri Kabanov and Christophe Stricker The Dalang--Morton--Willinger Theorem Under Delayed and Restricted Information 209--213 Freddy Delbaen The Structure of $m$-Stable Sets and in Particular of the Set of Risk Neutral Measures . . . . . . . . . . . . . . . . 215--258 Bhaskaran Rajeev A Path Transformation of Brownian Motion 259--267 David Aldous and Jim Pitman Two Recursive Decompositions of Brownian Bridge Related to the Asymptotics of Random Mappings . . . . . . . . . . . . 269--303 Bernard Roynette and Pierre Vallois and Marc Yor Pénalisations et Quelques Extensions du Théor\`eme de Pitman, Relatives au Mouvement Brownien et \`a Son. (French) [] . . . . . . . . . . . . . . . . . . . 305--336
Jim Pitman Preliminaries . . . . . . . . . . . . . 1--11 Jim Pitman Bell polynomials, composite structures and Gibbs partitions . . . . . . . . . . 13--35 Jim Pitman Exchangeable random partitions . . . . . 37--53 Jim Pitman Sequential constructions of random partitions . . . . . . . . . . . . . . . 55--75 Jim Pitman Poisson constructions of random partitions . . . . . . . . . . . . . . . 77--95 Jim Pitman Coagulation and fragmentation processes 97--120 Jim Pitman Random walks and random forests . . . . 121--141 Jim Pitman The Brownian forest . . . . . . . . . . 143--175 Jim Pitman Brownian local times, branching and Bessel processes . . . . . . . . . . . . 177--191 Jim Pitman Brownian bridge asymptotics for random mappings . . . . . . . . . . . . . . . . 193--206 Jim Pitman Random forests and the additive coalescent . . . . . . . . . . . . . . . 207--221
Horst Herrlich Origins . . . . . . . . . . . . . . . . 1--8 Horst Herrlich Choice Principles . . . . . . . . . . . 9--20 Horst Herrlich Elementary Observations . . . . . . . . 21--42 Horst Herrlich Disasters without Choice . . . . . . . . 43--116 Horst Herrlich Disasters with Choice . . . . . . . . . 117--136 Horst Herrlich Disasters either way . . . . . . . . . . 137--141 Horst Herrlich Beauty without Choice . . . . . . . . . 143--157
Raphaël Cerf Front Matter . . . . . . . . . . . . . . i--xiv Raphaël Cerf Front Matter . . . . . . . . . . . . . . 1--1 Raphaël Cerf Phase coexistence and subadditivity . . 3--12 Raphaël Cerf Front Matter . . . . . . . . . . . . . . 13--13 Raphaël Cerf Ising model . . . . . . . . . . . . . . 15--24 Raphaël Cerf Bernoulli percolation . . . . . . . . . 25--29 Raphaël Cerf FK or random cluster model . . . . . . . 31--42 Raphaël Cerf Front Matter . . . . . . . . . . . . . . 43--43 Raphaël Cerf The Wulff crystal . . . . . . . . . . . 45--64 Raphaël Cerf Front Matter . . . . . . . . . . . . . . 65--65 Raphaël Cerf Large deviation theory . . . . . . . . . 67--74 Raphaël Cerf Surface large deviation principles . . . 75--84 Raphaël Cerf Volume large deviations . . . . . . . . 85--102 Raphaël Cerf Front Matter . . . . . . . . . . . . . . 103--103 Raphaël Cerf Coarse graining . . . . . . . . . . . . 105--116 Raphaël Cerf Decoupling . . . . . . . . . . . . . . . 117--127 Raphaël Cerf Surface tension . . . . . . . . . . . . 129--145 Raphaël Cerf Interface estimate . . . . . . . . . . . 147--155 Raphaël Cerf Front Matter . . . . . . . . . . . . . . 157--157 Raphaël Cerf Sets of finite perimeter . . . . . . . . 159--172 Raphaël Cerf Surface energy . . . . . . . . . . . . . 173--188 Raphaël Cerf The Wulff theorem . . . . . . . . . . . 189--199 Raphaël Cerf Front Matter . . . . . . . . . . . . . . 201--201 Raphaël Cerf LDP for the cluster shapes . . . . . . . 203--214 Raphaël Cerf Enhanced upper bound . . . . . . . . . . 215--228 Raphaël Cerf LDP for FK percolation . . . . . . . . . 229--239 Raphaël Cerf LDP for Ising . . . . . . . . . . . . . 241--252 Raphaël Cerf Back Matter . . . . . . . . . . . . . . 253--268
Gordon Slade Front Matter . . . . . . . . . . . . . . i--xiii Gordon Slade Simple Random Walk . . . . . . . . . . . 1--6 Gordon Slade The Self-Avoiding Walk . . . . . . . . . 7--17 Gordon Slade The Lace Expansion for the Self-Avoiding Walk . . . . . . . . . . . . . . . . . . 19--29 Gordon Slade Diagrammatic Estimates for the Self-Avoiding Walk . . . . . . . . . . . 31--40 Gordon Slade Convergence for the Self-Avoiding Walk 41--55 Gordon Slade Further Results for the Self-Avoiding Walk . . . . . . . . . . . . . . . . . . 57--65 Gordon Slade Lattice Trees . . . . . . . . . . . . . 67--75 Gordon Slade The Lace Expansion for Lattice Trees . . 77--86 Gordon Slade Percolation . . . . . . . . . . . . . . 87--108 Gordon Slade The Expansion for Percolation . . . . . 109--123 Gordon Slade Results for Percolation . . . . . . . . 125--139 Gordon Slade Oriented Percolation . . . . . . . . . . 141--149 Gordon Slade Expansions for Oriented Percolation . . 151--159 Gordon Slade The Contact Process . . . . . . . . . . 161--170 Gordon Slade Branching Random Walk . . . . . . . . . 171--182 Gordon Slade Integrated Super-Brownian Excursion . . 183--200 Gordon Slade Super-Brownian Motion . . . . . . . . . 201--210 Gordon Slade Back Matter . . . . . . . . . . . . . . 211--232
Alain Joye Introduction to the Theory of Linear Operators . . . . . . . . . . . . . . . 1--40 Alain Joye Introduction to Quantum Statistical Mechanics . . . . . . . . . . . . . . . 41--67 Stéphane Attal Elements of Operator Algebras and Modular Theory . . . . . . . . . . . . . 69--105 Claude-Alain Pillet Quantum Dynamical Systems . . . . . . . 107--182 Marco Merkli The Ideal Quantum Gas . . . . . . . . . 183--233 Vojkan Jak\vsi\'c Topics in Spectral Theory . . . . . . . 235--312
Luc Rey Bellet Ergodic Properties of Markov Processes 1--39 Luc Rey-Bellet Open Classical Systems . . . . . . . . . 41--78 Stéphane Attal Quantum Noises . . . . . . . . . . . . . 79--147 Rolando Rebolledo Complete Positivity and the Markov structure of Open Quantum Systems . . . 149--182 Franco Fagnola Quantum Stochastic Differential Equations and Dilation of Completely Positive Semigroups . . . . . . . . . . 183--220
Walter Aschbacher and Vojkan Jak\vsi\'c and Yan Pautrat and Claude-Alain Pillet Topics in Non-Equilibrium Quantum Statistical Mechanics . . . . . . . . . 1--66 Jan Derezi\'nski and Rafal Früboes Fermi Golden Rule and Open Quantum Systems . . . . . . . . . . . . . . . . 67--116 Philippe Blanchard and Robert Olkiewicz Decoherence as Irreversible Dynamical Process in Open Quantum Systems . . . . 117--159 Franco Fagnola and Rolando Rebolledo Notes on the Qualitative Behaviour of Quantum Markov Semigroups . . . . . . . 161--205 Alberto Barchielli Continual Measurements in Quantum Mechanics and Quantum Stochastic Calculus . . . . . . . . . . . . . . . . 207--292
Walter Gautschi Orthogonal Polynomials, Quadrature, and Approximation: Computational Methods and Software (in Matlab) . . . . . . . . . . 1--77 Andrei Martínez Finkelshtein Equilibrium Problems of Potential Theory in the Complex Plane . . . . . . . . . . 79--117 Bernhard Beckermann Discrete Orthogonal Polynomials and Superlinear Convergence of Krylov Subspace Methods in Numerical Linear Algebra . . . . . . . . . . . . . . . . 119--185 Adhemar Bultheel and Erik Hendriksen and Pablo González-Vera and Olav Njåstad Orthogonal Rational Functions on the Unit Circle: from the Scalar to the Matrix Case . . . . . . . . . . . . . . 187--228 Vadim B. Kuznetsov Orthogonal Polynomials and Separation of Variables . . . . . . . . . . . . . . . 229--254 Paul Terwilliger An Algebraic Approach to the Askey Scheme of Orthogonal Polynomials . . . . 255--330 Peter A. Clarkson Painlevé Equations --- Nonlinear Special Functions . . . . . . . . . . . . . . . 331--411 Peter A. Clarkson Back Matter . . . . . . . . . . . . . . 413--422
Nakao Hayashi and Pavel I. Naumkin and Elena I. Kaikina and Ilya A. Shishmarev Preliminary results . . . . . . . . . . 1--50 Nakao Hayashi and Pavel I. Naumkin and Elena I. Kaikina and Ilya A. Shishmarev Weak Nonlinearity . . . . . . . . . . . 51--178 Nakao Hayashi and Pavel I. Naumkin and Elena I. Kaikina and Ilya A. Shishmarev Critical Nonconvective Equations . . . . 179--322 Nakao Hayashi and Pavel I. Naumkin and Elena I. Kaikina and Ilya A. Shishmarev Critical Convective Equations . . . . . 323--429 Nakao Hayashi and Pavel I. Naumkin and Elena I. Kaikina and Ilya A. Shishmarev Subcritical Nonconvective Equations . . 431--512 Nakao Hayashi and Pavel I. Naumkin and Elena I. Kaikina and Ilya A. Shishmarev Subcritical Convective Equations . . . . 513--540
András Telcs Front Matter . . . . . . . . . . . . . . i--vii András Telcs Introduction . . . . . . . . . . . . . . 1--6 András Telcs Basic definitions and preliminaries . . 7--21 András Telcs Front Matter . . . . . . . . . . . . . . 24--24 András Telcs Some elements of potential theory . . . 25--47 András Telcs Isoperimetric inequalities . . . . . . . 49--60 András Telcs Polynomial volume growth . . . . . . . . 61--67 András Telcs Front Matter . . . . . . . . . . . . . . 70--70 András Telcs Motivation of the local approach . . . . 71--81 András Telcs Einstein relation . . . . . . . . . . . 83--93 András Telcs Upper estimates . . . . . . . . . . . . 95--129 András Telcs Lower estimates . . . . . . . . . . . . 131--151 András Telcs Two-sided estimates . . . . . . . . . . 153--163 András Telcs Closing remarks . . . . . . . . . . . . 165--168 András Telcs Parabolic Harnack inequality . . . . . . 169--179 András Telcs Semi-local theory . . . . . . . . . . . 181--185 András Telcs Back Matter . . . . . . . . . . . . . . 187--199
Shigeru Takamura Front Matter . . . . . . . . . . . . . . i--xxix Shigeru Takamura Front Matter . . . . . . . . . . . . . . 22--22 Shigeru Takamura Splitting Deformations of Degenerations 23--31 Shigeru Takamura What is a barking? . . . . . . . . . . . 33--39 Shigeru Takamura Semi-Local Barking Deformations: Ideas and Examples . . . . . . . . . . . . . . 41--56 Shigeru Takamura Global Barking Deformations: Ideas and Examples . . . . . . . . . . . . . . . . 57--81 Shigeru Takamura Front Matter . . . . . . . . . . . . . . 84--84 Shigeru Takamura Deformations of Tubular Neighborhoods of Branches (Preparation) . . . . . . . . . 85--98 Shigeru Takamura Construction of Deformations by Tame Subbranches . . . . . . . . . . . . . . 99--117 Shigeru Takamura Construction of Deformations of type $ A_l $ . . . . . . . . . . . . . . . . . 119--141 Shigeru Takamura Construction of Deformations by Wild Subbranches . . . . . . . . . . . . . . 143--152 Shigeru Takamura Subbranches of Types $ A_l $, $ B_l $, $ C_l $ . . . . . . . . . . . . . . . . . 153--176 Shigeru Takamura Construction of Deformations of Type $ B_l $ . . . . . . . . . . . . . . . . . 177--181 Shigeru Takamura Construction of Deformations of Type $ C_l $ . . . . . . . . . . . . . . . . . 183--207 Shigeru Takamura Recursive Construction of Deformations of Type $ C_l $ . . . . . . . . . . . . 209--234 Shigeru Takamura Types $ A_l $, $ B_l $, and $ C_l $ Exhaust all Cases . . . . . . . . . . . 235--251 Shigeru Takamura Construction of Deformations by Bunches of Subbranches . . . . . . . . . . . . . 253--262 Shigeru Takamura Front Matter . . . . . . . . . . . . . . 264--264 Shigeru Takamura Construction of Barking Deformations (Stellar Case) . . . . . . . . . . . . . 265--278 Shigeru Takamura Simple Crusts (Stellar Case) . . . . . . 279--302 Shigeru Takamura Compound barking (Stellar Case) . . . . 303--307 Shigeru Takamura Deformations of Tubular Neighborhoods of Trunks . . . . . . . . . . . . . . . . . 309--326 Shigeru Takamura Construction of Barking Deformations (Constellar Case) . . . . . . . . . . . 327--347 Shigeru Takamura Further Examples . . . . . . . . . . . . 349--379 Shigeru Takamura Front Matter . . . . . . . . . . . . . . 382--382 Shigeru Takamura Singularities of Fibers around Cores . . 383--419 Shigeru Takamura Arrangement Functions and Singularities, I . . . . . . . . . . . . . . . . . . . 421--438 Shigeru Takamura Arrangement Functions and Singularities, II . . . . . . . . . . . . . . . . . . . 439--459 Shigeru Takamura Supplement . . . . . . . . . . . . . . . 461--479 Shigeru Takamura Front Matter . . . . . . . . . . . . . . 482--482 Shigeru Takamura Classification Theorem . . . . . . . . . 483--485 Shigeru Takamura List of Weighted Crustal Sets for Singular Fibers of Genus $ \leq 5 $ . . 487--580 Shigeru Takamura Back Matter . . . . . . . . . . . . . . 581--594
Katharina Habermann and Lutz Habermann Front Matter . . . . . . . . . . . . . . i--xii Katharina Habermann and Lutz Habermann Background on Symplectic Spinors . . . . 1--19 Katharina Habermann and Lutz Habermann Symplectic Connections . . . . . . . . . 21--34 Katharina Habermann and Lutz Habermann Symplectic Spinor Fields . . . . . . . . 35--48 Katharina Habermann and Lutz Habermann Symplectic Dirac Operators . . . . . . . 49--66 Katharina Habermann and Lutz Habermann An Associated Second Order Operator . . 67--79 Katharina Habermann and Lutz Habermann The Kähler Case . . . . . . . . . . . . . 81--96 Katharina Habermann and Lutz Habermann Fourier Transform for Symplectic Spinors 97--100 Katharina Habermann and Lutz Habermann Lie Derivative and Quantization . . . . 101--113 Katharina Habermann and Lutz Habermann Back Matter . . . . . . . . . . . . . . 115--124
Joris van der Hoeven Front Matter . . . . . . . . . . . . . . I--XXII Joris van der Hoeven Orderings . . . . . . . . . . . . . . . 11--32 Joris van der Hoeven Grid-based series . . . . . . . . . . . 33--55 Joris van der Hoeven The Newton polygon method . . . . . . . 57--77 Joris van der Hoeven Transseries . . . . . . . . . . . . . . 79--96 Joris van der Hoeven Operations on transseries . . . . . . . 97--113 Joris van der Hoeven Grid-based operators . . . . . . . . . . 115--133 Joris van der Hoeven Linear differential equations . . . . . 135--164 Joris van der Hoeven Algebraic differential equations . . . . 165--200 Joris van der Hoeven The intermediate value theorem . . . . . 201--233 Joris van der Hoeven Back Matter . . . . . . . . . . . . . . 235--259
Marta Bunge and Jonathon Funk Front Matter . . . . . . . . . . . . . . I--XVII Marta Bunge and Jonathon Funk Front Matter . . . . . . . . . . . . . . 8--8 Marta Bunge and Jonathon Funk Lawvere Distributions on Toposes . . . . 9--29 Marta Bunge and Jonathon Funk Complete Spread Maps of Toposes . . . . 31--54 Marta Bunge and Jonathon Funk The Spread and Completeness Conditions 55--76 Marta Bunge and Jonathon Funk Front Matter . . . . . . . . . . . . . . 78--78 Marta Bunge and Jonathon Funk Completion KZ-Monads . . . . . . . . . . 79--97 Marta Bunge and Jonathon Funk Complete Spreads as Discrete $M$-fibrations . . . . . . . . . . . . . 99--108 Marta Bunge and Jonathon Funk Closed and Linear KZ-Monads . . . . . . 109--127 Marta Bunge and Jonathon Funk Front Matter . . . . . . . . . . . . . . 130--130 Marta Bunge and Jonathon Funk Lattice-Theoretic Aspects . . . . . . . 131--159 Marta Bunge and Jonathon Funk Localic and Algebraic Aspects . . . . . 161--188 Marta Bunge and Jonathon Funk Topological Aspects . . . . . . . . . . 189--215 Marta Bunge and Jonathon Funk Back Matter . . . . . . . . . . . . . . 217--229
J. B. Friedlander and D. R. Heath-Brown and H. Iwaniec and J. Kaczorowski Front Matter . . . . . . . . . . . . . . I--XI John B. Friedlander Producing Prime Numbers via Sieve Methods . . . . . . . . . . . . . . . . 1--49 D. R. Heath-Brown Counting Rational Points on Algebraic Varieties . . . . . . . . . . . . . . . 51--95 Henryk Iwaniec Conversations on the Exceptional Character . . . . . . . . . . . . . . . 97--132 Jerzy Kaczorowski Axiomatic Theory of $L$-Functions: the Selberg Class . . . . . . . . . . . . . 133--209 Jerzy Kaczorowski Back Matter . . . . . . . . . . . . . . 211--216
James A. Green and Manfred Schocker and Karin Erdmann Front Matter . . . . . . . . . . . . . . I--IX James A. Green and Manfred Schocker and Karin Erdmann Introduction . . . . . . . . . . . . . . 1--10 James A. Green and Manfred Schocker and Karin Erdmann Polynomial Representations of $ {\rm GL n} (K) $: The Schur algebra . . . . . . 11--22 James A. Green and Manfred Schocker and Karin Erdmann Weights and Characters . . . . . . . . . 23--31 James A. Green and Manfred Schocker and Karin Erdmann The modules $ D_\lambda, K $ . . . . . . 33--42 James A. Green and Manfred Schocker and Karin Erdmann The Carter--Lusztig modules $ V_\lambda, K $ . . . . . . . . . . . . . . . . . . 43--52 James A. Green and Manfred Schocker and Karin Erdmann Representation theory of the symmetric group . . . . . . . . . . . . . . . . . 53--70 James A. Green and Manfred Schocker and Karin Erdmann Back Matter . . . . . . . . . . . . . . 72--163
Jin Ma and Jiongmin Yong Front Matter . . . . . . . . . . . . . . i--xiii Jin Ma and Jiongmin Yong Introduction . . . . . . . . . . . . . . 1--24 Jin Ma and Jiongmin Yong Linear Equations . . . . . . . . . . . . 25--50 Jin Ma and Jiongmin Yong Method of Optimal Control . . . . . . . 51--79 Jin Ma and Jiongmin Yong Four Step Scheme . . . . . . . . . . . . 80--102 Jin Ma and Jiongmin Yong Linear, Degenerate Backward Stochastic Partial Differential Equations . . . . . 103--136 Jin Ma and Jiongmin Yong The Method of Continuation . . . . . . . 137--168 Jin Ma and Jiongmin Yong FBSDEs with Reflections . . . . . . . . 169--192 Jin Ma and Jiongmin Yong Applications of FBSDEs . . . . . . . . . 193--234 Jin Ma and Jiongmin Yong Numerical Methods for FBSDEs . . . . . . 235--256 Jin Ma and Jiongmin Yong Back Matter . . . . . . . . . . . . . . 257--274
Jörn Steuding Front Matter . . . . . . . . . . . . . . I--XIII Jörn Steuding Introduction . . . . . . . . . . . . . . 1--33 Jörn Steuding Dirichlet Series and Polynomial Euler Products . . . . . . . . . . . . . . . . 35--47 Jörn Steuding Interlude: Results from Probability Theory . . . . . . . . . . . . . . . . . 49--61 Jörn Steuding Limit Theorems . . . . . . . . . . . . . 63--85 Jörn Steuding Universality . . . . . . . . . . . . . . 87--110 Jörn Steuding The Selberg Class . . . . . . . . . . . 111--135 Jörn Steuding Value-Distribution in the Complex Plane 137--154 Jörn Steuding The Riemann Hypothesis . . . . . . . . . 155--165 Jörn Steuding Effective Results . . . . . . . . . . . 167--191 Jörn Steuding Consequences of Universality . . . . . . 193--207 Jörn Steuding Dirichlet Series with Periodic Coefficients . . . . . . . . . . . . . . 209--227 Jörn Steuding Joint Universality . . . . . . . . . . . 229--248 Jörn Steuding $L$-Functions of Number Fields . . . . . 249--283 Jörn Steuding Back Matter . . . . . . . . . . . . . . 285--322
Prof. George Osipenko Front Matter . . . . . . . . . . . . . . I--XII Prof. George Osipenko Introduction . . . . . . . . . . . . . . 1--14 Prof. George Osipenko Symbolic Image . . . . . . . . . . . . . 15--25 Prof. George Osipenko Periodic Trajectories . . . . . . . . . 27--33 Prof. George Osipenko Newton's Method . . . . . . . . . . . . 35--41 Prof. George Osipenko Invariant Sets . . . . . . . . . . . . . 43--54 Prof. George Osipenko Chain Recurrent Set . . . . . . . . . . 55--63 Prof. George Osipenko Attractors . . . . . . . . . . . . . . . 65--83 Prof. George Osipenko Filtration . . . . . . . . . . . . . . . 85--95 Prof. George Osipenko Structural Graph . . . . . . . . . . . . 97--105 Prof. George Osipenko Entropy . . . . . . . . . . . . . . . . 107--121 Prof. George Osipenko Projective Space and Lyapunov Exponents 123--136 Prof. George Osipenko Morse Spectrum . . . . . . . . . . . . . 137--160 Prof. George Osipenko Hyperbolicity and Structural Stability 161--174 Prof. George Osipenko Controllability . . . . . . . . . . . . 175--179 Prof. George Osipenko Invariant Manifolds . . . . . . . . . . 181--195 Prof. George Osipenko Ikeda Mapping Dynamics . . . . . . . . . 197--218 Prof. George Osipenko A Dynamical System of Mathematical Biology . . . . . . . . . . . . . . . . 219--232 Prof. George Osipenko Back Matter . . . . . . . . . . . . . . 233--287
Adrian Baddeley and Imre Bárány and Rolf Schneider Front Matter . . . . . . . . . . . . . . I--XII Adrian Baddeley and Imre Bárány and Rolf Schneider Spatial Point Processes and their Applications . . . . . . . . . . . . . . 1--75 Adrian Baddeley and Imre Bárány and Rolf Schneider Random Polytopes, Convex Bodies, and Approximation . . . . . . . . . . . . . 77--118 Adrian Baddeley and Imre Bárány and Rolf Schneider Integral Geometric Tools for Stochastic Geometry . . . . . . . . . . . . . . . . 119--184 Adrian Baddeley and Imre Bárány and Rolf Schneider Random Sets (in Particular Boolean Models) . . . . . . . . . . . . . . . . 185--245 Adrian Baddeley and Imre Bárány and Rolf Schneider Random Mosaics . . . . . . . . . . . . . 247--266 Adrian Baddeley and Imre Bárány and Rolf Schneider On the Evolution Equations of Mean Geometric Densities for a Class of Space and Time Inhomogeneous Stochastic Birth-and-growth Processes . . . . . . . 267--281 Adrian Baddeley and Imre Bárány and Rolf Schneider Back Matter . . . . . . . . . . . . . . 283--292
Heinz Hanßmann Front Matter . . . . . . . . . . . . . . I--XV Heinz Hanßmann Introduction . . . . . . . . . . . . . . 1--15 Heinz Hanßmann Bifurcations of Equilibria . . . . . . . 17--89 Heinz Hanßmann Bifurcations of Periodic Orbits . . . . 91--107 Heinz Hanßmann Bifurcations of Invariant Tori . . . . . 109--142 Heinz Hanßmann Perturbations of Ramified Torus Bundles 143--159 Heinz Hanßmann Planar Singularities . . . . . . . . . . 161--165 Heinz Hanßmann Stratifications . . . . . . . . . . . . 167--171 Heinz Hanßmann Normal Form Theory . . . . . . . . . . . 173--184 Heinz Hanßmann Proof of the Main KAM Theorem . . . . . 185--200 Heinz Hanßmann Proofs of the Necessary Lemmata . . . . 201--206 Heinz Hanßmann Back Matter . . . . . . . . . . . . . . 207--241
Charles W. Groetsch Front Matter . . . . . . . . . . . . . . I--X Charles W. Groetsch Some Problems Leading to Unbounded Operators . . . . . . . . . . . . . . . 1--17 Charles W. Groetsch Hilbert Space Background . . . . . . . . 19--51 Charles W. Groetsch A General Approach to Stabilization . . 53--75 Charles W. Groetsch The Tikhonov--Morozov Method . . . . . . 77--99 Charles W. Groetsch Finite-Dimensional Approximations . . . 101--119 Charles W. Groetsch Back Matter . . . . . . . . . . . . . . 121--131
Lajos Molnár Front Matter . . . . . . . . . . . . . . I--IXL Lajos Molnár Some Linear and Multiplicative Preserver Problems on Operator Algebras and Function Algebras . . . . . . . . . . . 29--64 Lajos Molnár Preservers on Quantum Structures . . . . 65--157 Lajos Molnár Local Automorphisms and Local Isometries of Operator Algebras and Function Algebras . . . . . . . . . . . . . . . . 159--204 Lajos Molnár Back Matter . . . . . . . . . . . . . . 205--236
Professor Pascal Massart Front Matter . . . . . . . . . . . . . . I--XIV Professor Pascal Massart Introduction . . . . . . . . . . . . . . 1--13 Professor Pascal Massart Exponential and Information Inequalities 15--51 Professor Pascal Massart Gaussian Processes . . . . . . . . . . . 53--82 Professor Pascal Massart Gaussian Model Selection . . . . . . . . 83--146 Professor Pascal Massart Concentration Inequalities . . . . . . . 147--181 Professor Pascal Massart Maximal Inequalities . . . . . . . . . . 183--199 Professor Pascal Massart Density Estimation via Model Selection 201--277 Professor Pascal Massart Statistical Learning . . . . . . . . . . 279--318 Professor Pascal Massart Back Matter . . . . . . . . . . . . . . 319--341
Professor Ronald A. Doney Front Matter . . . . . . . . . . . . . . I--IX Professor Ronald A. Doney Introduction to Lévy Processes . . . . . 1--8 Professor Ronald A. Doney Subordinators . . . . . . . . . . . . . 9--17 Professor Ronald A. Doney Local Times and Excursions . . . . . . . 19--24 Professor Ronald A. Doney Ladder Processes and the Wiener--Hopf Factorisation . . . . . . . . . . . . . 25--40 Professor Ronald A. Doney Further Wiener--Hopf Developments . . . 41--50 Professor Ronald A. Doney Creeping and Related Questions . . . . . 51--64 Professor Ronald A. Doney Spitzer's Condition . . . . . . . . . . 65--80 Professor Ronald A. Doney Lévy Processes Conditioned to Stay Positive . . . . . . . . . . . . . . . . 81--93 Professor Ronald A. Doney Spectrally Negative Lévy Processes . . . 95--113 Professor Ronald A. Doney Small-Time Behaviour . . . . . . . . . . 115--132 Professor Ronald A. Doney Back Matter . . . . . . . . . . . . . . 133--150
Horst Reinhard Beyer Front Matter . . . . . . . . . . . . . . i--xiv Horst Reinhard Beyer Conventions . . . . . . . . . . . . . . 1--3 Horst Reinhard Beyer Mathematical Introduction . . . . . . . 5--12 Horst Reinhard Beyer Prerequisites . . . . . . . . . . . . . 13--39 Horst Reinhard Beyer Strongly Continuous Semigroups . . . . . 41--69 Horst Reinhard Beyer Examples of Generators of Strongly Continuous Semigroups . . . . . . . . . 71--103 Horst Reinhard Beyer Intertwining Relations, Operator Homomorphisms . . . . . . . . . . . . . 105--121 Horst Reinhard Beyer Examples of Constrained Systems . . . . 123--135 Horst Reinhard Beyer Kernels, Chains, and Evolution Operators 137--163 Horst Reinhard Beyer The Linear Evolution Equation . . . . . 165--176 Horst Reinhard Beyer Examples of Linear Evolution Equations 177--214 Horst Reinhard Beyer The Quasi-Linear Evolution Equation . . 215--234 Horst Reinhard Beyer Examples of Quasi-Linear Evolution Equations . . . . . . . . . . . . . . . 235--263 Horst Reinhard Beyer Back Matter . . . . . . . . . . . . . . 265--287
Laure Coutin An Introduction to (Stochastic) Calculus with Respect to Fractional Brownian Motion . . . . . . . . . . . . . . . . . 3--65 Laure Coutin Front Matter . . . . . . . . . . . . . . 67--67 Goran Peskir A Change-of-Variable Formula with Local Time on Surfaces . . . . . . . . . . . . 70--96 Andreas E. Kyprianou and Budhi A. Surya A Note on a Change of Variable Formula with Local Time-Space for Lévy Processes of Bounded Variation . . . . . . . . . . 97--104 Joseph Najnudel Integration with Respect to Self-Intersection Local Time of a One-Dimensional Brownian Motion . . . . 105--116 K. David Elworthy and Aubrey Truman and Huaizhong Zhao Generalized Itô Formulae and Space-Time Lebesgue--Stieltjes Integrals of Local Times . . . . . . . . . . . . . . . . . 117--136 Nathalie Eisenbaum Local Time-Space Calculus for Reversible Semimartingales . . . . . . . . . . . . 137--146 Francesco Russo and Pierre Vallois Elements of Stochastic Calculus via Regularization . . . . . . . . . . . . . 147--185 Huyen Pham On the Smooth-Fit Property for One-Dimensional Optimal Switching Problem . . . . . . . . . . . . . . . . 187--199 Huyen Pham Front Matter . . . . . . . . . . . . . . 201--201 Irene Crimaldi and Giorgio Letta and Luca Pratelli A Strong Form of Stable Convergence . . 203--225 Pedro J. Catuogno and Paulo R. C. Ruffino Product of Harmonic Maps is Harmonic: a Stochastic Approach . . . . . . . . . . 227--233 Michel Ledoux More Hypercontractive Bounds for Deformed Orthogonal Polynomial Ensembles 235--240 Emmanuel Cépa and Dominique Lépingle No Multiple Collisions for Mutually Repelling Brownian Particles . . . . . . 241--246 Larbi Alili and Pierre Patie On the Joint Law of the $ L_1 $ and $ L_2 $ Norms of a $3$-Dimensional Bessel Bridge . . . . . . . . . . . . . . . . . 247--264 Paavo Salminen and Marc Yor Tanaka Formula for Symmetric Lévy Processes . . . . . . . . . . . . . . . 265--285 Martijn R. Pistorius An Excursion-Theoretical Approach to Some Boundary Crossing Problems and the Skorokhod Embedding for Reflected Lévy Processes . . . . . . . . . . . . . . . 287--307 Jan Ob\lój The Maximality Principle Revisited: On Certain Optimal Stopping Problems . . . 309--328 Nathanaül Enriquez Correlated Processes and the Composition of Generators . . . . . . . . . . . . . 329--342 Laurent Serlet Representation of the Martingales for the Brownian Snake . . . . . . . . . . . 343--354 Emmanuel Gobet and Stéphane Menozzi Discrete Sampling of Functionals of Itô Processes . . . . . . . . . . . . . . . 355--374 Oleksandr Chybiryakov Itô's Integrated Formula for Strict Local Martingales with Jumps . . . . . . . . . 375--388
Erwin Bolthausen Random Media and Spin Glasses: an Introduction into Some Mathematical Results and Problems . . . . . . . . . . 1--44 David Sherrington Spin Glasses: a Perspective . . . . . . 45--62 Michel Talagrand Mean Field Models for Spin Glasses: Some Obnoxious Problems . . . . . . . . . . . 63--80 Anton Bovier and Irina Kurkova Much Ado about Derrida's GREM . . . . . 81--115 Alice Guionnet Dynamics for Spherical Models of Spin-Glass and Aging . . . . . . . . . . 117--144 Charles M. Newman and Daniel L. Stein Local vs. Global Variables for Spin Glasses . . . . . . . . . . . . . . . . 145--158 Charles M. Newman and Daniel L. Stein Short-Range Spin Glasses: Results and Speculations . . . . . . . . . . . . . . 159--175 Charles M. Newman and Daniel L. Stein Back Matter . . . . . . . . . . . . . . 177--182
Olivier Wittenberg Front Matter . . . . . . . . . . . . . . I--XXIV Olivier Wittenberg Arithmétique des pinceaux semi-stables de courbes de genre $1$ (premi\`ere partie). (French) [] . . . . . . . . . . 19--72 Olivier Wittenberg Arithmétique des pinceaux semi-stables de courbes de genre $1$ (seconde partie). (French) [] . . . . . . . . . . . . . . 73--108 Olivier Wittenberg Principe de Hasse pour les surfaces de del Pezzo de degré $4$. (French) [] . . . 109--200 Olivier Wittenberg Back Matter . . . . . . . . . . . . . . 201--222
Alexander Isaev Front Matter . . . . . . . . . . . . . . I--VIII Alexander Isaev Introduction . . . . . . . . . . . . . . 1--22 Alexander Isaev The Homogeneous Case . . . . . . . . . . 23--28 Alexander Isaev The Case $ d (M) = n^2 $ . . . . . . . . 29--50 Alexander Isaev The Case $ d (M) = n^2 - 1 $, $ n \geq 3 $ . . . . . . . . . . . . . . . . . . . 51--60 Alexander Isaev The Case of $ (2, 3)$-Manifolds . . . . 61--119 Alexander Isaev Proper Actions . . . . . . . . . . . . . 121--130 Alexander Isaev Back Matter . . . . . . . . . . . . . . 131--143
Vladimir Maz'ya and Gershon Kresin Front Matter . . . . . . . . . . . . . . I--XV Vladimir Maz'ya and Gershon Kresin Estimates for analytic functions bounded with respect to their real part . . . . 1--16 Vladimir Maz'ya and Gershon Kresin Estimates for analytic functions with respect to the $ L_p $-norm of $ R \Delta f $ on the circle . . . . . . . . 17--35 Vladimir Maz'ya and Gershon Kresin Estimates for analytic functions by the best $ L_p $-approximation of $ R f $ on the circle . . . . . . . . . . . . . . . 37--55 Vladimir Maz'ya and Gershon Kresin Estimates for directional derivatives of harmonic functions . . . . . . . . . . . 57--67 Vladimir Maz'ya and Gershon Kresin Estimates for derivatives of analytic functions . . . . . . . . . . . . . . . 69--98 Vladimir Maz'ya and Gershon Kresin Bohr's type real part estimates . . . . 99--114 Vladimir Maz'ya and Gershon Kresin Estimates for the increment of derivatives of analytic functions . . . 115--128 Vladimir Maz'ya and Gershon Kresin Back Matter . . . . . . . . . . . . . . 129--144
Peter Giesl Front Matter . . . . . . . . . . . . . . I--VIII Peter Giesl Introduction . . . . . . . . . . . . . . 1--10 Peter Giesl Lyapunov Functions . . . . . . . . . . . 11--59 Peter Giesl Radial Basis Functions . . . . . . . . . 61--98 Peter Giesl Construction of Lyapunov Functions . . . 99--114 Peter Giesl Global Determination of the Basin of Attraction . . . . . . . . . . . . . . . 115--132 Peter Giesl Application of the Method: Examples . . 133--147 Peter Giesl Back Matter . . . . . . . . . . . . . . 149--170
Claudia Prévôt and Michael Röckner Front Matter . . . . . . . . . . . . . . V--VI Claudia Prévôt and Michael Röckner Motivation, Aims and Examples . . . . . 1--4 Claudia Prévôt and Michael Röckner Stochastic Integral in Hilbert Spaces 5--42 Claudia Prévôt and Michael Röckner Stochastic Differential Equations in Finite Dimensions . . . . . . . . . . . 43--54 Claudia Prévôt and Michael Röckner A Class of Stochastic Differential Equations . . . . . . . . . . . . . . . 55--103 Claudia Prévôt and Michael Röckner Back Matter . . . . . . . . . . . . . . 105--148
Thomas Schuster Front Matter . . . . . . . . . . . . . . I--XIII Thomas Schuster Front Matter . . . . . . . . . . . . . . 1--4 Thomas Schuster Ill-posed problems and regularization methods . . . . . . . . . . . . . . . . 5--9 Thomas Schuster Approximate inverse in $ L^2 $-spaces 11--24 Thomas Schuster Approximate inverse in Hilbert spaces 25--38 Thomas Schuster Approximate inverse in distribution spaces . . . . . . . . . . . . . . . . . 39--47 Thomas Schuster Conclusion and perspectives . . . . . . 49--49 Thomas Schuster Front Matter . . . . . . . . . . . . . . 51--54 Thomas Schuster A semi-discrete setup for Doppler tomography . . . . . . . . . . . . . . . 55--61 Thomas Schuster Solving the semi-discrete problem . . . 63--79 Thomas Schuster Convergence and stability . . . . . . . 81--87 Thomas Schuster Approaches for defect correction . . . . 89--103 Thomas Schuster Conclusion and perspectives . . . . . . 105--106 Thomas Schuster Front Matter . . . . . . . . . . . . . . 107--110 Thomas Schuster The spherical mean operator . . . . . . 111--121 Thomas Schuster Design of a mollifier . . . . . . . . . 123--131 Thomas Schuster Computation of reconstruction kernels 133--137 Thomas Schuster Numerical experiments . . . . . . . . . 139--144 Thomas Schuster Conclusion and perspectives . . . . . . 145--145 Thomas Schuster Front Matter . . . . . . . . . . . . . . 147--149 Thomas Schuster Approximate inverse and X-ray diffractometry . . . . . . . . . . . . . 151--164 Thomas Schuster A filtered backprojection algorithm . . 165--179 Thomas Schuster Computation of reconstruction kernels in $3$D computerized tomography . . . . . . 181--185 Thomas Schuster Conclusion and perspectives . . . . . . 187--187 Thomas Schuster Back Matter . . . . . . . . . . . . . . 189--202
Martin Rasmussen Front Matter . . . . . . . . . . . . . . IX--XI Martin Rasmussen Introduction . . . . . . . . . . . . . . 1--6 Martin Rasmussen Notions of Attractivity and Bifurcation 7--50 Martin Rasmussen Nonautonomous Morse Decompositions . . . 51--80 Martin Rasmussen Linear Systems . . . . . . . . . . . . . 81--113 Martin Rasmussen Nonlinear Systems . . . . . . . . . . . 115--135 Martin Rasmussen Bifurcations in Dimension One . . . . . 137--152 Martin Rasmussen Bifurcations of Asymptotically Autonomous Systems . . . . . . . . . . . 153--191 Martin Rasmussen Back Matter . . . . . . . . . . . . . . 193--215
Terry J. Lyons and Michael Caruana and Thierry Lévy Front Matter . . . . . . . . . . . . . . I--XVIII Terry J. Lyons and Michael Caruana and Thierry Lévy Differential Equations Driven by Moderately Irregular Signals . . . . . . 1--24 Terry J. Lyons and Michael Caruana and Thierry Lévy The Signature of a Path . . . . . . . . 25--40 Terry J. Lyons and Michael Caruana and Thierry Lévy Rough Paths . . . . . . . . . . . . . . 41--61 Terry J. Lyons and Michael Caruana and Thierry Lévy Integration Along Rough Paths . . . . . 63--79 Terry J. Lyons and Michael Caruana and Thierry Lévy Differential Equations Driven by Rough Paths . . . . . . . . . . . . . . . . . 81--93 Terry J. Lyons and Michael Caruana and Thierry Lévy Back Matter . . . . . . . . . . . . . . 95--115
Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Front Matter . . . . . . . . . . . . . . I--XLIII Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Jorgensen's picture of quasifuchsian punctured torus groups . . . . . . . . . 1--14 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Fricke surfaces and $ {\rm PSL}(2, \mathbb {C}) $-representations . . . . . 15--35 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Labeled representations and associated complexes . . . . . . . . . . . . . . . 37--47 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Chain rule and side parameter . . . . . 49--99 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Special examples . . . . . . . . . . . . 101--132 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Reformulation of Main Theorem 1.3.5 and outline of the proof . . . . . . . . . . 133--154 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Openness . . . . . . . . . . . . . . . . 155--169 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Closedness . . . . . . . . . . . . . . . 171--214 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Algebraic roots and geometric roots . . 215--231 Hirotaka Akiyoshi and Makoto Sakuma and Masaaki Wada and Yasushi Yamashita Back Matter . . . . . . . . . . . . . . 233--256
S. Alesker Theory of Valuations on Manifolds, IV. New Properties of the Multiplicative Structure . . . . . . . . . . . . . . . 1--44 S. Artstein-Avidan and O. Friedland and Vitali D. Milman Geometric Applications of Chernoff-Type Estimates . . . . . . . . . . . . . . . 45--75 Sergey G. Bobkov A Remark on the Surface Brunn--Minkowski-Type Inequality . . . . 77--79 Sergey G. Bobkov On Isoperimetric Constants for Log-Concave Probability Distributions 81--88 J. Bourgain A Remark on Quantum Ergodicity for CAT Maps . . . . . . . . . . . . . . . . . . 89--98 J. Bourgain Some Arithmetical Applications of the Sum-Product Theorems in Finite Fields 99--116 D. Gatzouras and A. Giannopoulos and N. Markoulakis On the Maximal Number of Facets of $0$ / $1$ Polytopes . . . . . . . . . . . . . 117--125 Y. Gordon A Note on an Observation of G. Schechtman . . . . . . . . . . . . . . . 127--132 Boaz Klartag Marginals of Geometric Inequalities . . 133--166 M. Ledoux Deviation Inequalities on Largest Eigenvalues . . . . . . . . . . . . . . 167--219 A. E. Litvak and Vitali D. Milman and A. Pajor and N. Tomczak-Jaegermann On the Euclidean Metric Entropy of Convex Bodies . . . . . . . . . . . . . 221--235 M. Meckes Some Remarks on Transportation Cost and Related Inequalities . . . . . . . . . . 237--244 E. Milman A Comment on the Low-Dimensional Busemann--Petty Problem . . . . . . . . 245--253 P. Pivovarov Random Convex Bodies Lacking Symmetric Projections, Revisited Through Decoupling . . . . . . . . . . . . . . . 255--263 Gideon Schechtman The Random Version of Dvoretzky's Theorem in $ l_{\infty }^n $ . . . . . . 265--270 S. Sodin Tail-Sensitive Gaussian Asymptotics for Marginals of Concentrated Measures in High Dimension . . . . . . . . . . . . . 271--295 S. J. Szarek and N. Tomczak-Jaegermann Decoupling Weakly Dependent Events . . . 297--303 J. O. Wojtaszczyk The Square Negative Correlation Property for Generalized Orlicz Balls . . . . . . 305--313 J. O. Wojtaszczyk Back Matter . . . . . . . . . . . . . . 315--332
Alberto Bressan and Denis Serre and Mark Williams and Kevin Zumbrun Front Matter . . . . . . . . . . . . . . I--XII Alberto Bressan BV Solutions to Hyperbolic Systems by Vanishing Viscosity . . . . . . . . . . 1--77 Denis Serre Discrete Shock Profiles: Existence and Stability . . . . . . . . . . . . . . . 79--158 Mark Williams Stability of Multidimensional Viscous Shocks . . . . . . . . . . . . . . . . . 159--227 Kevin Zumbrun Planar Stability Criteria for Viscous Shock Waves of Systems with Real Viscosity . . . . . . . . . . . . . . . 229--326 Kevin Zumbrun Back Matter . . . . . . . . . . . . . . 327--356
Vasile Berinde Front Matter . . . . . . . . . . . . . . I--XVII Vasile Berinde Pre-Requisites of Fixed Points . . . . . 3--30 Vasile Berinde The Picard Iteration . . . . . . . . . . 31--62 Vasile Berinde The Krasnoselskij Iteration . . . . . . 63--88 Vasile Berinde The Mann Iteration . . . . . . . . . . . 89--112 Vasile Berinde The Ishikawa Iteration . . . . . . . . . 113--134 Vasile Berinde Other Fixed Point Iteration Procedures 135--156 Vasile Berinde Stability of Fixed Point Iteration Procedures . . . . . . . . . . . . . . . 157--178 Vasile Berinde Iterative Solution of Nonlinear Operator Equations . . . . . . . . . . . . . . . 179--198 Vasile Berinde Error Analysis of Fixed Point Iteration Procedures . . . . . . . . . . . . . . . 199--220 Vasile Berinde Back Matter . . . . . . . . . . . . . . 221--322
Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Front Matter . . . . . . . . . . . . . . I--XV Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Front Matter . . . . . . . . . . . . . . 1--1 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Symplectic Reduction . . . . . . . . . . 3--42 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Cotangent Bundle Reduction . . . . . . . 43--99 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu The Problem Setting . . . . . . . . . . 101--109 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Front Matter . . . . . . . . . . . . . . 111--111 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Commuting Reduction and Semidirect Product Theory . . . . . . . . . . . . . 113--142 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Regular Reduction by Stages . . . . . . 143--175 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Group Extensions and the Stages Hypothesis . . . . . . . . . . . . . . . 177--210 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Magnetic Cotangent Bundle Reduction . . 211--237 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Stages and Coadjoint Orbits of Central Extensions . . . . . . . . . . . . . . . 239--250 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Examples . . . . . . . . . . . . . . . . 251--283 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Stages and Semidirect Products with Cocycles . . . . . . . . . . . . . . . . 285--396 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Reduction by Stages via Symplectic Distributions . . . . . . . . . . . . . 397--407 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Reduction by Stages with Topological Conditions . . . . . . . . . . . . . . . 409--420 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Front Matter . . . . . . . . . . . . . . 421--422 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu The Optimal Momentum Map and Point Reduction . . . . . . . . . . . . . . . 423--436 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Optimal Orbit Reduction . . . . . . . . 437--459 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Optimal Reduction by Stages . . . . . . 461--481 Jerrold E. Marsden and Gerard Misiolek and Juan-Pablo Ortega and Matthew Perlmutter and Tudor S. Ra\ctiu Back Matter . . . . . . . . . . . . . . 483--523
Gitta Kutyniok Front Matter . . . . . . . . . . . . . . I--XII Gitta Kutyniok Introduction . . . . . . . . . . . . . . 1--10 Gitta Kutyniok Wavelet and Gabor Frames . . . . . . . . 11--20 Gitta Kutyniok Weighted Affine Density . . . . . . . . 21--33 Gitta Kutyniok Qualitative Density Conditions . . . . . 35--57 Gitta Kutyniok Quantitative Density Conditions . . . . 59--86 Gitta Kutyniok Homogeneous Approximation Property . . . 87--104 Gitta Kutyniok Weighted Beurling Density and Shift-Invariant Gabor Systems . . . . . 105--125 Gitta Kutyniok Back Matter . . . . . . . . . . . . . . 127--142
Türker Biyiko\ugu and Josef Leydold and Peter F. Stadler Front Matter . . . . . . . . . . . . . . I--VIII Türker Biyiko\ugu and Josef Leydold and Peter F. Stadler Introduction . . . . . . . . . . . . . . 1--14 Türker Biyiko\ugu and Josef Leydold and Peter F. Stadler Graph Laplacians . . . . . . . . . . . . 15--27 Türker Biyiko\ugu and Josef Leydold and Peter F. Stadler Eigenfunctions and Nodal Domains . . . . 29--47 Türker Biyiko\ugu and Josef Leydold and Peter F. Stadler Nodal Domain Theorems for Special Graph Classes . . . . . . . . . . . . . . . . 49--65 Türker Biyiko\ugu and Josef Leydold and Peter F. Stadler Computational Experiments . . . . . . . 67--75 Türker Biyiko\ugu and Josef Leydold and Peter F. Stadler Faber--Krahn Type Inequalities . . . . . 77--91 Türker Biyiko\ugu and Josef Leydold and Peter F. Stadler Back Matter . . . . . . . . . . . . . . 93--115
Brooks Roberts and Ralf Schmidt Front Matter . . . . . . . . . . . . . . I--VIII Brooks Roberts and Ralf Schmidt A Summary . . . . . . . . . . . . . . . 1--25 Brooks Roberts and Ralf Schmidt Representation Theory . . . . . . . . . 27--83 Brooks Roberts and Ralf Schmidt Paramodular Vectors . . . . . . . . . . 85--122 Brooks Roberts and Ralf Schmidt Zeta Integrals . . . . . . . . . . . . . 123--149 Brooks Roberts and Ralf Schmidt Non-supercuspidal Representations . . . 151--186 Brooks Roberts and Ralf Schmidt Hecke Operators . . . . . . . . . . . . 187--237 Brooks Roberts and Ralf Schmidt Proofs of the Main Theorems . . . . . . 239--267 Brooks Roberts and Ralf Schmidt Back Matter . . . . . . . . . . . . . . 269--307
René A. Carmona and Ivar Ekeland and Arturo Kohatsu-Higa and Jean-Michel Lasry and Pierre-Louis Lions and Huyên Pham and Erik Taflin Front Matter . . . . . . . . . . . . . . i--viii René A. Carmona HJM: a Unified Approach to Dynamic Models for Fixed Income, Credit and Equity Markets . . . . . . . . . . . . . 1--50 Ivar Ekeland and Erik Taflin Optimal Bond Portfolios . . . . . . . . 51--102 Arturo Kohatsu-Higa Models for Insider Trading with Finite Utility . . . . . . . . . . . . . . . . 103--171 Pierre-Louis Lions and Jean-Michel Lasry Large Investor Trading Impacts on Volatility . . . . . . . . . . . . . . . 173--190 Huyên Pham Some Applications and Methods of Large Deviations in Finance and Insurance . . 191--244 Huyên Pham Back Matter . . . . . . . . . . . . . . 245--249
Rufus Bowen Front Matter . . . . . . . . . . . . . . i--x Rufus Bowen Gibbs Measures . . . . . . . . . . . . . 3--27 Rufus Bowen General Thermodynamic Formalism . . . . 29--44 Rufus Bowen Axiom a Diffeomorphisms . . . . . . . . 45--59 Rufus Bowen Ergodic Theory of Axiom a Diffeomorphisms . . . . . . . . . . . . 61--73 Rufus Bowen Back Matter . . . . . . . . . . . . . . 74--78
Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi Front Matter . . . . . . . . . . . . . . i--x Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi Introduction . . . . . . . . . . . . . . 1--8 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi The Fresnel Integral of Functions on a Separable Real Hilbert Space . . . . . . 9--17 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi The Feynman Path Integral in Potential Scattering . . . . . . . . . . . . . . . 19--35 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi The Fresnel Integral Relative to a Non-singular Quadratic Form . . . . . . 37--50 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi Feynman Path Integrals for the Anharmonic Oscillator . . . . . . . . . 51--62 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi Expectations with Respect to the Ground State of the Harmonic Oscillator . . . . 63--68 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi Expectations with Respect to the Gibbs State of the Harmonic Oscillator . . . . 69--71 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi The Invariant Quasi-free States . . . . 73--83 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi The Feynman History Integral for the Relativistic Quantum Boson Field . . . . 85--92 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi Some Recent Developments . . . . . . . . 93--140 Sergio A. Albeverio and Raphael J. Hòegh-Krohn and Sonia Mazzucchi Back Matter . . . . . . . . . . . . . . 141--175
Stephen Simons Front Matter . . . . . . . . . . . . . . I--XIV Stephen Simons Introduction . . . . . . . . . . . . . . 1--13 Stephen Simons The Hahn--Banach--Lagrange theorem and some consequences . . . . . . . . . . . 15--39 Stephen Simons Fenchel duality . . . . . . . . . . . . 41--69 Stephen Simons Multifunctions, SSD spaces, monotonicity and Fitzpatrick functions . . . . . . . 71--105 Stephen Simons Monotone multifunctions on general Banach spaces . . . . . . . . . . . . . 107--115 Stephen Simons Monotone multifunctions on reflexive Banach spaces . . . . . . . . . . . . . 117--138 Stephen Simons Special maximally monotone multifunctions . . . . . . . . . . . . . 139--195 Stephen Simons The sum problem for general Banach spaces . . . . . . . . . . . . . . . . . 197--201 Stephen Simons Open problems . . . . . . . . . . . . . 203--204 Stephen Simons Glossary of classes of multifunctions 205--206 Stephen Simons A selection of results . . . . . . . . . 207--231 Stephen Simons Back Matter . . . . . . . . . . . . . . 233--248
Fraydoun Rezakhanlou and Cédric Villani Front Matter . . . . . . . . . . . . . . i--xii C. Villani Entropy Production and Convergence to Equilibrium . . . . . . . . . . . . . . 1--70 F. Rezakhanlou Kinetic Limits for Interacting Particle Systems . . . . . . . . . . . . . . . . 71--105 F. Rezakhanlou Back Matter . . . . . . . . . . . . . . 107--111
Ivan Veseli\'c Front Matter . . . . . . . . . . . . . . I--X Ivan Veseli\'c Random Operators . . . . . . . . . . . . 1--11 Ivan Veseli\'c Existence of the Integrated Density of States . . . . . . . . . . . . . . . . . 13--43 Ivan Veseli\'c Wegner Estimate . . . . . . . . . . . . 45--56 Ivan Veseli\'c Wegner's Original Idea. Rigorous Implementation . . . . . . . . . . . . . 57--77 Ivan Veseli\'c Lipschitz Continuity of the IDS . . . . 79--97 Ivan Veseli\'c Back Matter . . . . . . . . . . . . . . 99--146
Steven Neil Evans Front Matter . . . . . . . . . . . . . . I--XI Steven Neil Evans Introduction . . . . . . . . . . . . . . 1--8 Steven Neil Evans Around the Continuum Random Tree . . . . 9--20 Steven Neil Evans $R$-Trees and $0$-Hyperbolic Spaces . . 21--44 Steven Neil Evans Hausdorff and Gromov--Hausdorff Distance 45--68 Steven Neil Evans Root Growth with Re-Grafting . . . . . . 69--86 Steven Neil Evans The Wild Chain and other Bipartite Chains . . . . . . . . . . . . . . . . . 87--103 Steven Neil Evans Diffusions on a $R$-Tree without Leaves: Snakes and Spiders . . . . . . . . . . . 105--128 Steven Neil Evans $R$-Trees from Coalescing Particle Systems . . . . . . . . . . . . . . . . 129--141 Steven Neil Evans Subtree Prune and Re-Graft . . . . . . . 143--162 Steven Neil Evans Back Matter . . . . . . . . . . . . . . 163--193
Jianjun Paul Tian Front Matter . . . . . . . . . . . . . . I--XI Jianjun Paul Tian Introduction . . . . . . . . . . . . . . 1--7 Jianjun Paul Tian Motivations . . . . . . . . . . . . . . 9--16 Jianjun Paul Tian Evolution Algebras . . . . . . . . . . . 17--52 Jianjun Paul Tian Evolution Algebras and Markov Chains . . 53--90 Jianjun Paul Tian Evolution Algebras and Non-Mendelian Genetics . . . . . . . . . . . . . . . . 91--107 Jianjun Paul Tian Further Results and Research Topics . . 109--118 Jianjun Paul Tian Back Matter . . . . . . . . . . . . . . 119--129
L. S. Kubatko Inference of Phylogenetic Trees . . . . 1--38 D. Janies and D. Pol Large-Scale Phylogenetic Analysis of Emerging Infectious Diseases . . . . . . 39--76 C. Cosner Reaction--Diffusion Equations and Ecological Modeling . . . . . . . . . . 77--115 T. Nagylaki and Y. Lou The Dynamics of Migration--Selection Models . . . . . . . . . . . . . . . . . 117--170 Y. Lou Some Challenging Mathematical Problems in Evolution of Dispersal and Population Dynamics . . . . . . . . . . . . . . . . 171--205 Y. Lou Back Matter . . . . . . . . . . . . . . 206--209
Jaya P. N. Bishwal Front Matter . . . . . . . . . . . . . . I--XII Jaya P. N. Bishwal Parametric Stochastic Differential Equations . . . . . . . . . . . . . . . 1--11 Jaya P. N. Bishwal Front Matter . . . . . . . . . . . . . . 13--13 Jaya P. N. Bishwal Rates of Weak Convergence of Estimators in Homogeneous Diffusions . . . . . . . 15--48 Jaya P. N. Bishwal Large Deviations of Estimators in Homogeneous Diffusions . . . . . . . . . 49--60 Jaya P. N. Bishwal Local Asymptotic Mixed Normality for Nonhomogeneous Diffusions . . . . . . . 61--78 Jaya P. N. Bishwal Bayes and Sequential Estimation in Stochastic PDEs . . . . . . . . . . . . 79--97 Jaya P. N. Bishwal Maximum Likelihood Estimation in Fractional Diffusions . . . . . . . . . 99--122 Jaya P. N. Bishwal Front Matter . . . . . . . . . . . . . . 123--123 Jaya P. N. Bishwal Approximate Maximum Likelihood Estimation in Nonhomogeneous Diffusions 125--157 Jaya P. N. Bishwal Rates of Weak Convergence of Estimators in the Ornstein--Uhlenbeck Process . . . 159--200 Jaya P. N. Bishwal Local Asymptotic Normality for Discretely Observed Homogeneous Diffusions . . . . . . . . . . . . . . . 201--223 Jaya P. N. Bishwal Estimating Function for Discretely Observed Homogeneous Diffusions . . . . 225--244 Jaya P. N. Bishwal Back Matter . . . . . . . . . . . . . . 245--264
Michael Wilson Front Matter . . . . . . . . . . . . . . I--XII Michael Wilson Some Assumptions . . . . . . . . . . . . 1--7 Michael Wilson An Elementary Introduction . . . . . . . 9--37 Michael Wilson Exponential Square . . . . . . . . . . . 39--68 Michael Wilson Many Dimensions; Smoothing . . . . . . . 69--84 Michael Wilson The Calderón Reproducing Formula I . . . 85--100 Michael Wilson The Calderón Reproducing Formula II . . . 101--127 Michael Wilson The Calderón Reproducing Formula III . . 129--143 Michael Wilson Schrödinger Operators . . . . . . . . . . 145--150 Michael Wilson Some Singular Integrals . . . . . . . . 151--160 Michael Wilson Orlicz Spaces . . . . . . . . . . . . . 161--188 Michael Wilson Goodbye to Good-$ \lambda $ . . . . . . 189--195 Michael Wilson A Fourier Multiplier Theorem . . . . . . 197--202 Michael Wilson Vector-Valued Inequalities . . . . . . . 203--212 Michael Wilson Random Pointwise Errors . . . . . . . . 213--218 Michael Wilson Back Matter . . . . . . . . . . . . . . 219--228
Marcus du Sautoy and Luke Woodward Front Matter . . . . . . . . . . . . . . I--XII Marcus du Sautoy and Luke Woodward Introduction . . . . . . . . . . . . . . 1--20 Marcus du Sautoy and Luke Woodward Nilpotent Groups: Explicit Examples . . 21--68 Marcus du Sautoy and Luke Woodward Soluble Lie Rings . . . . . . . . . . . 69--82 Marcus du Sautoy and Luke Woodward Local Functional Equations . . . . . . . 83--119 Marcus du Sautoy and Luke Woodward Natural Boundaries I: Theory . . . . . . 121--153 Marcus du Sautoy and Luke Woodward Natural Boundaries II: Algebraic Groups 155--167 Marcus du Sautoy and Luke Woodward Natural Boundaries III: Nilpotent Groups 169--177 Marcus du Sautoy and Luke Woodward Back Matter . . . . . . . . . . . . . . 179--212
Luis Barreira and Claudia Valls Front Matter . . . . . . . . . . . . . . I--XIV Luis Barreira and Claudia Valls Introduction . . . . . . . . . . . . . . 1--16 Luis Barreira and Claudia Valls Front Matter . . . . . . . . . . . . . . 17--17 Luis Barreira and Claudia Valls Exponential dichotomies and basic properties . . . . . . . . . . . . . . . 19--25 Luis Barreira and Claudia Valls Robustness of nonuniform exponential dichotomies . . . . . . . . . . . . . . 27--51 Luis Barreira and Claudia Valls Front Matter . . . . . . . . . . . . . . 53--53 Luis Barreira and Claudia Valls Lipschitz stable manifolds . . . . . . . 55--73 Luis Barreira and Claudia Valls Smooth stable manifolds in Rn . . . . . 75--117 Luis Barreira and Claudia Valls Smooth stable manifolds in Banach spaces 119--143 Luis Barreira and Claudia Valls A nonautonomous Grobman--Hartman theorem 145--167 Luis Barreira and Claudia Valls Front Matter . . . . . . . . . . . . . . 169--169 Luis Barreira and Claudia Valls Center manifolds in Banach spaces . . . 171--196 Luis Barreira and Claudia Valls Reversibility and equivariance in center manifolds . . . . . . . . . . . . . . . 197--215 Luis Barreira and Claudia Valls Front Matter . . . . . . . . . . . . . . 217--217 Luis Barreira and Claudia Valls Lyapunov regularity and exponential dichotomies . . . . . . . . . . . . . . 219--248 Luis Barreira and Claudia Valls Lyapunov regularity in Hilbert spaces 249--263 Luis Barreira and Claudia Valls Stability of nonautonomous equations in Hilbert spaces . . . . . . . . . . . . . 265--276 Luis Barreira and Claudia Valls Back Matter . . . . . . . . . . . . . . 277--290
Luigi Ambrosio and Luis Caffarelli and Michael G. Crandall and Lawrence C. Evans and Nicola Fusco Front Matter . . . . . . . . . . . . . . I--XI Luigi Ambrosio Transport Equation and Cauchy Problem for Non-Smooth Vector Fields . . . . . . 1--41 Luis Caffarelli and Luis Silvestre Issues in Homogenization for Problems with Non Divergence Structure . . . . . 43--74 Michael G. Crandall A Visit with the $ \infty $-Laplace Equation . . . . . . . . . . . . . . . . 75--122 Lawrence C. Evans Weak KAM Theory and Partial Differential Equations . . . . . . . . . . . . . . . 123--154 Nicola Fusco Geometrical Aspects of Symmetrization 155--181 Elvira Mascolo CIME Courses on Partial Differential Equations and Calculus of Variations . . 183--189 Elvira Mascolo Back Matter . . . . . . . . . . . . . . 193--204
Jakob Jonsson Front Matter . . . . . . . . . . . . . . i--xiv Jakob Jonsson Introduction and Overview . . . . . . . 3--17 Jakob Jonsson Abstract Graphs and Set Systems . . . . 19--28 Jakob Jonsson Simplicial Topology . . . . . . . . . . 29--47 Jakob Jonsson Discrete Morse Theory . . . . . . . . . 51--66 Jakob Jonsson Decision Trees . . . . . . . . . . . . . 67--86 Jakob Jonsson Miscellaneous Results . . . . . . . . . 87--95 Jakob Jonsson Graph Properties . . . . . . . . . . . . 99--106 Jakob Jonsson Dihedral Graph Properties . . . . . . . 107--112 Jakob Jonsson Digraph Properties . . . . . . . . . . . 113--118 Jakob Jonsson Main Goals and Proof Techniques . . . . 119--124 Jakob Jonsson Matchings . . . . . . . . . . . . . . . 127--149 Jakob Jonsson Graphs of Bounded Degree . . . . . . . . 151--168 Jakob Jonsson Forests and Matroids . . . . . . . . . . 171--188 Jakob Jonsson Bipartite Graphs . . . . . . . . . . . . 189--204 Jakob Jonsson Directed Variants of Forests and Bipartite Graphs . . . . . . . . . . . . 205--215 Jakob Jonsson Noncrossing Graphs . . . . . . . . . . . 217--231 Jakob Jonsson Non-Hamiltonian Graphs . . . . . . . . . 233--242 Jakob Jonsson Disconnected Graphs . . . . . . . . . . 245--262 Jakob Jonsson Not $2$-connected Graphs . . . . . . . . 263--273 Jakob Jonsson Not $3$-connected Graphs and Beyond . . 275--290
Yuliya S. Mishura Front Matter . . . . . . . . . . . . . . I--XVII Yuliya S. Mishura Wiener Integration with Respect to Fractional Brownian Motion . . . . . . . 1--121 Yuliya S. Mishura Stochastic Integration with Respect to fBm and Related Topics . . . . . . . . . 123--196 Yuliya S. Mishura Stochastic Differential Equations Involving Fractional Brownian Motion . . 197--290 Yuliya S. Mishura Filtering in Systems with Fractional Brownian Noise . . . . . . . . . . . . . 291--299 Yuliya S. Mishura Financial Applications of Fractional Brownian Motion . . . . . . . . . . . . 301--326 Yuliya S. Mishura Statistical Inference with Fractional Brownian Motion . . . . . . . . . . . . 327--362 Yuliya S. Mishura Back Matter . . . . . . . . . . . . . . 363--393
José Miguel Urbano Front Matter . . . . . . . . . . . . . . i--x José Miguel Urbano Introduction . . . . . . . . . . . . . . 1--8 José Miguel Urbano Weak Solutions and a Priori Estimates 11--19 José Miguel Urbano The Geometric Setting and an Alternative 21--34 José Miguel Urbano Towards the Hölder Continuity . . . . . . 35--48 José Miguel Urbano Immiscible Fluids and Chemotaxis . . . . 51--86 José Miguel Urbano Flows in Porous Media: The Variable Exponent Case . . . . . . . . . . . . . 87--105 José Miguel Urbano Phase Transitions: The Doubly Singular Stefan Problem . . . . . . . . . . . . . 107--143 José Miguel Urbano Back Matter . . . . . . . . . . . . . . 145--150
Michael Cowling and Edward Frenkel and Masaki Kashiwara and Alain Valette and David A. Vogan, Jr. and Nolan R. Wallach Front Matter . . . . . . . . . . . . . . i--xii Michael Cowling Applications of Representation Theory to Harmonic Analysis of Lie Groups (and Vice Versa) . . . . . . . . . . . . . . 1--50 Edward Frenkel Ramifications of the Geometric Langlands Program . . . . . . . . . . . . . . . . 51--135 Masaki Kashiwara Equivariant Derived Category and Representation of Real Semisimple Lie Groups . . . . . . . . . . . . . . . . . 137--234 Alain Valette Amenability and Margulis Super-Rigidity 235--258 David A. Vogan, Jr. Unitary Representations and Complex Analysis . . . . . . . . . . . . . . . . 259--344 Nolan R. Wallach Quantum Computing and Entanglement for Mathematicians . . . . . . . . . . . . . 345--376 Nolan R. Wallach Back Matter . . . . . . . . . . . . . . 377--388
Andrei A. Agrachev and A. Stephen Morse and Eduardo D. Sontag and Héctor J. Sussmann and Vadim I. Utkin Front Matter . . . . . . . . . . . . . . i--xiii Andrei A. Agrachev Geometry of Optimal Control Problems and Hamiltonian Systems . . . . . . . . . . 1--59 A. Stephen Morse Lecture Notes on Logically Switched Dynamical Systems . . . . . . . . . . . 61--161 Eduardo D. Sontag Input to State Stability: Basic Concepts and Results . . . . . . . . . . . . . . 163--220 Héctor J. Sussmann Generalized Differentials, Variational Generators, and the Maximum Principle with State Constraints . . . . . . . . . 221--287 Vadim I. Utkin Sliding Mode Control: Mathematical Tools, Design and Applications . . . . . 289--347 Vadim I. Utkin Back Matter . . . . . . . . . . . . . . 349--351
Miodrag Petkovi\'c Front Matter . . . . . . . . . . . . . . i--xii Miodrag Petkovi\'c Basic Concepts . . . . . . . . . . . . . 1--34 Miodrag Petkovi\'c Iterative Processes and Point Estimation Theory . . . . . . . . . . . . . . . . . 35--66 Miodrag Petkovi\'c Point Estimation of Simultaneous Methods 67--127 Miodrag Petkovi\'c Families of Simultaneous Methods of Higher Order: Part I . . . . . . . . . . 129--160 Miodrag Petkovi\'c Families of Simultaneous Methods of Higher Order: Part II . . . . . . . . . 161--195 Miodrag Petkovi\'c Back Matter . . . . . . . . . . . . . . 197--210
Azzouz Dermoune and Philippe Heinrich Spectral gap inequality for a colored disordered lattice gas . . . . . . . . . 1--18 D. Féral On large deviations for the spectral measure of discrete Coulomb gas . . . . 19--49 Oleksiy Khorunzhiy Estimates for moments of random matrices with Gaussian elements . . . . . . . . . 51--92 M. Capitaine and M. Casalis Geometric interpretation of the cumulants for random matrices previously defined as convolutions on the symmetric group . . . . . . . . . . . . . . . . . 93--119 Andreas E. Kyprianou and Zbigniew Palmowski Fluctuations of spectrally negative Markov additive processes . . . . . . . 121--135 Jean Bertoin and Alexander Lindner and Ross Maller On Continuity Properties of the Law of Integrals of Lévy Processes . . . . . . . 137--159 Driss Baraka and Thomas Mountford A Law of the Iterated Logarithm for Fractional Brownian Motions . . . . . . 161--179 Ivan Nourdin A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one . . . . . . . . . . . . 181--197 Greg Markowsky Proof of a Tanaka-like formula stated by J. Rosen in Séminaire XXXVIII . . . . . . 199--202 Ismael Bailleul Une preuve simple d'un résultat de Dufresne. (French) [] . . . . . . . . . 203--213 Laurent Serlet Creation or deletion of a drift on a Brownian trajectory . . . . . . . . . . 215--232 A. M. G. Cox Extending Chacon--Walsh: Minimality and Generalised Starting Distributions . . . 233--264 Jean Brossard and Christophe Leuridan Transformations browniennes et compléments indépendants: résultats et probl\`emes ouverts. (French) [] . . . . 265--278 Jean-Claude Gruet Hyperbolic random walks . . . . . . . . 279--294 D. Bakry and N. Huet The Hypergroup Property and Representation of Markov Kernels . . . . 295--347 David Williams A new look at `Markovian' Wiener--Hopf theory . . . . . . . . . . . . . . . . . 349--369 F. Bolley Separability and completeness for the Wasserstein distance . . . . . . . . . . 371--377 Nicolas Privault A probabilistic interpretation to the symmetries of a discrete heat equation 379--399 Shunsuke Kaji On the tail distributions of the supremum and the quadratic variation of a C\`adl\`ag local martingale . . . . . 401--420 Peter Friz and Nicolas Victoir The Burkholder--Davis--Gundy Inequality for Enhanced Martingales . . . . . . . . 421--438
André Unterberger Front Matter . . . . . . . . . . . . . . i--ix André Unterberger Introduction . . . . . . . . . . . . . . 1--9 André Unterberger The Metaplectic and Anaplectic Representations . . . . . . . . . . . . 11--26 André Unterberger The One-Dimensional Alternative Pseudodifferential Analysis . . . . . . 27--74 André Unterberger From Anaplectic Analysis to Usual Analysis . . . . . . . . . . . . . . . . 75--91 André Unterberger Pseudodifferential Analysis and Modular Forms . . . . . . . . . . . . . . . . . 93--114 André Unterberger Back Matter . . . . . . . . . . . . . . 115--122
G. F. Webb Population Models Structured by Age, Size, and Spatial Position . . . . . . . 1--49 M. Martcheva and H. R. Thieme Infinite ODE Systems Modeling Size-Structured Metapopulations, Macroparasitic Diseases, and Prion Proliferation . . . . . . . . . . . . . 51--113 W.-E. Fitzgibbon and M. Langlais Simple Models for the Transmission of Microparasites Between Host Populations Living on Noncoincident Spatial Domains 115--164 S. A. Gourley and R. Liu and J. Wu Spatiotemporal Patterns of Disease Spread: Interaction of Physiological Structure, Spatial Movements, Disease Progression and Human Intervention . . . 165--208 P. Auger and R. Bravo de la Parra and J.-C. Poggiale and E. Sánchez and T. Nguyen-Huu Aggregation of Variables and Applications to Population Dynamics . . 209--263 M. Ballyk and D. Jones and H. L. Smith The Biofilm Model of Freter: a Review 265--302 M. Ballyk and D. Jones and H. L. Smith Back Matter . . . . . . . . . . . . . . 303--306
J. D. Goddard From Granular Matter to Generalized Continuum . . . . . . . . . . . . . . . 1--22 A. V. Bobylev and C. Cercignani and I. M. Gamba Generalized Kinetic Maxwell Type Models of Granular Gases . . . . . . . . . . . 23--57 Giuseppe Toscani Hydrodynamics from the Dissipative Boltzmann Equation . . . . . . . . . . . 59--75 Gianfranco Capriz Bodies with Kinetic Substructure . . . . 77--90 Tommaso Ruggeri From Extended Thermodynamics to Granular Materials . . . . . . . . . . . . . . . 91--107 R. García-Rojo and S. McNamara and H. J. Herrmann Influence of Contact Modelling on the Macroscopic Plastic Response of Granular Soils Under Cyclic Loading . . . . . . . 109--124 A. Barrat and A. Puglisi and E. Trizac and P. Visco and F. van Wijland Fluctuations in Granular Gases . . . . . 125--165 Pasquale Giovine An Extended Continuum Theory for Granular Media . . . . . . . . . . . . . 167--192 Paolo Maria Mariano Slow Motion in Granular Matter . . . . . 193--210 Paolo Maria Mariano Back Matter . . . . . . . . . . . . . . 211--212
Denis Auroux and Marco Manetti and Paul Seidel and Bernd Siebert and Ivan Smith Front Matter . . . . . . . . . . . . . . i--xiii Denis Auroux and Ivan Smith Lefschetz Pencils, Branched Covers and Symplectic Invariants . . . . . . . . . 1--53 Fabrizio Catanese Differentiable and Deformation Type of Algebraic Surfaces, Real and Symplectic Structures . . . . . . . . . . . . . . . 55--167 Marco Manetti Smoothings of Singularities and Deformation Types of Surfaces . . . . . 169--230 Paul Seidel Lectures on Four-Dimensional Dehn Twists 231--267 Bernd Siebert and Gang Tian Lectures on Pseudo-Holomorphic Curves and the Symplectic Isotopy Problem . . . 269--341 Bernd Siebert and Gang Tian Back Matter . . . . . . . . . . . . . . 343--345
Daniele Boffi and Franco Brezzi and Leszek F. Demkowicz and Ricardo G. Durán and Richard S. Falk and Michel Fortin Front Matter . . . . . . . . . . . . . . i--x Ricardo G. Durán Mixed Finite Element Methods . . . . . . 1--44 Daniele Boffi and Franco Brezzi and Michel Fortin Finite Elements for the Stokes Problem 45--100 Leszek F. Demkowicz Polynomial Exact Sequences and Projection-Based Interpolation with Application to Maxwell Equations . . . . 101--158 Richard S. Falk Finite Element Methods for Linear Elasticity . . . . . . . . . . . . . . . 159--194 Richard S. Falk Finite Elements for the Reissner--Mindlin Plate . . . . . . . . 195--232 Richard S. Falk Back Matter . . . . . . . . . . . . . . 233--235
Jacek Banasiak and Mark A. J. Chaplain and Jacek Mi\kekisz Front Matter . . . . . . . . . . . . . . i--xii Jacek Banasiak Positivity in Natural Sciences . . . . . 1--89 Vincenzo Capasso and Daniela Morale Rescaling Stochastic Processes: Asymptotics . . . . . . . . . . . . . . 91--146 Mark A. J. Chaplain Modelling Aspects of Cancer Growth: Insight from Mathematical and Numerical Analysis and Computational Simulation 147--200 Miros\law Lachowicz Lins Between Microscopic and Macroscopic Descriptions . . . . . . . . . . . . . . 201--267 Jacek Mi\kekisz Evolutionary Game Theory and Population Dynamics . . . . . . . . . . . . . . . . 269--316 Jacek Mi\kekisz Back Matter . . . . . . . . . . . . . . 317--321 Jacek Mi\kekisz Erratum . . . . . . . . . . . . . . . . 323--323
Shai M. J. Haran Front Matter . . . . . . . . . . . . . . I--XII Shai M. J. Haran Introduction: Motivations from Geometry 1--18 Shai M. J. Haran Gamma and Beta Measures . . . . . . . . 19--31 Shai M. J. Haran Markov Chains . . . . . . . . . . . . . 33--46 Shai M. J. Haran Real Beta Chain and $q$-Interpolation 47--62 Shai M. J. Haran Ladder Structure . . . . . . . . . . . . 63--93 Shai M. J. Haran $q$-Interpolation of Local Tate Thesis 95--115 Shai M. J. Haran Pure Basis and Semi-Group . . . . . . . 117--130 Shai M. J. Haran Higher Dimensional Theory . . . . . . . 131--142 Shai M. J. Haran Real Grassmann Manifold . . . . . . . . 143--156 Shai M. J. Haran $p$-Adic Grassmann Manifold . . . . . . 157--171 Shai M. J. Haran $q$-Grassmann Manifold . . . . . . . . . 173--184 Shai M. J. Haran Quantum Group $ {\rm U}_q ({\rm su}(1, 1)) $ and the $q$-Hahn Basis . . . . . . 185--197 Shai M. J. Haran Back Matter . . . . . . . . . . . . . . 199--222
Sergio Albeverio and Franco Flandoli and Yakov G. Sinai Front Matter . . . . . . . . . . . . . . i--viii Sergio Albeverio and Benedetta Ferrario Some Methods of Infinite Dimensional Analysis in Hydrodynamics: an Introduction . . . . . . . . . . . . . . 1--50 Franco Flandoli An Introduction to $3$D Stochastic Fluid Dynamics . . . . . . . . . . . . . . . . 51--150 Yakov G. Sinai Mathematical Results Related to the Navier--Stokes System . . . . . . . . . 151--164 Yakov G. Sinai Back Matter . . . . . . . . . . . . . . 165--174
Ana Carpio and Oliver Dorn and Miguel Moscoso and Frank Natterer and George C. Papanicolaou and Maria Luisa Rapún and Alessandro Teta Front Matter . . . . . . . . . . . . . . i--xi Miguel Moscoso Introduction to Image Reconstruction . . 1--16 Frank Natterer X-ray Tomography . . . . . . . . . . . . 17--34 Oliver Dorn and Hugo Bertete-Aguirre and George C. Papanicolaou Adjoint Fields and Sensitivities for $3$D Electromagnetic Imaging in Isotropic and Anisotropic Media . . . . 35--65 Miguel Moscoso Polarization-Based Optical Imaging . . . 67--83 Ana Carpio and Maria Luisa Rapún Topological Derivatives for Shape Reconstruction . . . . . . . . . . . . . 85--133 Oliver Dorn Time-Reversal and the Adjoint Imaging Method with an Application in Telecommunication . . . . . . . . . . . 135--170 Gianfausto Dell'Antonio and Rodolfo Figari and Alessandro Teta A Brief Review on Point Interactions . . 171--189 Gianfausto Dell'Antonio and Rodolfo Figari and Alessandro Teta Back Matter . . . . . . . . . . . . . . 191--192
Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Front Matter . . . . . . . . . . . . . . i--xvi Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Prerequisites . . . . . . . . . . . . . 1--10 Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Extensions . . . . . . . . . . . . . . . 11--28 Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Groups of Extreme Nilpotency Class . . . 29--47 Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Chains . . . . . . . . . . . . . . . . . 49--79 Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Groups with Few Types of Isogenous Factors . . . . . . . . . . . . . . . . 81--147 Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Three-Dimensional Affine Groups . . . . 149--166 Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Normality of Subgroups . . . . . . . . . 167--198 Alfonso Di Bartolo and Giovanni Falcone and Peter Plaumann and Karl Strambach Back Matter . . . . . . . . . . . . . . 199--206
David J. D. Earn A Light Introduction to Modelling Recurrent Epidemics . . . . . . . . . . 3--17 Fred Brauer Compartmental Models in Epidemiology . . 19--79 Linda J. S. Allen An Introduction to Stochastic Epidemic Models . . . . . . . . . . . . . . . . . 81--130 Fred Brauer An Introduction to Networks in Epidemic Modeling . . . . . . . . . . . . . . . . 133--146 P. van den Driessche Deterministic Compartmental Models: Extensions of Basic Models . . . . . . . 147--157 P. van den Driessche and James Watmough Further Notes on the Basic Reproduction Number . . . . . . . . . . . . . . . . . 159--178 P. van den Driessche Spatial Structure: Patch Models . . . . 179--189 Jianhong Wu Spatial Structure: Partial Differential Equations Models . . . . . . . . . . . . 191--203 Jia Li and Fred Brauer Continuous-Time Age-Structured Models in Population Dynamics and Epidemiology . . 205--227 Ping Yan Distribution Theory, Stochastic Processes and Infectious Disease Modelling . . . . . . . . . . . . . . . 229--293 Chris T. Bauch The Role of Mathematical Models in Explaining Recurrent Outbreaks of Infectious Childhood Diseases . . . . . 297--319 Fred Brauer Modeling Influenza: Pandemics and Seasonal Epidemics . . . . . . . . . . . 321--347 M. Nuño and C. Castillo-Chavez and Z. Feng and M. Martcheva Mathematical Models of Influenza: The Role of Cross-Immunity, Quarantine and Age-Structure . . . . . . . . . . . . . 349--364 M. J. Wonham and M. A. Lewis A Comparative Analysis of Models for West Nile Virus . . . . . . . . . . . . 365--390 M. J. Wonham and M. A. Lewis Back Matter . . . . . . . . . . . . . . 391--412
Grégoire Allaire and Anton Arnold and Pierre Degond and Thomas Yizhao Hou Front Matter . . . . . . . . . . . . . . I--XIV Grégoire Allaire Periodic Homogenization and Effective Mass Theorems for the Schrödinger Equation . . . . . . . . . . . . . . . . 1--44 Anton Arnold Mathematical Properties of Quantum Evolution Equations . . . . . . . . . . 45--109 Pierre Degond and Samy Gallego and Florian Méhats and Christian Ringhofer Quantum Hydrodynamic and Diffusion Models Derived from the Entropy Principle . . . . . . . . . . . . . . . 111--168 Yalchin Efendiev and Thomas Yizhao Hou Multiscale Computations for Flow and Transport in Heterogeneous Media . . . . 169--248 Yalchin Efendiev and Thomas Yizhao Hou Back Matter . . . . . . . . . . . . . . 249--251
Dan Abramovich and Marcos Mariño and Michael Thaddeus and Ravi Vakil Front Matter . . . . . . . . . . . . . . I--X D. Abramovich Lectures on Gromov--Witten Invariants of Orbifolds . . . . . . . . . . . . . . . 1--48 M. Mariño Lectures on the Topological Vertex . . . 49--104 M. Thaddeus Floer Cohomology with Gerbes . . . . . . 105--141 R. Vakil The Moduli Space of Curves and Gromov--Witten Theory . . . . . . . . . 143--198 R. Vakil Back Matter . . . . . . . . . . . . . . 199--210
Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Front Matter . . . . . . . . . . . . . . i--xi Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Introduction . . . . . . . . . . . . . . 1--12 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Extracting Meaningful Curves from Images 15--35 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Robust Shape Directions . . . . . . . . 41--59 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Invariant Level Line Encoding . . . . . 61--77 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur A Contrario Decision: the LLD Method . . 81--92 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Meaningful Matches: Experiments on LLD and MSER . . . . . . . . . . . . . . . . 93--125 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Hierarchical Clustering and Validity Assessment . . . . . . . . . . . . . . . 129--149 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Grouping Spatially Coherent Meaningful Matches . . . . . . . . . . . . . . . . 151--165 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Experimental Results . . . . . . . . . . 167--182 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur The SIFT Method . . . . . . . . . . . . 185--208 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Securing SIFT with A Contrario Techniques . . . . . . . . . . . . . . . 209--224 Frédéric Cao and José-Luis Lisani and Jean-Michel Morel and Pablo Musé and Frédéric Sur Back Matter . . . . . . . . . . . . . . 225--257
Hans G. Feichtinger and Bernard Helffer and Michael P. Lamoureux and Nicolas Lerner and Joachim Toft Front Matter . . . . . . . . . . . . . . i--xxiv H. Feichtinger and F. Luef and E. Cordero Banach Gelfand Triples for Gabor Analysis . . . . . . . . . . . . . . . . 1--33 B. Helffer Four Lectures in Semiclassical Analysis for Non Self-Adjoint Problems with Applications to Hydrodynamic Instability 35--77 M. P. Lamoureux and G. F. Margrave An Introduction to Numerical Methods of Pseudodifferential Operators . . . . . . 79--133 N. Lerner Some Facts About the Wick Calculus . . . 135--174 J. Toft Schatten Properties for Pseudo-Differential Operators on Modulation Spaces . . . . . . . . . . . 175--202 J. Toft Back Matter . . . . . . . . . . . . . . 203--204
Maury Bramson Front Matter . . . . . . . . . . . . . . i--viii Maury Bramson Introduction . . . . . . . . . . . . . . 1--16 Maury Bramson The Classical Networks . . . . . . . . . 17--52 Maury Bramson Instability of Subcritical Queueing Networks . . . . . . . . . . . . . . . . 53--76 Maury Bramson Stability of Queueing Networks . . . . . 77--138 Maury Bramson Applications and Some Further Theory . . 139--173 Maury Bramson Back Matter . . . . . . . . . . . . . . 175--190
Khadiga A. Arwini and Christopher T. J. Dodson Front Matter . . . . . . . . . . . . . . I--X Khadiga A. Arwini and Christopher T. J. Dodson Mathematical Statistics and Information Theory . . . . . . . . . . . . . . . . . 1--18 Khadiga A. Arwini and Christopher T. J. Dodson Introduction to Riemannian Geometry . . 19--30 Khadiga A. Arwini and Christopher T. J. Dodson Information Geometry . . . . . . . . . . 31--54 Khadiga A. Arwini and Christopher T. J. Dodson Information Geometry of Bivariate Families . . . . . . . . . . . . . . . . 55--107 Khadiga A. Arwini and Christopher T. J. Dodson Neighbourhoods of Poisson Randomness, Independence, and Uniformity . . . . . . 109--117 Khadiga A. Arwini and Christopher T. J. Dodson Cosmological Voids and Galactic Clustering . . . . . . . . . . . . . . . 119--137 A. J. Doig Amino Acid Clustering . . . . . . . . . 139--151 A. J. Doig Cryptographic Attacks and Signal Clustering . . . . . . . . . . . . . . . 153--159 W. W. Sampson Stochastic Fibre Networks . . . . . . . 161--194 J. Scharcanski and S. Felipussi Stochastic Porous Media and Hydrology 195--222 J. Scharcanski and S. Felipussi Quantum Chaology . . . . . . . . . . . . 223--233 J. Scharcanski and S. Felipussi Back Matter . . . . . . . . . . . . . . 235--253
Philippe Biane and Luc Bouten and Fabio Cipriani and Norio Konno and Nicolas Privault and Quanhua Xu Front Matter . . . . . . . . . . . . . . i--xi Philippe Biane and Luc Bouten and Fabio Cipriani and Norio Konno and Nicolas Privault and Quanhua Xu Introduction . . . . . . . . . . . . . . 1--2 Nicolas Privault Potential Theory in Classical Probability . . . . . . . . . . . . . . 3--59 Philippe Biane Introduction to Random Walks on Noncommutative Spaces . . . . . . . . . 61--116 Quanhua Xu Interactions between Quantum Probability and Operator Space Theory . . . . . . . 117--159 Fabio Cipriani Dirichlet Forms on Noncommutative Spaces 161--276 Lue Bouten Applications of Quantum Stochastic Processes in Quantum Optics . . . . . . 277--307 Norie Konno Quantum Walks . . . . . . . . . . . . . 309--452 Norie Konno Back Matter . . . . . . . . . . . . . . 453--463
Cho-Ho Chu Front Matter . . . . . . . . . . . . . . i--ix Cho-Ho Chu Introduction . . . . . . . . . . . . . . 1--4 Cho-Ho Chu Lebesgue Spaces of Matrix Functions . . 5--19 Cho-Ho Chu Matrix Convolution Operators . . . . . . 21--85 Cho-Ho Chu Convolution Semigroups . . . . . . . . . 87--100 Cho-Ho Chu Back Matter . . . . . . . . . . . . . . 101--108
Martin C. Olsson Front Matter . . . . . . . . . . . . . . I--VII Martin C. Olsson Introduction . . . . . . . . . . . . . . 1--5 Martin C. Olsson A Brief Primer on Algebraic Stacks . . . 7--29 Martin C. Olsson Preliminaries . . . . . . . . . . . . . 31--55 Martin C. Olsson Moduli of Broken Toric Varieties . . . . 57--83 Martin C. Olsson Moduli of Principally Polarized Abelian Varieties . . . . . . . . . . . . . . . 85--134 Martin C. Olsson Moduli of Abelian Varieties with Higher Degree Polarizations . . . . . . . . . . 135--230 Martin C. Olsson Level Structure . . . . . . . . . . . . 231--271 Martin C. Olsson Back Matter . . . . . . . . . . . . . . 273--278
Yukiyoshi Nakkajima and Atsushi Shiho Front Matter . . . . . . . . . . . . . . i--xxiii Yukiyoshi Nakkajima and Atsushi Shiho Preliminaries on Filtered Derived Categories and Topoi . . . . . . . . . . 15--53 Yukiyoshi Nakkajima and Atsushi Shiho Weight Filtrations on Log Crystalline Cohomologies . . . . . . . . . . . . . . 55--217 Yukiyoshi Nakkajima and Atsushi Shiho Weight Filtrations and Slope Filtrations on Rigid Cohomologies (Summary) . . . . 219--248 Yukiyoshi Nakkajima and Atsushi Shiho Back Matter . . . . . . . . . . . . . . 249--266
Kazuaki Taira Front Matter . . . . . . . . . . . . . . 1--9 Kazuaki Taira Introduction and Main Results . . . . . 1--12 Kazuaki Taira Back Matter . . . . . . . . . . . . . . 1--17 Kazuaki Taira Semigroup Theory . . . . . . . . . . . . 13--54 Kazuaki Taira $ L^p $ Theory of Pseudo-Differential Operators . . . . . . . . . . . . . . . 55--75 Kazuaki Taira $ L^p $ Approach to Elliptic Boundary Value Problems . . . . . . . . . . . . . 77--85 Kazuaki Taira Proof of Theorem 1.1 . . . . . . . . . . 87--93 Kazuaki Taira A Priori Estimates . . . . . . . . . . . 95--100 Kazuaki Taira Proof of Theorem 1.2 . . . . . . . . . . 101--111 Kazuaki Taira Proof of Theorem 1.3 --- Part (i) . . . 113--124 Kazuaki Taira Proof of Theorem 1.3, Part (II) . . . . 125--159 Kazuaki Taira Application to Semilinear Initial-Boundary Value Problems . . . . 161--168 Kazuaki Taira Concluding Remarks . . . . . . . . . . . 169--174
Aníbal Moltó and José Orihuela and Stanimir Troyanski and Manuel Valdivia Front Matter . . . . . . . . . . . . . . I--XI Aníbal Moltó and José Orihuela and Stanimir Troyanski and Manuel Valdivia Introduction . . . . . . . . . . . . . . 1--11 Aníbal Moltó and José Orihuela and Stanimir Troyanski and Manuel Valdivia $ \sigma $-Continuous and Co- $ \sigma $-continuous Maps . . . . . . . . . . . 13--47 Aníbal Moltó and José Orihuela and Stanimir Troyanski and Manuel Valdivia Generalized Metric Spaces and Locally Uniformly Rotund Renormings . . . . . . 49--72 Aníbal Moltó and José Orihuela and Stanimir Troyanski and Manuel Valdivia $ \sigma $-Slicely Continuous Maps . . . 73--99 Aníbal Moltó and José Orihuela and Stanimir Troyanski and Manuel Valdivia Some Applications . . . . . . . . . . . 101--116 Aníbal Moltó and José Orihuela and Stanimir Troyanski and Manuel Valdivia Some Open Problems . . . . . . . . . . . 117--129 Aníbal Moltó and José Orihuela and Stanimir Troyanski and Manuel Valdivia Back Matter . . . . . . . . . . . . . . 131--148
Roman Mikhailov and Inder Bir Singh Passi Front Matter . . . . . . . . . . . . . . i--xxi Roman Mikhailov and Inder Bir Singh Passi Lower Central Series . . . . . . . . . . 1--100 Roman Mikhailov and Inder Bir Singh Passi Dimension Subgroups . . . . . . . . . . 101--164 Roman Mikhailov and Inder Bir Singh Passi Derived Series . . . . . . . . . . . . . 165--185 Roman Mikhailov and Inder Bir Singh Passi Augmentation Powers . . . . . . . . . . 187--227 Roman Mikhailov and Inder Bir Singh Passi Homotopical Aspects . . . . . . . . . . 229--290 Roman Mikhailov and Inder Bir Singh Passi Miscellanea . . . . . . . . . . . . . . 291--297 Roman Mikhailov and Inder Bir Singh Passi Back Matter . . . . . . . . . . . . . . 299--352
Marc Bernot and Vicent Caselles and Jean-Michel Morel Front Matter . . . . . . . . . . . . . . I--X Marc Bernot and Vicent Caselles and Jean-Michel Morel Introduction: The Models . . . . . . . . 1--9 Marc Bernot and Vicent Caselles and Jean-Michel Morel The Mathematical Models . . . . . . . . 11--23 Marc Bernot and Vicent Caselles and Jean-Michel Morel Traffic Plans . . . . . . . . . . . . . 25--37 Marc Bernot and Vicent Caselles and Jean-Michel Morel The Structure of Optimal Traffic Plans 39--45 Marc Bernot and Vicent Caselles and Jean-Michel Morel Operations on Traffic Plans . . . . . . 47--54 Marc Bernot and Vicent Caselles and Jean-Michel Morel Traffic Plans and Distances between Measures . . . . . . . . . . . . . . . . 55--63 Marc Bernot and Vicent Caselles and Jean-Michel Morel The Tree Structure of Optimal Traffic Plans and their Approximation . . . . . 65--78 Marc Bernot and Vicent Caselles and Jean-Michel Morel Interior and Boundary Regularity . . . . 79--93 Marc Bernot and Vicent Caselles and Jean-Michel Morel The Equivalence of Various Models . . . 95--104 Marc Bernot and Vicent Caselles and Jean-Michel Morel Irrigability and Dimension . . . . . . . 105--117 Marc Bernot and Vicent Caselles and Jean-Michel Morel The Landscape of an Optimal Pattern . . 119--134 Marc Bernot and Vicent Caselles and Jean-Michel Morel The Gilbert--Steiner Problem . . . . . . 135--149 Marc Bernot and Vicent Caselles and Jean-Michel Morel Dirac to Lebesgue Segment: a Case Study 151--168 Marc Bernot and Vicent Caselles and Jean-Michel Morel Application: Embedded Irrigation Networks . . . . . . . . . . . . . . . . 169--177 Marc Bernot and Vicent Caselles and Jean-Michel Morel Open Problems . . . . . . . . . . . . . 179--183 Marc Bernot and Vicent Caselles and Jean-Michel Morel Back Matter . . . . . . . . . . . . . . 185--206
Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--1 Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--1 Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--1 Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--1 Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--2 Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--2 Alice Guionnet Basics of matrices . . . . . . . . . . . 1--3 Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--3 Alice Guionnet Free probability setting . . . . . . . . 1--4 Alice Guionnet Introduction . . . . . . . . . . . . . . 1--4 Alice Guionnet Large Deviations of the Maximum Eigenvalue . . . . . . . . . . . . . . . 1--5 Alice Guionnet Asymptotics of Harish-Chandra--Itzykson--Zuber integrals and of Schur polynomials . . . 1--6 Alice Guionnet Generalizations . . . . . . . . . . . . 1--6 Alice Guionnet Words in several independent Wigner matrices . . . . . . . . . . . . . . . . 1--6 Alice Guionnet Asymptotics of some matrix integrals . . 1--8 Alice Guionnet Concentration inequalities and logarithmic Sobolev inequalities . . . . 1--9 Alice Guionnet Large deviations for the law of the spectral measure of Gaussian Wigner's matrices . . . . . . . . . . . . . . . . 1--10 Alice Guionnet Front Matter . . . . . . . . . . . . . . 1--11 Alice Guionnet First-order expansion . . . . . . . . . 1--11 Alice Guionnet Wigner's matrices; more moments estimates . . . . . . . . . . . . . . . 1--12 Alice Guionnet Freeness . . . . . . . . . . . . . . . . 1--14 Alice Guionnet Free entropy . . . . . . . . . . . . . . 1--15 Alice Guionnet Maps and Gaussian calculus . . . . . . . 1--15 Alice Guionnet Stochastic analysis for random matrices 1--15 Alice Guionnet Wigner's theorem . . . . . . . . . . . . 1--22 Alice Guionnet Concentration inequalities for random matrices . . . . . . . . . . . . . . . . 1--23 Alice Guionnet Second-order expansion for the free energy . . . . . . . . . . . . . . . . . 1--25 Alice Guionnet Large deviation principle for the law of the spectral measure of shifted Wigner matrices . . . . . . . . . . . . . . . . 1--27
Joseph Lipman and Mitsuyasu Hashimoto Front Matter . . . . . . . . . . . . . . i--x Joseph Lipman and Mitsuyasu Hashimoto Front Matter . . . . . . . . . . . . . . 1--3 Joseph Lipman and Mitsuyasu Hashimoto Introduction . . . . . . . . . . . . . . 5--10 Joseph Lipman and Mitsuyasu Hashimoto Derived and Triangulated Categories . . 11--42 Joseph Lipman and Mitsuyasu Hashimoto Derived Functors . . . . . . . . . . . . 43--81 Joseph Lipman and Mitsuyasu Hashimoto Derived Direct and Inverse Image . . . . 83--158 Joseph Lipman and Mitsuyasu Hashimoto Abstract Grothendieck Duality for Schemes . . . . . . . . . . . . . . . . 159--252 Joseph Lipman and Mitsuyasu Hashimoto Front Matter . . . . . . . . . . . . . . 253--257 Joseph Lipman and Mitsuyasu Hashimoto Back Matter . . . . . . . . . . . . . . 253--259 Joseph Lipman and Mitsuyasu Hashimoto Introduction . . . . . . . . . . . . . . 259--262 Joseph Lipman and Mitsuyasu Hashimoto Commutativity of Diagrams Constructed from a Monoidal Pair of Pseudofunctors 263--278 Joseph Lipman and Mitsuyasu Hashimoto Sheaves on Ringed Sites . . . . . . . . 279--302 Joseph Lipman and Mitsuyasu Hashimoto Derived Categories and Derived Functors of Sheaves on Ringed Sites . . . . . . . 303--312 Joseph Lipman and Mitsuyasu Hashimoto Sheaves over a Diagram of $S$-Schemes 313--317 Joseph Lipman and Mitsuyasu Hashimoto The Left and Right Inductions and the Direct and Inverse Images . . . . . . . 319--321 Joseph Lipman and Mitsuyasu Hashimoto Operations on Sheaves Via the Structure Data . . . . . . . . . . . . . . . . . . 323--336 Joseph Lipman and Mitsuyasu Hashimoto Quasi-Coherent Sheaves Over a Diagram of Schemes . . . . . . . . . . . . . . . . 337--342 Joseph Lipman and Mitsuyasu Hashimoto Derived Functors of Functors on Sheaves of Modules Over Diagrams of Schemes . . 343--349 Joseph Lipman and Mitsuyasu Hashimoto Simplicial Objects . . . . . . . . . . . 351--353 Joseph Lipman and Mitsuyasu Hashimoto Descent Theory . . . . . . . . . . . . . 355--361 Joseph Lipman and Mitsuyasu Hashimoto Local Noetherian Property . . . . . . . 363--365 Joseph Lipman and Mitsuyasu Hashimoto Groupoid of Schemes . . . . . . . . . . 367--371 Joseph Lipman and Mitsuyasu Hashimoto Bökstedt--Neeman Resolutions and HyperExt Sheaves . . . . . . . . . . . . . . . . 373--376 Joseph Lipman and Mitsuyasu Hashimoto The Right Adjoint of the Derived Direct Image Functor . . . . . . . . . . . . . 377--383 Joseph Lipman and Mitsuyasu Hashimoto Back Matter . . . . . . . . . . . . . . 467--478
Giuseppe Buttazzo and Sergio Solimini and Aldo Pratelli and Eugene Stepanov Introduction . . . . . . . . . . . . . . 1--6 Giuseppe Buttazzo and Aldo Pratelli and Eugene Stepanov and Sergio Solimini Front Matter . . . . . . . . . . . . . . 1--8 Giuseppe Buttazzo and Sergio Solimini and Aldo Pratelli and Eugene Stepanov Optimal connected networks . . . . . . . 1--12 Giuseppe Buttazzo and Sergio Solimini and Aldo Pratelli and Eugene Stepanov Problem setting . . . . . . . . . . . . 1--17 Giuseppe Buttazzo and Sergio Solimini and Aldo Pratelli and Eugene Stepanov Optimal sets and geodesics in the two-dimensional case . . . . . . . . . . 1--25 Giuseppe Buttazzo and Sergio Solimini and Aldo Pratelli and Eugene Stepanov Back Matter . . . . . . . . . . . . . . 1--26 Giuseppe Buttazzo and Sergio Solimini and Aldo Pratelli and Eugene Stepanov Topological properties of optimal sets 1--29 Giuseppe Buttazzo and Sergio Solimini and Aldo Pratelli and Eugene Stepanov Relaxed problem and existence of solutions . . . . . . . . . . . . . . . 1--37
Robert Dalang and Davar Khoshnevisan and Carl Mueller and David Nualart and Yimin Xiao Front Matter . . . . . . . . . . . . . . I--XI Davar Khoshnevisan A Primer on Stochastic Partial Differential Equations . . . . . . . . . 1--38 Robert C. Dalang The Stochastic Wave Equation . . . . . . 39--71 David Nualart Application of Malliavin Calculus to Stochastic Partial Differential Equations . . . . . . . . . . . . . . . 73--109 Carl Mueller Some Tools and Results for Parabolic Stochastic Partial Differential Equations . . . . . . . . . . . . . . . 111--144 Yimin Xiao Sample Path Properties of Anisotropic Gaussian Random Fields . . . . . . . . . 145--212 Yimin Xiao Back Matter . . . . . . . . . . . . . . 213--222
Wolfgang Siegert Front Matter . . . . . . . . . . . . . . i--xvi Wolfgang Siegert Linear differential systems with parameter excitation . . . . . . . . . . 9--51 Wolfgang Siegert Locality and time scales of the underlying non-degenerate stochastic system: Freidlin--Wentzell theory . . . 53--123 Wolfgang Siegert Exit probabilities for degenerate systems . . . . . . . . . . . . . . . . 125--142 Wolfgang Siegert Local Lyapunov exponents . . . . . . . . 143--229 Wolfgang Siegert Back Matter . . . . . . . . . . . . . . 231--260
Walter Roth Front Matter . . . . . . . . . . . . . . i--x Walter Roth Introduction . . . . . . . . . . . . . . 1--7 Walter Roth Locally Convex Cones . . . . . . . . . . 9--117 Walter Roth Measures and Integrals. The General Theory . . . . . . . . . . . . . . . . . 119--248 Walter Roth Measures on Locally Compact Spaces . . . 249--340 Walter Roth Back Matter . . . . . . . . . . . . . . 341--362
Charles Chidume Front Matter . . . . . . . . . . . . . . i--xvii Charles Chidume Some Geometric Properties of Banach Spaces . . . . . . . . . . . . . . . . . 1--9 Charles Chidume Smooth Spaces . . . . . . . . . . . . . 11--18 Charles Chidume Duality Maps in Banach Spaces . . . . . 19--28 Charles Chidume Inequalities in Uniformly Convex Spaces 29--44 Charles Chidume Inequalities in Uniformly Smooth Spaces 45--55 Charles Chidume Iterative Method for Fixed Points of Nonexpansive Mappings . . . . . . . . . 57--86 Charles Chidume Hybrid Steepest Descent Method for Variational Inequalities . . . . . . . . 87--111 Charles Chidume Iterative Methods for Zeros of \cyr F -- Accretive-Type Operators . . . . . . . . 113--127 Charles Chidume Iteration Processes for Zeros of Generalized \cyr F-Accretive Mappings 129--140 Charles Chidume An Example; Mann Iteration for Strictly Pseudo-contractive Mappings . . . . . . 141--149 Charles Chidume Approximation of Fixed Points of Lipschitz Pseudo-contractive Mappings 151--160 Charles Chidume Generalized Lipschitz Accretive and Pseudo-contractive Mappings . . . . . . 161--167 Charles Chidume Applications to Hammerstein Integral Equations . . . . . . . . . . . . . . . 169--191 Charles Chidume Iterative Methods for Some Generalizations of Nonexpansive Maps . . 193--204 Charles Chidume Common Fixed Points for Finite Families of Nonexpansive Mappings . . . . . . . . 205--214 Charles Chidume Common Fixed Points for Countable Families of Nonexpansive Mappings . . . 215--229 Charles Chidume Common Fixed Points for Families of Commuting Nonexpansive Mappings . . . . 231--242 Charles Chidume Finite Families of Lipschitz Pseudo-contractive and Accretive Mappings . . . . . . . . . . . . . . . . 243--250 Charles Chidume Generalized Lipschitz Pseudo-contractive and Accretive Mappings . . . . . . . . . 251--256 Charles Chidume Finite Families of Non-self Asymptotically Nonexpansive Mappings . . 257--270
Donggao Deng and Yongsheng Han Front Matter . . . . . . . . . . . . . . i--xii Donggao Deng and Yongsheng Han Introduction . . . . . . . . . . . . . . 1--7 Donggao Deng and Yongsheng Han Calderón--Zygmund Operator on Space of Homogeneous Type . . . . . . . . . . . . 9--25 Donggao Deng and Yongsheng Han The Boundedness of Calderón--Zygmund Operators on Wavelet Spaces . . . . . . 27--37 Donggao Deng and Yongsheng Han Wavelet Expansions on Spaces of Homogeneous Type . . . . . . . . . . . . 39--90 Donggao Deng and Yongsheng Han Wavelets and Spaces of Functions and Distributions . . . . . . . . . . . . . 91--136 Donggao Deng and Yongsheng Han Littlewood--Paley Analysis on Non Homogeneous Spaces . . . . . . . . . . . 137--147 Donggao Deng and Yongsheng Han Back Matter . . . . . . . . . . . . . . 149--160
Benoit Fresse Front Matter . . . . . . . . . . . . . . 1--2 Benoit Fresse Front Matter . . . . . . . . . . . . . . 1--8 Benoit Fresse Introduction . . . . . . . . . . . . . . 1--13 Benoit Fresse Symmetric objects and functors . . . . . 1--18 Benoit Fresse Front Matter . . . . . . . . . . . . . . 17--20 Benoit Fresse Symmetric monoidal categories for operads . . . . . . . . . . . . . . . . 21--34 Benoit Fresse Operads and algebras in symmetric monoidal categories . . . . . . . . . . 53--76 Benoit Fresse Miscellaneous structures associated to algebras over operads . . . . . . . . . 77--93 Benoit Fresse Back Matter . . . . . . . . . . . . . . 95--96 Benoit Fresse Front Matter . . . . . . . . . . . . . . 98--98 Benoit Fresse Definitions and basic constructions . . 99--106 Benoit Fresse Tensor products . . . . . . . . . . . . 107--112 Benoit Fresse Universal constructions on right modules over operads . . . . . . . . . . . . . . 113--119 Benoit Fresse Adjunction and embedding properties . . 121--128 Benoit Fresse Algebras in right modules over operads 129--138 Benoit Fresse Miscellaneous examples . . . . . . . . . 139--147 Benoit Fresse Back Matter . . . . . . . . . . . . . . 149--149 Benoit Fresse Front Matter . . . . . . . . . . . . . . 152--152 Benoit Fresse Symmetric monoidal model categories for operads . . . . . . . . . . . . . . . . 153--184 Benoit Fresse The homotopy of algebras over operads 185--202 Benoit Fresse The (co)homology of algebras over operads . . . . . . . . . . . . . . . . 203--214 Benoit Fresse Back Matter . . . . . . . . . . . . . . 215--216 Benoit Fresse Front Matter . . . . . . . . . . . . . . 218--218 Benoit Fresse The model category of right modules . . 219--223 Benoit Fresse Modules and homotopy invariance of functors . . . . . . . . . . . . . . . . 225--233 Benoit Fresse Extension and restriction functors and model structures . . . . . . . . . . . . 235--239 Benoit Fresse Miscellaneous applications . . . . . . . 241--259 Benoit Fresse Back Matter . . . . . . . . . . . . . . 261--261 Benoit Fresse Shifted modules over operads and functors . . . . . . . . . . . . . . . . 267--276 Benoit Fresse Shifted functors and pushout-products 277--286
Rainer Weissauer Appendix on Galois cohomology . . . . . 1--4 Rainer Weissauer Reduction to unit elements . . . . . . . 1--13 Rainer Weissauer Appendix on Double Cosets . . . . . . . 1--16 Rainer Weissauer Front Matter . . . . . . . . . . . . . . 1--16 Rainer Weissauer An Application of the Hard Lefschetz Theorem . . . . . . . . . . . . . . . . 1--17 Rainer Weissauer Back Matter . . . . . . . . . . . . . . 1--18 Rainer Weissauer The Langlands--Shelstad transfer factor 1--20 Rainer Weissauer The Ramanujan Conjecture for Genus two Siegel modular Forms . . . . . . . . . . 1--21 Rainer Weissauer A special Case of the Fundamental Lemma I . . . . . . . . . . . . . . . . . . . 1--28 Rainer Weissauer Fundamental lemma (twisted case) . . . . 1--30 Rainer Weissauer A special Case of the Fundamental Lemma II . . . . . . . . . . . . . . . . . . . 1--31 Rainer Weissauer CAP-Localization . . . . . . . . . . . . 1--34 Rainer Weissauer Local and Global Endoscopy for $ {\rm GSp}(4) $ . . . . . . . . . . . . . . . 1--36 Rainer Weissauer Character identities and Galois representations related to the group $ {\rm GSp}(4) $ . . . . . . . . . . . . . 1--99
Bernard Roynette and Marc Yor Front Matter . . . . . . . . . . . . . . 1--11 Bernard Roynette and Marc Yor Back Matter . . . . . . . . . . . . . . 1--21 Bernard Roynette and Marc Yor Some penalisations of the Wiener measure 1--31 Bernard Roynette and Marc Yor Introduction . . . . . . . . . . . . . . 1--34 Bernard Roynette and Marc Yor A general principle and some questions about penalisations . . . . . . . . . . 1--36 Bernard Roynette and Marc Yor Feynman--Kac penalisations for Brownian motion . . . . . . . . . . . . . . . . . 1--64 Bernard Roynette and Marc Yor Penalisations of a Bessel process with dimension $ d(0 d 2) $ by a function of the ranked lengths of its excursions . . 1--93
Marek Biskup and Anton Bovier and Frank Hollander and Dima Ioffe and Fabio Martinelli and Karel Netocný and Christina Toninelli Front Matter . . . . . . . . . . . . . . 1--8 N. Cancrini and F. Martinelli and C. Robert and C. Toninelli Back Matter . . . . . . . . . . . . . . 1--9 Frank den Hollander Three Lectures on Metastability Under Stochastic Dynamics . . . . . . . . . . 1--24 N. Cancrini and F. Martinelli and C. Robert and C. Toninelli Facilitated Spin Models: Recent and New Results . . . . . . . . . . . . . . . . 1--34 Dmitry Ioffe Stochastic Geometry of Classical and Quantum Ising Models . . . . . . . . . . 1--41 Anton Bovier Metastability . . . . . . . . . . . . . 1--45 Fabio Lucio Toninelli Localization Transition in Disordered Pinning Models . . . . . . . . . . . . . 1--48 Christian Maes and Karel Neto\vcný and Bidzina Shergelashvili A Selection of Nonequilibrium Issues . . 1--60 Marek Biskup Reflection Positivity and Phase Transitions in Lattice Spin Models . . . 1--86
Laure Saint-Raymond The compressible Euler limit . . . . . . 1--6 Laure Saint-Raymond Front Matter . . . . . . . . . . . . . . 1--10 Laure Saint-Raymond Introduction . . . . . . . . . . . . . . 1--11 Laure Saint-Raymond Back Matter . . . . . . . . . . . . . . 1--25 Laure Saint-Raymond Mathematical tools for the derivation of hydrodynamic limits . . . . . . . . . . 1--32 Laure Saint-Raymond The Boltzmann equation and its formal hydrodynamic limits . . . . . . . . . . 1--34 Laure Saint-Raymond The incompressible Euler limit . . . . . 1--42 Laure Saint-Raymond The incompressible Navier--Stokes limit 1--42
Takuro Mochizuki Front Matter . . . . . . . . . . . . . . 1--20 Takuro Mochizuki Introduction . . . . . . . . . . . . . . 1--23 Takuro Mochizuki Parabolic $L$-Bradlow Pairs . . . . . . 1--33 Takuro Mochizuki Preliminaries . . . . . . . . . . . . . 1--38 Takuro Mochizuki Geometric Invariant Theory and Enhanced Master Space . . . . . . . . . . . . . . 1--47 Takuro Mochizuki Back Matter . . . . . . . . . . . . . . 1--48 Takuro Mochizuki Virtual Fundamental Classes . . . . . . 1--50 Takuro Mochizuki Obstruction Theories of Moduli Stacks and Master Spaces . . . . . . . . . . . 1--67 Takuro Mochizuki Invariants . . . . . . . . . . . . . . . 1--77
Mitchell A. Berger and Louis H. Kauffman and Boris Khesin and H. Keith Moffatt and Renzo L. Ricca and De Witt Sumners Front Matter . . . . . . . . . . . . . . 1--12 Patrick D. Bangert Braids and Knots . . . . . . . . . . . . 1--73 Mitchell A. Berger Topological Quantities: Calculating Winding, Writhing, Linking, and Higher Order Invariants . . . . . . . . . . . . 75--97 Louis H. Kauffman and Sofia Lambropoulou Tangles, Rational Knots and DNA . . . . 99--138 Boris Khesin The Group and Hamiltonian Descriptions of Hydrodynamical Systems . . . . . . . 139--155 H. K. Moffatt Singularities in Fluid Dynamics and their Resolution . . . . . . . . . . . . 157--166 Renzo L. Ricca Structural Complexity and Dynamical Systems . . . . . . . . . . . . . . . . 167--186 De Witt Sumners Random Knotting: Theorems, Simulations and Applications . . . . . . . . . . . . 187--217 De Witt Sumners Back Matter . . . . . . . . . . . . . . 219--231
Frank den Hollander Introduction . . . . . . . . . . . . . . 1--7 Frank Hollander Front Matter . . . . . . . . . . . . . . 1--13 Frank den Hollander Back Matter . . . . . . . . . . . . . . 1--31 Frank den Hollander Two Basic Models . . . . . . . . . . . . 9--16 Frank den Hollander Front Matter . . . . . . . . . . . . . . 17--18 Frank den Hollander Soft Polymers in Low Dimension . . . . . 19--39 Frank den Hollander Soft Polymers in High Dimension . . . . 41--58 Frank den Hollander Elastic Polymers . . . . . . . . . . . . 59--65 Frank den Hollander Polymer Collapse . . . . . . . . . . . . 67--84 Frank den Hollander Polymer Adsorption . . . . . . . . . . . 85--112 Frank den Hollander Front Matter . . . . . . . . . . . . . . 113--114 Frank den Hollander Charged Polymers . . . . . . . . . . . . 115--127 Frank den Hollander Copolymers near a Linear Selective Interface . . . . . . . . . . . . . . . 129--154 Frank den Hollander Copolymers near a Random Selective Interface . . . . . . . . . . . . . . . 155--179 Frank den Hollander Random Pinning and Wetting of Polymers 181--204 Frank den Hollander Polymers in a Random Potential . . . . . 205--231
Christian Rohde Front Matter . . . . . . . . . . . . . . 1--7 Jan Christian Rohde Introduction . . . . . . . . . . . . . . 1--9 Jan Christian Rohde Back Matter . . . . . . . . . . . . . . 1--24 Jan Christian Rohde An Introduction to Hodge Structures and Shimura Varieties . . . . . . . . . . . 11--57 Jan Christian Rohde Cyclic Covers of the Projective Line . . 59--69 Jan Christian Rohde Some Preliminaries for Families of Cyclic Covers . . . . . . . . . . . . . 71--78 Jan Christian Rohde The Galois Group Decomposition of the Hodge Structure . . . . . . . . . . . . 79--89 Jan Christian Rohde The Computation of the Hodge Group . . . 91--119 Jan Christian Rohde Examples of Families with Dense Sets of Complex Multiplication Fibers . . . . . 121--142 Jan Christian Rohde The Construction of Calabi--Yau Manifolds with Complex Multiplication 143--156 Jan Christian Rohde The Degree $3$ Case . . . . . . . . . . 157--167 Jan Christian Rohde Other Examples and Variations . . . . . 169--186 Jan Christian Rohde Examples of CMCY Families of $3$-manifolds and their Invariants . . . 187--198 Jan Christian Rohde Maximal Families of CMCY Type . . . . . 199--208
Nicolas Ginoux Front Matter . . . . . . . . . . . . . . 1--11 Nicolas Ginoux Basics of spin geometry . . . . . . . . 1--27 Nicolas Ginoux Back Matter . . . . . . . . . . . . . . 1--32 Nicolas Ginoux Explicit computations of spectra . . . . 29--39 Nicolas Ginoux Lower eigenvalue estimates on closed manifolds . . . . . . . . . . . . . . . 41--68 Nicolas Ginoux Lower eigenvalue estimates on compact manifolds with boundary . . . . . . . . 69--75 Nicolas Ginoux Upper eigenvalue bounds on closed manifolds . . . . . . . . . . . . . . . 77--92 Nicolas Ginoux Prescription of eigenvalues on closed manifolds . . . . . . . . . . . . . . . 93--101 Nicolas Ginoux The Dirac spectrum on non-compact manifolds . . . . . . . . . . . . . . . 103--111 Nicolas Ginoux Other topics related with the Dirac spectrum . . . . . . . . . . . . . . . . 113--129
Matthew J. Gursky and Ermanno Lanconelli and Andrea Malchiodi and Gabriella Tarantello and Xu-Jia Wang and Paul C. Yang Front Matter . . . . . . . . . . . . . . 1--12 Paul Yang Back Matter . . . . . . . . . . . . . . 1--14 Matthew J. Gursky PDEs in Conformal Geometry . . . . . . . 1--33 Ermanno Lanconelli Heat Kernels in Sub-Riemannian Settings 35--61 Andrea Malchiodi Concentration of Solutions for Some Singularly Perturbed Neumann Problems 63--115 Gabriella Tarantello On Some Elliptic Problems in the Study of Selfdual Chern--Simons Vortices . . . 117--175 Xu-Jia Wang The $k$-Hessian Equation . . . . . . . . 177--252 Paul Yang Minimal Surfaces in CR Geometry . . . . 253--273
Min Quian and Jian-Sheng Xie and Shu Zhu Preliminaries . . . . . . . . . . . . . 1--8 Min Qian and Jian-Sheng Xie and Shu Zhu Front Matter . . . . . . . . . . . . . . 1--11 Min Quian and Jian-Sheng Xie and Shu Zhu Back Matter . . . . . . . . . . . . . . 1--38 Min Quian and Jian-Sheng Xie and Shu Zhu Margulis--Ruelle Inequality . . . . . . 9--13 Min Quian and Jian-Sheng Xie and Shu Zhu Expanding Maps . . . . . . . . . . . . . 15--26 Min Quian and Jian-Sheng Xie and Shu Zhu Axiom A Endomorphisms . . . . . . . . . 27--44 Min Quian and Jian-Sheng Xie and Shu Zhu Unstable and Stable Manifolds for Endomorphisms . . . . . . . . . . . . . 45--86 Min Quian and Jian-Sheng Xie and Shu Zhu Pesin's Entropy Formula for Endomorphisms . . . . . . . . . . . . . 87--96 Min Quian and Jian-Sheng Xie and Shu Zhu SRB Measures and Pesin's Entropy Formula for Endomorphisms . . . . . . . . . . . 97--150 Min Quian and Jian-Sheng Xie and Shu Zhu Ergodic Property of Lyapunov Exponents 151--171 Min Quian and Jian-Sheng Xie and Shu Zhu Generalized Entropy Formula . . . . . . 173--204 Min Quian and Jian-Sheng Xie and Shu Zhu Exact Dimensionality of Hyperbolic Measures . . . . . . . . . . . . . . . . 205--244
Mikós Rásonyi Back Matter . . . . . . . . . . . . . . 1--6 Antoine Lejay Yet another introduction to rough paths 1--101 Miclo Laurent Monotonicity of the extremal functions for one-dimensional inequalities of logarithmic Sobolev type . . . . . . . . 103--130 Walter Schachermayer and Uwe Schmock and Josef Teichmann Non-monotone convergence in the quadratic Wasserstein distance . . . . . 131--136 Fangjun Xu On the equation $ \mu = S_t \mu * \mu_t $ . . . . . . . . . . . . . . . . . . . 137--145 Philippe Biane Shabat polynomials and harmonic measure 147--151 Nizar Demni Radial Dunkl Processes Associated with Dihedral Systems . . . . . . . . . . . . 153--169 Philippe Biane Matrix Valued Brownian Motion and a Paper by Pólya . . . . . . . . . . . . . 171--185 Kouji Yano and Yuko Yano and Marc Yor On the Laws of First Hitting Times of Points for One-Dimensional Symmetric Stable Lévy Processes. (French) [] . . . 187--227 P. J. Fitzsimmons and R. K. Getoor Lévy Systems and Time Changes. (French) [] . . . . . . . . . . . . . . . . . . . 229--259 Nathalie Krell Self-Similar Branching Markov Chains . . 261--280 Robert Hardy and Simon C. Harris A Spine Approach to Branching Diffusions with Applications to $ L^p $-Convergence of Martingales . . . . . . . . . . . . . 281--330 Pierre Debs Penalisation of the Standard Random Walk by a Function of the One-Sided Maximum, of the Local Time, or of the Duration of the Excursions . . . . . . . . . . . . . 331--363 M. Erraoui and E. H. Essaky Canonical Representation for Gaussian Processes . . . . . . . . . . . . . . . 365--381 Michel Émery Recognising Whether a Filtration is Brownian: a Case Study . . . . . . . . . 383--396 Ameur Dhahri Markovian properties of the spin-boson model . . . . . . . . . . . . . . . . . 397--432 Stéphane Attal and Nadine Guillotin-Plantard Statistical properties of Pauli matrices going through noisy channels . . . . . . 433--448 Mikós Rásonyi Erratum to: New methods in the arbitrage theory of financial markets with transaction costs, in Séminaire XLI . . . 449--449
Krzysztof Bogdan and Tomasz Byczkowski and Tadeusz Kulczycki and Michal Ryznar and Renming Song and Zoran Vondracek Front Matter . . . . . . . . . . . . . . 1--8 R. Song and Z. Vondra\vcek Back Matter . . . . . . . . . . . . . . 1--16 Piotr Graczyk and Andrzej Stos Introduction . . . . . . . . . . . . . . 1--24 K. Bogdan and T. Byczkowski Boundary Potential Theory for Schrödinger Operators Based on Fractional Laplacian 25--55 M. Ryznar Nontangential Convergence for $ \alpha $-harmonic Functions . . . . . . . . . . 57--72 T. Kulczycki Eigenvalues and Eigenfunctions for Stable Processes . . . . . . . . . . . . 73--86 R. Song and Z. Vondra\vcek Potential Theory of Subordinate Brownian Motion . . . . . . . . . . . . . . . . . 87--176
Maria Chlouveraki Front Matter . . . . . . . . . . . . . . 1--11 Maria Chlouveraki On Commutative Algebra . . . . . . . . . 1--19 Maria Chlouveraki Back Matter . . . . . . . . . . . . . . 1--32 Maria Chlouveraki On Blocks . . . . . . . . . . . . . . . 21--59 Maria Chlouveraki On Essential Algebras . . . . . . . . . 61--70 Maria Chlouveraki On Hecke Algebras . . . . . . . . . . . 71--89 Maria Chlouveraki On the Determination of the Rouquier Blocks . . . . . . . . . . . . . . . . . 91--132
Nicolas Privault Introduction . . . . . . . . . . . . . . 1--6 Nicolas Privault Front Matter . . . . . . . . . . . . . . 1--7 Nicolas Privault Back Matter . . . . . . . . . . . . . . 1--15 Nicolas Privault The Discrete Time Case . . . . . . . . . 7--58 Nicolas Privault Continuous Time Normal Martingales . . . 59--112 Nicolas Privault Gradient and Divergence Operators . . . 113--130 Nicolas Privault Annihilation and Creation Operators . . 131--160 Nicolas Privault Analysis on the Wiener Space . . . . . . 161--194 Nicolas Privault Analysis on the Poisson Space . . . . . 195--246 Nicolas Privault Local Gradients on the Poisson Space . . 247--280 Nicolas Privault Option Hedging in Continuous Time . . . 281--293 Nicolas Privault Appendix . . . . . . . . . . . . . . . . 295--300
Julien Lef\`evre and Sylvain Baillet Back Matter . . . . . . . . . . . . . . 1--8 Jin Keun Seo and Eung Je Woo Multi-Frequency Electrical Impedance Tomography and Magnetic Resonance Electrical Impedance Tomography . . . . 1--71 Mickael Tanter and Mathias Fink Time Reversing Waves For Biomedical Applications . . . . . . . . . . . . . . 73--97 Habib Ammari and Hyeonbae Kang The Method of Small-Volume Expansions for Medical Imaging . . . . . . . . . . 99--132 George Dassios Electric and Magnetic Activity of the Brain in Spherical and Ellipsoidal Geometry . . . . . . . . . . . . . . . . 133--202 Julien Lef\`evre and Sylvain Baillet Estimation of Velocity Fields and Propagation on Non-Euclidian Domains: Application to the Exploration of Cortical Spatiotemporal Dynamics . . . . 203--226
Jean-Pierre Antoine and Camillo Trapani Front Matter . . . . . . . . . . . . . . I--XXIX Jean-Pierre Antoine and Camillo Trapani General Theory: Algebraic Point of View 11--34 Jean-Pierre Antoine and Camillo Trapani General Theory: Topological Aspects . . 35--56 Jean-Pierre Antoine and Camillo Trapani Operators on PIP-Spaces and Indexed PIP-Spaces . . . . . . . . . . . . . . . 57--101 Jean-Pierre Antoine and Camillo Trapani Examples of Indexed PIP-Spaces . . . . . 103--156 Jean-Pierre Antoine and Camillo Trapani Refinements of PIP-Spaces . . . . . . . 157--219 Jean-Pierre Antoine and Camillo Trapani Partial $ *$-Algebras of Operators in a PIP-Space . . . . . . . . . . . . . . . 221--255 Jean-Pierre Antoine and Camillo Trapani Applications in Mathematical Physics . . 257--292 Jean-Pierre Antoine and Camillo Trapani PIP-Spaces and Signal Processing . . . . 293--324 Jean-Pierre Antoine and Camillo Trapani Back Matter . . . . . . . . . . . . . . 325--358
Jean-Paul Brasselet and José Seade and Tatsuo Suwa Front Matter . . . . . . . . . . . . . . i--xx Jean-Paul Brasselet and José Seade and Tatsuo Suwa The Case of Manifolds . . . . . . . . . 1--29 Jean-Paul Brasselet and José Seade and Tatsuo Suwa The Schwartz Index . . . . . . . . . . . 31--41 Jean-Paul Brasselet and José Seade and Tatsuo Suwa The GSV Index . . . . . . . . . . . . . 43--69 Jean-Paul Brasselet and José Seade and Tatsuo Suwa Indices of Vector Fields on Real Analytic Varieties . . . . . . . . . . . 71--83 Jean-Paul Brasselet and José Seade and Tatsuo Suwa The Virtual Index . . . . . . . . . . . 85--96 Jean-Paul Brasselet and José Seade and Tatsuo Suwa The Case of Holomorphic Vector Fields 97--113 Jean-Paul Brasselet and José Seade and Tatsuo Suwa The Homological Index and Algebraic Formulas . . . . . . . . . . . . . . . . 115--128 Jean-Paul Brasselet and José Seade and Tatsuo Suwa The Local Euler Obstruction . . . . . . 129--141 Jean-Paul Brasselet and José Seade and Tatsuo Suwa Indices for $1$-Forms . . . . . . . . . 143--166 Jean-Paul Brasselet and José Seade and Tatsuo Suwa The Schwartz Classes . . . . . . . . . . 167--184 Jean-Paul Brasselet and José Seade and Tatsuo Suwa The Virtual Classes . . . . . . . . . . 185--192 Jean-Paul Brasselet and José Seade and Tatsuo Suwa Milnor Number and Milnor Classes . . . . 193--200 Jean-Paul Brasselet and José Seade and Tatsuo Suwa Characteristic Classes of Coherent Sheaves on Singular Varieties . . . . . 201--213 Jean-Paul Brasselet and José Seade and Tatsuo Suwa Back Matter . . . . . . . . . . . . . . 215--231