Last update:
Fri Oct 13 09:01:42 MDT 2017
R. G. Burns On the Rank of the Intersection of Subgroups of a Fuchsian Group . . . . . 165--187
Uwe Jannsen Mixed motives for absolute Hodge cycles 1--56 Uwe Jannsen Algebraic cycles, $K$-theory, and extension classes . . . . . . . . . . . 57--188 Uwe Jannsen $K$-theory and $ \ell $-adic cohomology 189--221
A. Durand Quelques aspects de la théorie analytique des polynômes I. (French) [] . . . . . . 1--42 A. Durand Quelques aspects de la théorie analytique des polynômes II. (French) [] . . . . . . 43--85 Alain Durand Relation de Szeg\Ho sur la derivée d'un polynôme. (French) [] . . . . . . . . . . 86--93 Alain Durand Approximations algébriques d'un nombre transcendant. (French) [] . . . . . . . 94--96 Jean-Pierre Borel Polynômes \`a coefficients positifs multiples d'un polynôme donné. (French) [] 97--115 P. Bundschuh Indépendance algébrique par des méthodes d'approximations. (French) [] . . . . . 116--122 François Gramain Fonctions enti\`eres d'une ou plusieurs variables complexes prenant des valeurs enti\`eres sur une progression géométrique. (French) [] . . . . . . . . . 123--137 Michel Langevin Sph\`ere de Riemann et Géométrie des polynômes. (French) [] . . . . . . . . . 138--159 Maurice Mignotte Polynômes et lemme de Siegel. (French) [] 160--166 A. Schinzel and J. L. Nicolas Localisation des zéros de polynômes intervenant en théorie du signal. (French) [] . . . . . . . . . . . . . . 167--179 Patrice Philippon Polynômes d'interpolation sur $ \mathbb {Z} $ et $ \mathbb {Z}[i] $. (French) [] 180--195 Elmer Rees and Christopher Smyth On the constant in the Tarry--Escott problem . . . . . . . . . . . . . . . . 196--208 Bahman Saffari Extremal problems on polynomials . . . . 209--211 A. Schinzel Un crit\`ere d'irreductibilité de polynômes. (French) [] . . . . . . . . . 212--224 Michel Waldschmidt Indépendance algébrique de nombres de Liouville. (French) [] . . . . . . . . . 225--235
Mich\`ele Audin Hamiltoniens périodiques sur les variétés symplectiques compactes de dimension $4$. (French) [] . . . . . . . . . . . . 1--25 R. Cushman and J.-C. van der Meer The Hamiltonian Hopf bifurcation in the Lagrange top . . . . . . . . . . . . . . 26--38 Pierre Dazord Groupoídes symplectiques et troisi\`eme théor\`eme de Lie `non linéaire'. (French) [] . . . . . . . . . . . . . . . . . . . 39--74 N. Desolneux-Moulis Dynamique des syst\`emes hamiltoniens compl\`etement intégrables sur les variétés compactes. (French) [] . . . . . . . . . 75--83 Paul Donato Géométrie des orbites coadjointes des groupes de difféomorphismes. (French) [] 84--104 Jean-Pierre Françoise Intégrales de périodes en geométries symplectique et isochore. (French) [] 105--138 Emmanuel Giroux Formes generatrices d'immersions lagrangiennes dans un espace cotangent. (French) [] . . . . . . . . . . . . . . 139--145 P. A. Horváthy Dynamical symmetries of monopole scattering . . . . . . . . . . . . . . . 146--160 Yvette Kosmann-Schwarzbach Groupes de Lie--Poisson quasitriangulaires. (French) [] . . . . 161--177 Ernesto A. Lacomba and Felipe Peredo Escape-equilibrium solutions in the repulsive Coulombian isosceles $3$-body problem . . . . . . . . . . . . . . . . 178--191 André Lichnerowicz Groupes de Lie \`a structures symplectiques ou Kähleriennes invariantes. (French) [] . . . . . . . . 192--209 Carlos Moreno Produits star sur certains $ G / K $ Kähleriens. Équation de Yang--Baxter et produits star sur $G$. (French) [] . . . 210--234 Marie-Paule Muller Une sph\`ere Lagrangienne plongée dans une structure symplectique compl\`ete sur $ \mathbb {R}^6 $. (French) [] . . . 235--241 Claude Roger Déformations universelles des crochets de Poissonxo. (French) [] . . . . . . . . . 242--254 Regina Martínez and Carles Simó Blow up of collapsing binaries in the planar three body problem . . . . . . . 255--267 F. J. Turiel Dimension minimale des orbites d'une action symplectique de $ \mathbb {R}^n $. (French) [] . . . . . . . . . . . . . 268--289
Lucian B\uadescu Infinitesimal deformations of negative weights and hyperplane sections . . . . 1--22 Edoardo Ballico On $k$-spanned projective surfaces . . . 23--23 Mauro Beltrametti and Andrew J. Sommese On $K$-spannedness for projective surfaces . . . . . . . . . . . . . . . . 24--51 Aldo Biancofiore On the hyperplane sections of ruled surfaces . . . . . . . . . . . . . . . . 52--66 Fabrizio Catanese Footnotes to a theorem of I. Reider . . 67--74 Herbert Clemens An obstruction to moving multiples of subvarieties . . . . . . . . . . . . . . 75--90 Wolfram Decker and Thomas Peternell and Joseph le Potier and Michael Schneider Half-canonical surfaces in $ {\rm IP}_4 $ . . . . . . . . . . . . . . . . . . . 91--110 Ph. Ellia and Ch. Peskine Groupes de points de $ P^2 $: Caract\`ere et position uniforme. (French) [] . . . . . . . . . . . . . . 111--116 Takao Fujita On singular Del Pezzo varieties . . . . 117--128 Klaus Hulek Abelian surfaces in products of projective spaces . . . . . . . . . . . 129--137 Paltin Ionescu Embedded projective varieties of small invariants. III . . . . . . . . . . . . 138--154 Elvira Laura Livorni On the existence of some surfaces . . . 155--179 Cristina Oliva On the pluriadjoint maps of polarized normal Gorenstein surfaces . . . . . . . 180--183 Marino Palleschi On the adjoint line bundle to an ample and spanned one . . . . . . . . . . . . 184--190 Miles Reid Quadrics through a canonical surface . . 191--213 Miles Reid Infinitesimal view of extending a hyperplane section- deformation theory and computer algebra . . . . . . . . . . 214--286 Igor Reider Toward Abel--Jacobi theory for higher dimensional varieties . . . . . . . . . 287--300 Fumio Sakai Reider--Serrano's method on normal surfaces . . . . . . . . . . . . . . . . 301--319
J. F. Adams Talk on Toda's work . . . . . . . . . . 7--14 Wen-Hsiung Lin A conjecture of may on $ E_2 $-term of the may spectral sequence for the cohomology of the Steenrod algebra . . . 15--52 I. M. James Continuous functions of several variable 53--56 M. Tezuka and N. Yagita Cohomology of finite groups and Brown--Peterson cohomology II . . . . . 57--69 J. R. Hubbuck Some stably indecomposable loop spaces 70--77 David J. Anick $R$-local homotopy theory . . . . . . . 78--85 John McCleary Homotopy theory and closed geodesics . . 86--94 Juno Mukai A proof of the theorem characterizing the generalized $J$-homomorphism . . . . 95--104 Ronald Brown Some problems in non-abelian homotopical and homological algebra . . . . . . . . 105--129 K. Knapp and E. Ossa KO-codegree and real line bundles . . . 130--139 J. P. C. Greenlees The power of $ \bmod P $ Borel homology 140--151 F. R. Cohen A note concerning the $ v_1 $-periodic homotopy of odd spheres . . . . . . . . 152--155 Zen-ichi Yosimura The quasi KO-homology types of the real projective spaces . . . . . . . . . . . 156--174 Stewart B. Priddy On characterizing summands in the classifying space of a group, II . . . . 175--183 Jack Morava On the complex Cobordism ring as a Fock representation . . . . . . . . . . . . . 184--204 Kazumoto Kozima On the generalized homology of the connective fibering of BU . . . . . . . 205--209 Haynes Miller On Jones's Kahn--Priddy theorem . . . . 210--218 Donald M. Davis and Mark Mahowald $ v_1$-periodic homotopy of $ {\rm Sp}(2)$, $ {\rm Sp}(3)$, and $ S^{2 n}$ 219--237
Pat Muldowney About Ralph Henstock . . . . . . . . . . 1--6 Ralph Henstock Introduction to the new integrals . . . 7--9 P. S. Bullen Some applications of a theorem of Marcinkiewicz . . . . . . . . . . . . . 10--18 Chew Tuan Seng The superposition operators in the space of Henstock--Kurzweil integrable functions . . . . . . . . . . . . . . . 19--24 Susana Fernandez Long de Foglio New and old results concerning Henstock's integrals . . . . . . . . . . 25--37 Cecile Pierson-Gorez Double integrals and convergence of double series . . . . . . . . . . . . . 38--53 Ralph Henstock Integration in infinite-dimensional spaces . . . . . . . . . . . . . . . . . 54--65 Jaroslav Kurzweil and Ji\vrí Jarník The PU-integral: its definition and some basic properties . . . . . . . . . . . . 66--81 Solomon Leader $1$-differentials on $1$-cells: a further study . . . . . . . . . . . . . 82--96 Lee Peng Yee Generalized convergence theorems for Denjoy--Perron integrals . . . . . . . . 97--109 P. Maritz On some aspects of open multifunctions 110--130 P. Muldowney Infinite-dimensional generalised Riemann integrals . . . . . . . . . . . . . . . 131--135 Piotr Mikusi\'nski and Krzysztof Ostaszewski The space of Henstock integrable functions II . . . . . . . . . . . . . . 136--149 Washek F. Pfeffer Divergence theorem for vector fields with singularities . . . . . . . . . . . 150--166 V. A. Skvortsov Some properties of dyadic primitives . . 167--179 J. D. Stegeman Analysis of P. Malliavin's proof of non spectral synthesis . . . . . . . . . . . 180--200 J. D. Stegeman Papers of G. Cross, Y. Kubota, J. L. Mawhin, M. Morayne, W. F. Pfeffer and W.-C. Yang, and C. A. Rogers . . . . . . 201--201 J. D. Stegeman Problems . . . . . . . . . . . . . . . . 202--202
C. Andradas and E. Becker A note on the real spectrum of analytic functions on an analytic manifold of dimension one . . . . . . . . . . . . . 1--21 Riccardo Benedetti and François Loeser and Jean-Jacques Risler Two bounds for the number of connected components of a real algebraic set . . . 22--35 Shrikant M. Bhatwadekar and Friedrich Ischebeck and Manuel Ojanguren and Gerhard Schabhüser Strongly algebraic vector bundles over $ \mathbb {R}^d $ . . . . . . . . . . . . 36--41 Edward Bierstone and Pierre D. Milman Local resolution of singularities . . . 42--64 J. Bochnak and W. Kucharz On vector bundles and real algebraic morphisms . . . . . . . . . . . . . . . 65--71 Ludwig Bröcker On the stability index of Noetherian rings . . . . . . . . . . . . . . . . . 72--80 Emilio Bujalance and Antonio F. Costa and J. M. Gamboa Real parts of complex algebraic curves 81--110 Michel Coste Sous-ensembles algébriques réels de codimension $2$. (French) [] . . . . . . 111--120 J.-P. Françoise and R. Silhol Real abelian varieties and the singularities of an integrable Hamiltonian system . . . . . . . . . . . 121--127 Danielle Gondard-Cozette Chainable fields and real algebraic geometry . . . . . . . . . . . . . . . . 128--148 A. González-Corbalan and T. Recio Shape invariant lists and realization as plane real algebraic curves with doublepoints . . . . . . . . . . . . . . 149--169 K. Kurdyka and J. B. Poly and G. Raby Moyennes des fonctions sous-analytiques, densité, cône tangent et tranches. (French) [] . . . . . . . . . . . . . . 170--177 Dan Laksov and Karin Westin Nullstellensätze; conjectures and counterexamples . . . . . . . . . . . . 178--190 Alexis Marin Sur un théor\`eme de Cheponkus. (French) [] . . . . . . . . . . . . . . . . . . . 191--193 Alexander Nabutovsky Isotopies and non-recursive functions in real algebraic geometry . . . . . . . . 194--205 Robert O. Robson Slices: Functions for abstract real analysis . . . . . . . . . . . . . . . . 206--222 M.-F. Roy and A. Szpirglas Complexity of the computation of cylindrical decomposition and topology of real algebraic curves using Thom's lemma . . . . . . . . . . . . . . . . . 223--236 Jesús M. Ruíz On the topology of global semianalytic sets . . . . . . . . . . . . . . . . . . 237--246 Masahiro Shiota Piecewise linearization of subanalytic functions II . . . . . . . . . . . . . . 247--307 R. Silhol Classification birationnelle des surfaces rationnelles réelles . . . . . . 308--324
Hebe Azevedo Biagioni Generalized functions on an open subset of $ E_n $ . . . . . . . . . . . . . . . 1--68 Hebe Azevedo Biagioni Generalized functions on an arbitrary subset of $ E_n $ . . . . . . . . . . . 69--82 Hebe Azevedo Biagioni Generalized solutions of nonlinear partial differential equations . . . . . 83--141
Michael Atiyah Hyperkähler manifolds . . . . . . . . . . 1--13 Eugenio Calabi Affine differential geometry and holomorphic curves . . . . . . . . . . . 15--21 J. W. Cogdell and I. I. Piatetski-Shapiro The meromorphic continuation of Kloosterman--Selberg zeta functions . . 23--35 Gerd Dethloff and Hans Grauert Deformation of compact Riemann surfaces $Y$ of genus $p$ with distinguished points $ P_1, \ldots, P_m {\in } Y$ . . 37--44 Shoshichi Kobayashi On moduli of vector bundles . . . . . . 45--57 Adam Korányi and Hans Martin Reimann Quasiconformal mappings on CR manifolds 59--75 Rainer Nagel On the stability of positive semigroups generated by operator matrices . . . . . 77--83 Raghavan Narasimhan The Levi problem on algebraic manifolds 85--91 H. H. Schaefer A Banach--Steinhaus theorem for weak and order continuous operators . . . . . . . 93--100 Jean-Pierre Vigué Fixed points of holomorphic mappings . . 101--106
Stanley O. Kochman Introduction . . . . . . . . . . . . . . 1--11 Stanley O. Kochman Toda brackets . . . . . . . . . . . . . 12--34 Stanley O. Kochman Low dimensional computations . . . . . . 35--71 Stanley O. Kochman The image of $J$ . . . . . . . . . . . . 72--98 Stanley O. Kochman The Japanese stems $ (\pi_N, 9 \leq N \leq 31) $ . . . . . . . . . . . . . . . 99--138 Stanley O. Kochman The Chicago stem $ (\pi^S_N, 32 \leq N \leq 45) $ . . . . . . . . . . . . . . . 139--211 Stanley O. Kochman The new stems $ (\pi^S_N, 46 \leq N \leq 64) $ . . . . . . . . . . . . . . . . . 212--283 Stanley O. Kochman The elements of arf invariant one . . . 284--293
Francis E. Burstall and John H. Rawnsley Introduction . . . . . . . . . . . . . . 1--5 Francis E. Burstall and John H. Rawnsley Homogeneous geometry . . . . . . . . . . 6--14 Francis E. Burstall and John H. Rawnsley Harmonic maps and twistor spaces . . . . 15--21 Francis E. Burstall and John H. Rawnsley Symmetric spaces . . . . . . . . . . . . 22--38 Francis E. Burstall and John H. Rawnsley Flag manifolds . . . . . . . . . . . . . 39--62 Francis E. Burstall and John H. Rawnsley The twistor space of a Riemannian symmetric space . . . . . . . . . . . . 63--70 Francis E. Burstall and John H. Rawnsley Twistor lifts over Riemannian symmetric spaces . . . . . . . . . . . . . . . . . 71--80 Francis E. Burstall and John H. Rawnsley Stable Harmonic $2$-spheres . . . . . . 81--89 Francis E. Burstall and John H. Rawnsley Factorisation of harmonic spheres in Lie groups . . . . . . . . . . . . . . . . . 90--105
Peter Booth Equivalent homotopy theories and groups of self-equivalences . . . . . . . . . . 1--16 P. I. Booth and P. R. Heath On the group $ \epsilon (X \times Y) $ and $ \epsilon_B^B(X \times_B Y) $ . . . 17--31 G. Didierjean Homotopie des Espaces d'Équivalences. (French) [Homotopy of equivalent spaces] 32--39 Vagn Lundsgaard Hansen The space of self maps on the $2$-sphere 40--47 Allen Hatcher and Darryl McCullough Finite presentation of $3$-manifold mapping class groups . . . . . . . . . . 48--57 Donald W. Kahn Representations of the stable group of self-equivalences . . . . . . . . . . . 58--70 Howard J. Marcum Homotopy equivalences in $2$-categories 71--86 Ken-ichi Maruyama Localizing $ \epsilon_\# (X) $ . . . . . 87--90 J. P. May Weak equivalences and quasifibrations 91--101 Darryl McCullough Topological and algebraic automorphisms of $3$-manifolds . . . . . . . . . . . . 102--113 Andy Miller Projecting homeomorphisms from covering spaces . . . . . . . . . . . . . . . . . 114--132 Jesper Michael Mòller Equivariant self-homotopy equivalences of $2$-stage $G$-spaces . . . . . . . . 133--146 John W. Rutter On skeleton preserving homotopy self-equivalences of CW complexes . . . 147--156 Kohhei Yamaguchi Self-homotopy equivalences and highly connected Poincaré complexes . . . . . . 157--169 Martin Arkowitz The group of self-homotopy equivalences --- a survey . . . . . . . . . . . . . . 170--203 Donald W. Kahn Some research problems on homotopy-self-equivalences . . . . . . . 204--207 Donald W. Kahn List of papers on or relevant to groups of self-homotopy equivalences . . . . . 208--214
Michel Ledoux A note on large deviations for Wiener chaos . . . . . . . . . . . . . . . . . 1--14 Richard F. Bass A probabilistic approach to the boundedness of singular integral operators . . . . . . . . . . . . . . . 15--40 T. J. Ransford Predictable sets and set-valued processes . . . . . . . . . . . . . . . 41--45 Luca Pratelli Sur le lemme de mesurabilité de Doob. (French) [] . . . . . . . . . . . . . . 46--51 C. Dellacherie Théorie des Processus de Production. (French) [] . . . . . . . . . . . . . . 52--62 C. Dellacherie Mod\`eles simples de la théorie du potentiel non linéaire. (French) [] . . . 63--104 Rémi Leander and Michel Weber Une représentation gaussienne de l'indice d'un opérateur. (French) [] . . . . . . . 105--106 B. Rajeev On semi-martingales associated with crossings . . . . . . . . . . . . . . . 107--116 Jean Bertoin Sur une horloge fluctuante pour les processus de Bessel de petites dimensions. (French) [] . . . . . . . . 117--136 Xing-Xiong Xue A zero--one law for integral functionals of the Bessel process . . . . . . . . . 137--153 David Nualart and Josep Vives Anticipative calculus for the Poisson process based on the Fock space . . . . 155--165 Wu Liming Un traitement unifié de la représentation des fonctionnelles de Wiener. (French) [] . . . . . . . . . . . . . . . . . . . 166--187 Martin T. Barlow and Philip Protter On convergence of semimartingales . . . 188--193 Martin T. Barlow and Edwin A. Perkins On pathwise uniqueness and expansion of filtrations . . . . . . . . . . . . . . 194--209 J. Azéma and M. Yor Dérivation par rapport au processus de Bessel. (French) [] . . . . . . . . . . 210--226 T. Jeulin and M. Yor Filtration des ponts browniens et équations différentielles stochastiques linéaires. (French) [] . . . . . . . . . 227--265 Jean-Pascal Ansel and Christophe Stricker Quelques remarques sur un théor\`eme de Yan. (French) [] . . . . . . . . . . . . 266--274 L. G. Gorostiza and S. Roelly-Coppoletta and A. Wakolbinger Sur la persistance du processus de Dawson--Watanabe stable. L'interversion de la limite en temps et de la renormalisation. (French) [] . . . . . . 275--281 François Coquet and Jean Jacod Convergence des surmartingales --- Application aux vraisemblances partielles. (French) [Convergence of supermartingales --- Application to partial likelihoods] . . . . . . . . . . 282--299 Dominique Cellier and Dominique Fourdrinier Sur les lois \`a symétrie elliptique. (French) [] . . . . . . . . . . . . . . 300--328
A. Ancona Théorie du Potentiel sur les Graphes et les Variétés. (French) [] . . . . . . . . 1--112 D. Geman Random fields and inverse problems in imaging . . . . . . . . . . . . . . . . 113--193 N. Ikeda Probabilistic methods in the study of asymptotics . . . . . . . . . . . . . . 195--325
Karin Erdmann Algebras, quivers, representation type, Auslander--Reiten theory, coverings . . 1--46 Karin Erdmann Special biserial algebras and the local semidihedral algebra . . . . . . . . . . 47--79 Karin Erdmann Tame symmetric local algebras . . . . . 80--92 Karin Erdmann More on modules, quivers, Auslander--Reiten sequences . . . . . . 93--120 Karin Erdmann Stable Auslander--Reiten components for tame blocks . . . . . . . . . . . . . . 121--158 Karin Erdmann Algebras of dihedral type . . . . . . . 159--180 Karin Erdmann Algebras of quaternion type . . . . . . 181--204 Karin Erdmann Algebras of semidihedral type . . . . . 205--262 Karin Erdmann Centres, blocks, decomposition numbers 263--285 Karin Erdmann Some applications . . . . . . . . . . . 286--306
Steven Homer and Anil Nerode and Richard A. Platek and Gerald E. Sacks and Andre Scedrov Front Matter . . . . . . . . . . . . . . ?? Steven Homer The isomorphism conjecture and its generalizations . . . . . . . . . . . . 1--11 Anil Nerode Some lectures on intuitionistic logic 12--59 Richard A. Platek Making computers safe for the world: an introduction to proofs of programs part I . . . . . . . . . . . . . . . . . . . 60--89 Gerald E. Sacks Prolog Programming . . . . . . . . . . . 90--110 Andre Scedrov A guide to polymorphic types . . . . . . 111--150 Andre Scedrov Back Matter . . . . . . . . . . . . . . ??
Winfried Bruns Straightening laws on modules and their symmetric algebras . . . . . . . . . . . 1--20 Maria Pia Cavaliere and Maria Evelina Rossi and Giuseppe Valla On short graded algebras . . . . . . . . 21--31 Jürgen Herzog A homological approach to symbolic powers . . . . . . . . . . . . . . . . . 32--46 Graig Huneke and Bernd Ulrich Generic residual intersections . . . . . 47--60 Lorenzo Robbiano and Moss Sweedler Subalgebra bases . . . . . . . . . . . . 61--87 Peter Schenzel Flatness and ideal-transforms of finite type . . . . . . . . . . . . . . . . . . 88--97 Aron Simis Topics in Rees algebras of special ideals . . . . . . . . . . . . . . . . . 98--114 Wolmer V. Vasconcelos Symmetric algebras . . . . . . . . . . . 115--160
John G. Heywood Open problems in the theory of the Navier--Stokes equations for viscous incompressible flow . . . . . . . . . . 1--22 A. V. Fursikov Navier--Stokes equations from the point of view of the theory of ill-posed boundary value problems . . . . . . . . 23--39 A. V. Fursikov On the statistical approach to the Navier--Stokes equations . . . . . . . . 40--48 Dietmar Kröner Asymptotic expansions for a flow with a dynamic contact angle . . . . . . . . . 49--59 Konstantin Pileckas Noncompact free boundary problems for the Navier--Stokes equations . . . . . . 60--72 Wolfgang Borchers and Tetsuro Miyakawa On large time behavior of the total kinetic energy for weak solutions of the Navier--Stokes equations in unbounded domains . . . . . . . . . . . . . . . . 73--83 Hideo Kozono Strong solution for the Navier--Stokes flow in the half-space . . . . . . . . . 84--86 V. V. Pukhnachov The problem of momentumless flow for the Navier--Stokes equations . . . . . . . . 87--94 Michael Wiegner Decay and stability in $ L_p $ for strong solutions of the Cauchy problem for the Navier--Stokes equations . . . . 95--99 T. M. Fischer A Galerkin approximation for linear eigenvalue problems in two and three-dimensional boundary-layer flows 100--108 Wayne Nagata Symmetry-breaking effects of distant sidewalls in Rayleigh--Bénard convection 109--116 Hisashi Okamoto Applications of degenerate bifurcation equations to the Taylor problem and the water wave problem . . . . . . . . . . . 117--127 Giovanni Prouse A uniqueness criterion for the solution of the stationary Navier--Stokes equations . . . . . . . . . . . . . . . 128--133 Hermann Sohr and Werner Varnhorn On decay properties of the Stokes equations in exterior domains . . . . . 134--151 Wolf von Wahl On necessary and sufficient conditions for the solvability of the equations $ {\rm rot} \mu = \gamma $ and $ {\rm div} \mu = \epsilon $ with $ \mu $ vanishing on the boundary . . . . . . . . . . . . 152--157 Waldemar Velte On optimal constants in some inequalities . . . . . . . . . . . . . . 158--168 A. V. Kazhikhov Boundary-value problems for Navier--Stokes equations of viscous gas 169--172 Alberto Valli On the one-dimensional Navier--Stokes equations for compressible fluids . . . 173--179 Rolf Rannacher On the numerical analysis of the nonstationary Navier--Stokes equations 180--193 Valeriy Ya. Rivkind Numerical methods for the Navier--Stokes equations with an unknown boundary between two viscous incompressible fluids . . . . . . . . . . . . . . . . . 194--200
Klaus Ambos-Spies and Steven Homer and Dongping Yang Honest polynomial reductions and exptally sets . . . . . . . . . . . . . 1--22 Marat M. Arslanov On the structure of degrees below $ O^\prime $ . . . . . . . . . . . . . . . 23--32 C. T. Chong and K. J. Mourad Positive solutions to Post's problem . . 33--40 P. Clote The metamathematics of Fra\"\issé's order type conjecture . . . . . . . . . . . . 41--56 S. Barry Cooper Enumeration reducibility, nondeterministic computations and relative computability of partial functions . . . . . . . . . . . . . . . 57--110 Rod Downey Notes on the $ O''' $ priority method with special attention to density results . . . . . . . . . . . . . . . . 111--140 Rod Downey and Carl Jockusch and Michael Stob Array nonrecursive sets and multiple permitting arguments . . . . . . . . . . 141--173 Rod Downey and Joe Mourad Superbranching degrees . . . . . . . . . 175--186 Peter A. Fejer and Richard A. Shore A direct construction of a minimal recursively enumerable truth-table degree . . . . . . . . . . . . . . . . . 187--204 Marcia Groszek and Michael Mytilinaios $ \Sigma_2 $-induction and the construction of a high degree . . . . . 205--221 Christine Ann Haught and Richard A. Shore Undecidability and initial segments of the wtt-degrees $ \leq 0^\prime $ . . . 223--244 Antonín Ku\vcera Randomness and generalizations of fixed point free functions . . . . . . . . . . 245--254 Martin Kummer Recursive enumeration without repetition revisited . . . . . . . . . . . . . . . 255--275 Steffen Lempp and Manuel Lerman Priority arguments using iterated trees of strategies . . . . . . . . . . . . . 277--296 Wolfgang Maass and Theodore A. Slaman On the relationship between the complexity, the degree, and the extension of a computable set . . . . . 297--322 A. Nerode and J. B. Remmel Polynomially isolated sets . . . . . . . 323--362 Dieter Spreen A characterization of effective topological spaces . . . . . . . . . . . 363--387
Serge Lang Nevanlinna theory in one variable . . . 9--55 Serge Lang Equidimensional higher dimensional theory . . . . . . . . . . . . . . . . . 57--107 William Cherry Nevanlinna Theory for Meromorphic Functions on Coverings of $C$ . . . . . 113--142 William Cherry Equidimensional Nevanlinna Theory on Coverings of $ C^n $ . . . . . . . . . . 143--168
Shigeki Akiyama On a certain sum of traces of Hecke operators . . . . . . . . . . . . . . . 1--10 J.-P. Allouche and P. Flajolet and M. Mendes France Algebraically independent formal power series: a language theory interpretation 11--18 Jean-Paul Allouche and Jeffrey Shallit Sums of digits and the Hurwitz zeta function . . . . . . . . . . . . . . . . 19--30 Daniel Bertrand Transcendental methods in arithmetic geometry . . . . . . . . . . . . . . . . 31--44 Christol Gilles Globally bounded solutions of differential equations . . . . . . . . . 45--64 Etienne Fouvry Nombres presque premiers dans les petits intervalles. (French) [] . . . . . . . . 65--85 E. Fouvry and G. Tenenbaum Diviseurs de Titchmarsh des entiers sans grand facteur premier. (French) [] . . . 86--102 Akio Fujii Uniform distribution of the zeros of the Riemann zeta function and the mean value theorems of Dirichlet $L$-functions (II) 103--125 Kazuo Goto and Takeshi Kano Some conditions on uniform distribution of monotone sequences . . . . . . . . . 126--132 Takashi Harase Algebraic dependence of formal power series . . . . . . . . . . . . . . . . . 133--137 Guy Henniart Une conséquence de la théorie du changement de base pour $ {\rm GL}(n) $. (French) [] . . . . . . . . . . . . . . 138--142 Kuniaki Horie and Mitsuko Horie On the exponents of ideal class groups of CM-fields . . . . . . . . . . . . . . 143--148 M. Ishibashi and S. Kanemitsu Some asymptotic formulas of Ramanujan 149--167 Nobushige Kurokawa Analyticity of Dirichlet series over prime powers . . . . . . . . . . . . . . 168--177 Kohji Matsumoto Value-distribution of zeta-functions . . 178--187 Shin-ichiro Mizumoto Integrality of critical values of triple product $L$-functions . . . . . . . . . 188--195 Takayuki Oda Multiple Hecke series for class-$1$ Whittaker functions on $ {\rm GL}(n)$ over $p$-adic fields . . . . . . . . . . 196--214
Roger W. Barnard Open problems and conjectures in complex analysis . . . . . . . . . . . . . . . . 1--26 J. M. Borwein and P. B. Borwein A remarkable cubic mean iteration . . . 27--31 Antonio Córdova Yévenes and Stephan Ruscheweyh On the maximal range problem for slit domains . . . . . . . . . . . . . . . . 33--44 Roland Freund On Bernstein type inequalities and a weighted Chebyshev approximation problem on ellipses . . . . . . . . . . . . . . 45--55 David M. Hough Conformal mapping and Fourier--Jacobi approximations . . . . . . . . . . . . . 57--70 J. A. Hummel Numerical solutions of the Schiffer equation . . . . . . . . . . . . . . . . 71--79 K. G. Ivanov and E. B. Saff Behavior of the Lagrange interpolants in the roots of unity . . . . . . . . . . . 81--87 Lisa Jacobsen Orthogonal polynomials, chain sequences, three-term recurrence relations and continued fractions . . . . . . . . . . 89--101 Al Marden and Burt Rodin On Thurston's formulation and proof of Andreev's theorem . . . . . . . . . . . 103--115 Diego Mejía and David Minda Hyperbolic geometry in spherically $k$-convex regions . . . . . . . . . . . 117--129 David Minda The Bloch and Marden constants . . . . . 131--142 O. F. Orellana On some analytic and computational aspects of two dimensional vortex sheet evolution . . . . . . . . . . . . . . . 143--154 N. Papamichael and N. S. Stylianopoulos On the numerical performance of a domain decomposition method for conformal mapping . . . . . . . . . . . . . . . . 155--169 Glenn Schober Planar harmonic mappings . . . . . . . . 171--176 T. J. Suffridge Extremal problems for non-vanishing $ H^p $ functions . . . . . . . . . . . . 177--190 W. J. Thron Some results on separate convergence of continued fractions . . . . . . . . . . 191--200 R. S. Varga and A. J. Carpenter Asymptotics for the zeros of the partial sums of $ e^z $. II . . . . . . . . . . 201--207
Enrique Arrondo and Raquel Mallavibarrena and Ignacio Sols Proof of Schubert's conjectures on double contacts . . . . . . . . . . . . 1--29 D. Avritzer and I. Vainsencher $ {\rm Hilb}^4 P^2 $ . . . . . . . . . . 30--59 Susan Jane Colley Schubert's coincidence formulas for line complexes and the contribution of embedded planar pencils . . . . . . . . 60--76 Trygve Johnsen Local multiplicities of tangential trisecants to space curves . . . . . . . 77--100 Steven L. Kleiman Multiple-point formulas II: The Hilbert scheme . . . . . . . . . . . . . . . . . 101--138 Dan Laksov and Robert Speiser Transversality criteria in any characteristic . . . . . . . . . . . . . 139--150 Patrick Le Barz Quelques formules multisécantes pour les surfaces. (French) [] . . . . . . . . . 151--188 J. M. Miret and S. Xambó Descamps On Schubert's degenerations of cuspidal plane cubics . . . . . . . . . . . . . . 189--214 Ragni Piene and Hsin-sheng Tai A characterization of balanced rational normal scrolls in terms of their osculating spaces . . . . . . . . . . . 215--224 Francesc Rosselló-Llompart The Chow ring of $ {\rm Hilb}^3 P^3 $ 225--255 Anders Thorup Rational equivalence theory on arbitrary Noetherian schemes . . . . . . . . . . . 256--297
Tamar Datuashvili Homological dimension of extensions of abelian categories and rings . . . . . . 1--35 Joseph Gubeladze Classical algebraic $K$-theory of monoid algebras . . . . . . . . . . . . . . . . 36--94 Hvedri Inassaridze $K$-theory of special normed rings . . . 95--156 George Janelidze Cohomology and extensions of internal modules . . . . . . . . . . . . . . . . 157--168 M. Jibladze Coefficients for cohomology of `large' categories . . . . . . . . . . . . . . . 169--179 Tamazi Kandelaki $K$-theory of $ \mathbb {Z}_2$-graded Banach categories. I . . . . . . . . . . 180--221 P. Pataraia On Quillen's $+$ construction of perfect groups . . . . . . . . . . . . . . . . . 222--267 Teimuraz Pirashvili Cohomology of small categories in homotopical algebra . . . . . . . . . . 268--302 M. Uridia $U$-theory of exact categories . . . . . 303--313
Pierre Gilles Lemarié Introduction \`a la théorie des ondelettes. (French) [] . . . . . . . . 1--13 Yves Meyer Ondelettes, filtres miroirs en quadrature et traitement numérique de l'image. (French) [] . . . . . . . . . . 14--25 Pierre Gilles Lemarié Analyse multi-échelles et ondelettes \`a support compact. (French) [] . . . . . . 26--38 Guy David Une nouvelle démonstration du théor\`eme $ T(b) $, d'apr\`es Coifman et Semmes. (French) [] . . . . . . . . . . . . . . 39--50 Jacques Froment and Jean-Michel Morel Analyse multiéchelle, vision stéréo et ondelettes. (French) [] . . . . . . . . 51--80 Patrick Flandrin Quelques méthodes temps-fréquence et temps-échelle en traitement du signal. (French) [] . . . . . . . . . . . . . . 81--92 Gilles Deslauriers and Jacques Dubois and Serge Dubuc Schéma itératif d'interpolation. (French) [Iterative interpolation scheme] . . . . 93--101 Matthias Holschneider and Philippe Tchamitchian Régularité locale de la fonction ``non-différentiable'' de Riemann. (French) [] . . . . . . . . . . . . . . 102--124 A. Arneodo and F. Argoul and G. Grasseau Transformation en ondelettes et renormalisation. (French) [] . . . . . . 125--191 Pierre Gilles Lemarie Wavelets in 1989: an extended summary 192--212
Emilio Bujalance and José Javier Etayo and José Manuel Gamboa and Grzegorz Gromadzki Preliminary results . . . . . . . . . . 1--20 Emilio Bujalance and José Javier Etayo and José Manuel Gamboa and Grzegorz Gromadzki Klein surfaces as orbit spaces of NEC groups . . . . . . . . . . . . . . . . . 21--37 Emilio Bujalance and José Javier Etayo and José Manuel Gamboa and Grzegorz Gromadzki Normal NEC subgroups of NEC groups . . . 38--59 Emilio Bujalance and José Javier Etayo and José Manuel Gamboa and Grzegorz Gromadzki Cyclic groups of automorphisms of compact Klein surfaces . . . . . . . . . 60--97 Emilio Bujalance and José Javier Etayo and José Manuel Gamboa and Grzegorz Gromadzki Klein surfaces with groups of automorphisms in prescribed families . . 98--137 Emilio Bujalance and José Javier Etayo and José Manuel Gamboa and Grzegorz Gromadzki The automorphism group of compact Klein surfaces with one boundary component . . 138--152 Emilio Bujalance and José Javier Etayo and José Manuel Gamboa and Grzegorz Gromadzki The automorphism group of hyperelliptic compact Klein surfaces with boundary . . 153--164
Iris Lee Anshel On two relator groups . . . . . . . . . 1--21 Martin Arkowitz When is the homotopy set $ [X, Y] $ infinite? . . . . . . . . . . . . . . . 22--26 William A. Bogley Local collapses for diagrammatic reducibility . . . . . . . . . . . . . . 27--38 Ricardo N. Cruz Periodic knots and desuspensions of free involutions on spheres . . . . . . . . . 39--47 Carl Droms and Jacques Lewin and Herman Servatius The Tits conjecture and the five string braid group . . . . . . . . . . . . . . 48--51 Herman Servatius and Carl Droms and Brigitte Servatius The finite basis extension property and graph groups . . . . . . . . . . . . . . 52--58 Benjamin Fine Subgroup presentations without coset representatives . . . . . . . . . . . . 59--73 Michael Frame and James Hefferon Fractal dimensions of limit sets of some Kleinian groups . . . . . . . . . . . . 74--80 Richard Goldstein Bounded cancellation of automorphisms of free products . . . . . . . . . . . . . 81--89 Cynthia Hog-Angeloni A short topological proof of Cohn's theorem . . . . . . . . . . . . . . . . 90--95 Cynthia Hog-Angeloni On the homotopy type of $2$-complexes with a free product of cyclic groups as fundamental group . . . . . . . . . . . 96--108 Cynthia Hog-Angeloni and M. Paul Latiolais and Wolfgang Metzler Bias ideals and obstructions to simple-homotopy equivalence . . . . . . 109--121 Günther Huck Embeddings of acyclic $2$-complexes in $ S^4$ with contractible complement . . . 122--129 W. Imrich and E. C. Turner Fixed subsets of homomorphisms of free groups . . . . . . . . . . . . . . . . . 130--147 Gregory Lupton Note on a conjecture of Stephen Halperin's . . . . . . . . . . . . . . . 148--163 Martin Lustig On the rank, the deficiency and the homological dimension of groups: The computation of a lower bound via Fox ideals . . . . . . . . . . . . . . . . . 164--174 Stephan Rosebrock A reduced spherical diagram into a ribbon-disk complement and related examples . . . . . . . . . . . . . . . . 175--185 Christopher Schaufele and Nancy Zumoff $ *$-Groups, graphs, and bases . . . . . 186--191 Thomas W. Tucker Some topological graph theory for topologists: a sampler of covering space constructions . . . . . . . . . . . . . 192--207
Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Espaces métriques hyperboliques. (French) [] . . . . . . . . . . . . . . . . . . . 1--15 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Bord d'un espace hyperbolique. (French) [] . . . . . . . . . . . . . . . . . . . 16--23 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Quasi-géodésiques et quasi-isométries dans les espaces hyperboliques. (French) [] 24--42 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Groupes hyperboliques. (French) [] . . . 43--56 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Le poly\`edre $ P_d(X) $. (French) [] 57--64 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Inégalités isopérimétriques et espaces hyperboliques. (French) [] . . . . . . . 65--80 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Inégalités isopérimétriques: une application. (French) [] . . . . . . . . 81--89 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Approximation par des arbres. (French) [] . . . . . . . . . . . . . . . . . . . 90--96 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Classification des isométries. (French) [] . . . . . . . . . . . . . . . . . . . 97--105 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Parties quasi-convexes d'un espace hyperbolique. (French) [] . . . . . . . 106--123 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Structure métrique sur le bord d'un espace hyperbolique. (French) [] . . . . 124--139 Michel Coornaert and Thomas Delzant and Athanase Papadopoulos Automates et groupes hyperboliques. (French) [] . . . . . . . . . . . . . . 140--158
Luigi Accardi and Alberto Frigerio and Yun-Gang Lu Quantum Langevin equation in the weak coupling limit . . . . . . . . . . . . . 1--16 L. Accardi and Yun Gang Lu On the low density limit of Boson models 17--53 L. Accardi and R. L. Hudson Quantum stochastic flows and non abelian cohomology . . . . . . . . . . . . . . . 54--69 David Applebaum Quantum diffusions on involutive algebras . . . . . . . . . . . . . . . . 70--85 Alberto Barchielli Some Markov semigroups in quantum probability . . . . . . . . . . . . . . 86--98 Viacheslav Belavkin A quantum stochastic calculus in Fock space of input and output nondemolition processes . . . . . . . . . . . . . . . 99--125 Carlo Cecchini and Burkhard Kümmerer Stochastic transitions on preduals of von Neumann algebras . . . . . . . . . . 126--130 F. Fagnola Quantum stochastic calculus and a boson Lévy theorem . . . . . . . . . . . . . . 131--144 Karl-Heinz Fichtner and Uwe Schreiter Locally independent boson systems . . . 145--161 Alberto Frigerio Time-inhomogeneous and nonlinear quantum evolutions . . . . . . . . . . . . . . . 162--176 Alberto Frigerio Quantum Poisson processes: Physical motivations and applications . . . . . . 177--177 D. Goderis and A. Verbeure and P. Vets Quantum central limit and coarse graining . . . . . . . . . . . . . . . . 178--193 Gerhard C. Hegerfeldt An open problem in quantum shot noise 194--203 Ewa Hensz A method of operator estimation and a strong law of large numbers in von Neumann algebras . . . . . . . . . . . . 204--210 A. S. Holevo An analog of the Itô decomposition for multiplicative processes with values in a Lie group . . . . . . . . . . . . . . 211--215 R. L. Hudson and P. Shepperson Stochastic dilations of quantum dynamical semigroups using one-dimensional quantum stochastic calculus . . . . . . . . . . . . . . . . 216--218 Gert-Ludwig Ingold and Hermann Grabert Sluggish decay of preparation effects in low temperature quantum systems . . . . 219--230 Ryszard Jajte Almost sure convergence of iterates of contractions in noncommutative $ L_2 $-spaces . . . . . . . . . . . . . . . . 231--246 J. M. Lindsay and H. Maassen Duality transform as *-algebraic isomorphism . . . . . . . . . . . . . . 247--250 J. M. Lindsay and K. R. Parthasarathy Rigidity of the Poisson convolution . . 251--262
Karl Heinz Dovermann and Reinhard Schultz Summary: Background material and basic results . . . . . . . . . . . . . . . . 1--8 Karl Heinz Dovermann and Reinhard Schultz Introduction to equivariant surgery . . 9--36 Karl Heinz Dovermann and Reinhard Schultz Relations between equivariant surgery theories . . . . . . . . . . . . . . . . 37--79 Karl Heinz Dovermann and Reinhard Schultz Periodicity theorems in equivariant surgery . . . . . . . . . . . . . . . . 80--114 Karl Heinz Dovermann and Reinhard Schultz Twisted product formulas for surgery with coefficients . . . . . . . . . . . 115--140 Karl Heinz Dovermann and Reinhard Schultz Products and periodicity for surgery up to pseudoequivalence . . . . . . . . . . 141--191
Shinzo Watanabe Short time asymptotic problems in Wiener functional integration theory. Applications to heat kernels and index theorems . . . . . . . . . . . . . . . . 1--62 Etienne Pardoux Applications of anticipating stochastic calculus to stochastic differential equations . . . . . . . . . . . . . . . 63--105 H. Körezlio\uglu and A. S. Üstünel A new class of distributions on Wiener spaces . . . . . . . . . . . . . . . . . 106--121 D. Nualart and A. S. Üstünel and M. Zakai Some remarks on independence and conditioning on Wiener space . . . . . . 122--127 Nicolas Bouleau and Francis Hirsch Some results on Lipschitzian stochastic differential equations by Dirichlet forms methods . . . . . . . . . . . . . 128--140 Maria Jolis and Marta Sanz On generalized multiple stochastic integrals and multiparameter anticipative calculus . . . . . . . . . 141--182 Axel Grorud Un crochet non-symétrique en calcul stochastique anticipatif. (French) [] 183--192 Paolo Baldi Large deviations and the functional Lévy's modulus for invariant diffusions 193--203 M. Chaleyat-Maurel and J.-F. Le Gall On polar sets for hypoelliptic diffusion processes . . . . . . . . . . . . . . . 204--212 Ph. Blanchard and Zhiming Ma New results on the Schrödinger semigroups with potentials given by signed smooth measures . . . . . . . . . . . . . . . . 213--243 Francesco Russo Linear extrapolation concerning Hilbert valued planar functions . . . . . . . . 244--268
Friedmar Schulz Integral criteria for Hölder continuity 1--14 Friedmar Schulz Regularity for linear elliptic equations and quasilinear systems . . . . . . . . 15--27 Friedmar Schulz Regularity for Monge--Amp\`ere equations 28--38 Friedmar Schulz Function theory of elliptic equations 39--52 Friedmar Schulz Univalent solutions of binary elliptic systems . . . . . . . . . . . . . . . . 53--60 Friedmar Schulz Conformal mappings with respect to a Riemannian metric . . . . . . . . . . . 61--71 Friedmar Schulz Local behavior of solutions of differential inequalities . . . . . . . 72--84 Friedmar Schulz Univalent solutions of Heinz--Lewy type systems . . . . . . . . . . . . . . . . 85--93 Friedmar Schulz A priori estimates for Monge--Amp\`ere equations . . . . . . . . . . . . . . . 94--105 Friedmar Schulz Regularity and a priori estimates for locally convex surfaces . . . . . . . . 106--114
Ivar Ekeland and Paolo Marcellini and Antonio Marino and Mario Tosques and Czes\law Olech and Giulio Pianigiani and Tyrrell Rockafeller and Michel Valadier Front Matter . . . . . . . . . . . . . . ?? I. Ekeland The $ \epsilon $-variational principle revisited . . . . . . . . . . . . . . . 1--15 Paolo Marcellini Non convex integrals of the Calculus of Variations . . . . . . . . . . . . . . . 16--57 A. Marino and M. Tosques Some variational problems with lack of convexity and some partial differential inequalities . . . . . . . . . . . . . . 58--83 Czesraw Olech The Lyapunov Theorem: Its extensions and applications . . . . . . . . . . . . . . 84--103 Giulio Pianigiani Differential inclusions the Baire category method . . . . . . . . . . . . 104--136 R. T. Rockafellar Nonsmooth analysis and parametric optimization . . . . . . . . . . . . . . 137--151 Michel Valadier Young measures . . . . . . . . . . . . . 152--188 Michel Valadier Back Matter . . . . . . . . . . . . . . ??
Joachim Schwermer Cohomology of arithmetic groups, automorphic forms and $L$-functions . . 1--29 Nolan R. Wallach Limit multiplicities in $ L^2 (\Gamma \setminus G) $ . . . . . . . . . . . . . 31--56 Avner Ash and Armand Borel Generalized modular symbols . . . . . . 57--75 Siegfried Böcherer On Yoshida's theta lift . . . . . . . . 77--83 Prof. Dr. Günter Harder Some results on the Eisenstein cohomology of arithmetic subgroups of $ {\rm GL}_n $ . . . . . . . . . . . . . . 85--153 Michael Harris Period invariants of Hilbert modular forms, I: Trilinear differential operators and $L$-functions . . . . . . 155--202 R.-P. Holzapfel An effective finiteness theorem for ball lattices . . . . . . . . . . . . . . . . 203--236 Yasuko Konno Unitary representations with nonzero multiplicities in $ L^2 (\Gamma \setminus G) $ . . . . . . . . . . . . . 237--248 J.-P. Labesse Signature des variétés modulaires de Hilbert et représentations diédrales. (French) [] . . . . . . . . . . . . . . 249--260 Takayuki Oda The Riemann--Hodge period relation for Hilbert modular forms of weight $2$ . . 261--286 Mark Reeder Modular symbols and the Steinberg representation . . . . . . . . . . . . . 287--302 Jürgen Rohlfs Lefschetz numbers for arithmetic groups 303--313 Jürgen Rohlfs and Birgit Speh Boundary contributions to Lefschetz numbers for arithmetic groups I . . . . 315--332 S. P. Wang Embedding of Flensted--Jensen modules in $ L^2 (\Gamma \setminus G) $ in the noncompact case . . . . . . . . . . . . 333--356
Goro Azumaya Locally split submodules and modules with perfect endomorphism rings . . . . 1--6 Soumaya Makdissi Khuri Modules with regular, perfect, Noetherian or Artinian endomorphism rings . . . . . . . . . . . . . . . . . 7--18 Joseph A. Wehlen Azumaya rings and Maschke's Theorem . . 19--24 Bruno J. Müller and Surjeet Singh Uniform modules over serial rings II . . 25--32 Mary H. Wright Links between prime ideals of a serial ring with Krull dimension . . . . . . . 33--40 John Dauns Semiprime modules and rings . . . . . . 41--62 Mark L. Teply and Blas Torrecillas Primitive ideals of nice Ore localizations . . . . . . . . . . . . . 63--71 Kent R. Fuller and Birge Zimmermann-Huisgen Filtered Cartan matrices for Artinian rings of low Loewy length . . . . . . . 72--79 Philippe Loustaunau and Jay Shapiro Morita contexts . . . . . . . . . . . . 80--92 Abdullah Al-Huzali and S. K. Jain and S. R. López-Permouth On the weak relative-injectivity of rings and modules . . . . . . . . . . . 93--98 Patrick F. Smith CS-modules and weak CS-modules . . . . . 99--115 S. Tariq Rizvi and Mohamed F. Yousif On continuous and singular modules . . . 116--124 Gary Birkenmeier and Henry Heatherly Permutation identity rings and the medial radical . . . . . . . . . . . . . 125--138 J. C. McConnell Quantum groups, filtered rings and Gelfand--Kirillov dimension . . . . . . 139--147 Bruno J. Müller and Ying-Lan Zhang Ore localization in the first Weyl algebra . . . . . . . . . . . . . . . . 148--154 Timothy J. Hodges Ring-theoretical aspects of the Bernstein--Beilinson theorem . . . . . . 155--163
W\lodzimierz Odyniec and Grzegorz Lewicki Introduction . . . . . . . . . . . . . . 1--17 W\lodzimierz Odyniec and Grzegorz Lewicki Problem of uniqueness of minimal projections in Banach spaces . . . . . . 18--51 W\lodzimierz Odyniec and Grzegorz Lewicki Minimal projections onto codimension one subspaces and a related mathematical programming problem . . . . . . . . . . 52--93 W\lodzimierz Odyniec and Grzegorz Lewicki Kolmogorov's type criteria for minimal projections . . . . . . . . . . . . . . 94--130 W\lodzimierz Odyniec and Grzegorz Lewicki Isometries of Banach spaces and the problem of characterization of Hilbert spaces . . . . . . . . . . . . . . . . . 131--152
James S. Howland Spectral concentration for dense point spectrum . . . . . . . . . . . . . . . . 1--11 E. N. Dancer and P. Hess Behaviour of a semilinear periodic-parabolic problem when a parameter is small . . . . . . . . . . . 12--19 Kenji Yajima On smoothing property of Schrödinger propagators . . . . . . . . . . . . . . 20--35 Gregory F. Bachelis and Frank J. Massey III A coin tossing problem of R. L. Rivest 36--52 Tosio Kato Liapunov functions and monotonicity in the Navier--Stokes equation . . . . . . 53--63 Hiroshi Matano Singular solutions of a nonlinear elliptic equation and an infinite dimensional dynamical system . . . . . . 64--87 Takashi Suzuki Introduction to geometric potential theory . . . . . . . . . . . . . . . . . 88--103 Rafael José Iório, Jr. KDV, BO and friends in weighted Sobolev spaces . . . . . . . . . . . . . . . . . 104--121 Alan McIntosh The square root problem for elliptic operators --- a survey . . . . . . . . . 122--140 Carlos E. Kenig and Gustavo Ponce and Luis Vega The initial value problem for a class of nonlinear dispersive equations . . . . . 141--156 Akira Iwatsuka On Schrödinger operators with magnetic fields . . . . . . . . . . . . . . . . . 157--172 Hideo Tamura Existence of bound states for double well potentials and the Efimov effect 173--186 Arne Jensen High energy asymptotics for the total scattering phase in potential scattering theory . . . . . . . . . . . . . . . . . 187--195 Takashi Ichinose Feynman path integral to relativistic quantum mechanics . . . . . . . . . . . 196--209 Mitsuru Ikawa On the distribution of poles of the scattering matrix for several convex bodies . . . . . . . . . . . . . . . . . 210--225 Tohru Ozawa Smoothing effect for the Schrödinger evolution equations with electric fields 226--235 Takayoshi Ogawa and Yoshio Tsutsumi Blow-up of solutions for the nonlinear Schrödinger equation with quartic potential and periodic boundary condition . . . . . . . . . . . . . . . 236--251
Luis Alvarez-Gaumé and Enrico Arbarello and Corrado De Concini and Nigel J. Hitchin Front Matter . . . . . . . . . . . . . . ?? N. J. Hitchin The geometry and topology of moduli spaces . . . . . . . . . . . . . . . . . 1--48 L. Alvarez-Gaumé Topics in conformal field theory and string theory . . . . . . . . . . . . . 49--94 Enrico Arbarello and Corrado De Concini Geometrical aspects of the Kadomtsev--Petviashvili equation . . . . 95--137 Ugo Bruzzo and Giovanni Landi Geometry of standard constraints and anomalous supersymmetric gauge theories 138--147 Adrian R. Lugo and Jorge G. Russo Hamiltonian formulation of string theory and multiloop amplitudes in the operator context . . . . . . . . . . . . . . . . 148--162 Marco Matone Conformal field theory, real weight differentials and KdV equation in higher genus . . . . . . . . . . . . . . . . . 163--175 Gregorio Falqui and Cesare Reina Supermoduli and superstrings . . . . . . 176--188 Gregorio Falqui and Cesare Reina Back Matter . . . . . . . . . . . . . . ??
G. Baron On point sets with differences of distances not less than the minimum distance . . . . . . . . . . . . . . . . 1--5 Martin Blümlinger Sample path properties of diffusion processes on compact manifolds . . . . . 6--19 Thomas B. Burg and Michael Drmota and Robert F. Tichy Some new results in summability theory 20--30 Michael Drmota On irregularities of distribution on the hyperbolic plane . . . . . . . . . . . . 31--42 M. Drmota and R. F. Tichy and R. Winkler Completely uniformly distributed sequences of matrices . . . . . . . . . 43--57 Peter J. Grabner On digit expansions with respect to second order linear recurring sequences 58--64 Edmund Hlawka Näherungsformeln zur Berechnung von mehrfachen Integralen mit Anwendungen auf die Berechungen von Potentialen, Induktionskoeffizienten und Lösungen von Gleichungssystemen. (German) [Approximation formulas for the calculation of multiple integrals with applications to the calculation of potentials, induction coefficients, and solutions of equation systems] . . . . . 65--111 Peter Kirschenhofer On the variance of the sum of digits function . . . . . . . . . . . . . . . . 112--116 Peter Kirschenhofer and Helmut Prodinger On the analysis of probabilistic counting . . . . . . . . . . . . . . . . 117--120 Christian Krattenthaler A determinant evaluation and some enumeration results for plane partitions 121--131 Gerhard Larcher An inequality with applications in Diophantine approximation . . . . . . . 132--138 Wolfgang Müller and Werner Georg Nowak Lattice points in planar domains: Applications of Huxley's `discrete Hardy--Littlewood method' . . . . . . . 139--164 Prof. Dr. H. Niederreiter Pseudorandom numbers generated from shift register sequences . . . . . . . . 165--177 Werner Georg Nowak Divisors in arithmetic progressions in imaginary quadratic number fields . . . 178--192 Helmut Prodinger Further results on a problem of Knödel concerning the analysis of bin-packing 193--198 Johannes Schoißengeier An asymptotic expansion for $ \sum \limits_{n \leq N \{ n \alpha + \beta \} } $ . . . . . . . . . . . . . . . . . . 199--205 Gerhard Turnwald A note on the Ramanujan--Nagell equation 206--207 R. Winkler Strong Weyl property in uniform distribution . . . . . . . . . . . . . . 208--220
A. V. Babin and M. I. Vishik Semigroups dependent on a parameter, their attractors and asymptotic behaviour . . . . . . . . . . . . . . . 1--19 Yu. G. Borisovich A modern approach to the theory of topological characteristics of non-linear operators. II . . . . . . . . 21--49 A. T. Fomenko and V. V. Sharko Exact round Morse functions, inequalities of Morse type and integrals of Hamiltonian systems . . . . . . . . . 51--67 V. Ya. Gershkovich Estimates for $ \epsilon $-balls of nonholonomic metrics . . . . . . . . . . 69--85 Yu. I. Sapronov The bifurcation of stationary rotations of a multidimensional asymmetric rigid body from the sleeping top regime . . . 87--100 V. A. Sobolev Nonlocal integral manifolds and decoupling of nonlinear parabolic systems . . . . . . . . . . . . . . . . 101--108 B. Yu. Sternin and V. E. Shatalov On Leary's residue theory . . . . . . . 109--119 L. V. Zi\'lbergleit and V. V. Lychagin Spencer cohomology of differential equations . . . . . . . . . . . . . . . 121--136 V. G. Zvyagin The properness of elliptic and parabolic differential operators . . . . . . . . . 137--159 V. M. Tikhomirov A. N. Kolmogorov and the progress of mathematics . . . . . . . . . . . . . . 161--169 D. V. Alekseevskii and B. A. Putko On the completeness of left-invariant pseudo-Riemannian metrics on Lie groups 171--185 Ya. I. Belopol'skaya Second-order parabolic equations in principal fibre bundles and associated vector bundles . . . . . . . . . . . . . 187--200 A. Yu. Borisovich Lyapunov--Schmidt method and types of singularities of critical points of key function in the problem of bifurcations of minimal surfaces . . . . . . . . . . 201--210 Yu. G. Borisovich and M. I. Shpilberg Relative topological characteristics of mappings . . . . . . . . . . . . . . . . 211--225 B. D. Gel'man On some problems from the theory of fixed points of multivalued mappings . . 227--244 Le Van Hong Relative calibrations and the problem of stability of minimal surfaces . . . . . 245--262 A. M. Vershik On topological questions of real complexity theory and combinatorial optimization . . . . . . . . . . . . . . 263--270 Yu. M. Vorob'ev and M. V. Karasev Deformation and cohomologies of Poisson brackets . . . . . . . . . . . . . . . . 271--289 M. G. Zaidenberg Holomorphic rigidity of polynomial polyhedrons and quasihomogeneity . . . . 291--307 V. G. Zvyagin On the structure of the set of solutions of a non-linear elliptic problem with fixed boundary conditions . . . . . . . 309--320
B. Dwork Work of Philippe Robba . . . . . . . . . 1--10 Alan Adolphson and Steven Sperber $p$-Adic estimates for exponential sums 11--22 Yves André $p$-Adic Betti lattices . . . . . . . . 23--63 Jesús Araujo and J. Martinez-Maurica The nonarchimedean Banach--Stone theorem 64--79 Pierre Berthelot Cohomologie rigide et théorie des $D$-modules. (French) [] . . . . . . . . 80--124 D. Bertrand Extensions de $D$-modules et groupes de Galois différentiels. (French) [] . . . . 125--141 Bruno Chiarellotto Duality in rigid analysis . . . . . . . 142--172 Robert F. Coleman On the Frobenius matrices of Fermat curves . . . . . . . . . . . . . . . . . 173--193 Matthijs J. Coster Supercongruences . . . . . . . . . . . . 194--204 Valentino Cristante Witt realization of the $p$-adic Barsotti--Tate groups; some applications 205--216 J. Denef and F. Loeser Poly\`edres de Newton et poids de sommes exponentielles. (French) [] . . . . . . 217--222 Ernst-Ulrich Gekeler De Rham cohomology and the Gauss--Manin connection for Drinfeld modules . . . . 223--255 Frank Herrlich The nonarchimedean extended Teichmüller space . . . . . . . . . . . . . . . . . 256--266 Z. Mebkhout and L. Narvaez-Macarro Sur les coéfficients de de Rham--Grothendieck des variétés algébriques. (French) [] . . . . . . . . 267--308 Diane Meuser On a functional equation of Igusa's local zeta function . . . . . . . . . . 309--313 Yasuo Morita On vanishing of cohomologies of rigid analytic spaces . . . . . . . . . . . . 314--318 Arthur Ogus A $p$-adic analogue of the Chowla--Selberg formula . . . . . . . . 319--341 Wim H. Schikhof The complementation property of $ \ell^\infty $ in $p$-adic Banach spaces 342--350 Dinesh S. Thakur Gross--Koblitz formula for function fields . . . . . . . . . . . . . . . . . 351--355 Lucien van Hamme Three generalizations of Mahler's expansion for continuous functions on $ \mathbb {Z}_p $ . . . . . . . . . . . . 356--361
Bernard Candelpergher and Francine Diener and Marc Diener Retard \`a la bifurcation: du local au global. (French) [] . . . . . . . . . . 1--19 Carmen Chicone On bifurcation of limit cycles from centers . . . . . . . . . . . . . . . . 20--43 Freddy Dumortier and Robert Roussarie On the saddle loop bifurcation . . . . . 44--73 J. Ecalle Finitude des cycles-limites et accéléro-sommation de l'application de retour. (French) [] . . . . . . . . . . 74--159 Ljubomir Gavrilov and Emil Horozov Limit cycles and zeroes of Abelian integrals satisfying third order Picard--Fuchs equations . . . . . . . . 160--186 A. Gasull and J. Sotomayor On the basin of attraction of dissipative planar vector fields . . . . 187--195 C. Gutiérrez and J. Sotomayor Periodic lines of curvature bifurcating from Darbouxian umbilical connections 196--229 N. G. Lloyd and J. M. Pearson Conditions for a centre and the bifurcation of limit cycles in a class of cubic systems . . . . . . . . . . . . 230--242 Jean Moulin Ollagnier and Jean-Marie Strelcyn On first integrals of linear systems, Frobenius integrability theorem and linear representations of Lie algebras 243--271 A. Mourtada Cyclicité finie des polycycles hyperboliques de champs de vecteurs du plan mise sous forme normale. (French) [] . . . . . . . . . . . . . . . . . . . 272--314 L. M. Perko Bifurcation of limit cycles . . . . . . 315--333 Christiane Rousseau Universal unfolding of a singularity of a symmetric vector field with $7$-jet $ C^\infty $-equivalent to $ y \partial / \partial x + (\pm x^3 \pm x^6 y) \partial / \partial y$ . . . . . . . . . 334--355 Franz Rothe and Douglas S. Shafer Bifurcation in a quartic polynomial system arising in biology . . . . . . . 356--368 Shi Songling On the finiteness of certain boundary cycles for $N$ th degree polynomial vector fields . . . . . . . . . . . . . 369--372 Dana Schlomiuk Algebraic integrals of quadratic systems with a weak focus . . . . . . . . . . . 373--384 Ye Yanqian Rotated vector fields decomposition method and its application . . . . . . . 385--392 Henryk \.Zo\l\kadek Remarks on the delay of the loss of stability of systems with changing parameter . . . . . . . . . . . . . . . 393--396
J. L. Alperin A Lie approach to finite groups . . . . 1--9 A. N. Krasil'nikov and A. L. Shmel'kin On finite bases for laws of triangular matrices . . . . . . . . . . . . . . . . 10--13 G. I. Lehrer Group representations, geometry and topology . . . . . . . . . . . . . . . . 14--31 Ralph McKenzie Some interactions between group theory and the general theory of algebras . . . 32--48 M. F. Newman Groups of prime-power order . . . . . . 49--62 Cheryl E. Praeger Finite primitive permutation groups: a survey . . . . . . . . . . . . . . . . . 63--84 Dan Segal Residually finite groups . . . . . . . . 85--95 Bhama Srinivasan Modular representations of finite groups of Lie type in a non-defining characteristic . . . . . . . . . . . . . 96--105 C. M. Campbell and E. F. Robertson and P. D. Williams On the efficiency of some direct powers of groups . . . . . . . . . . . . . . . 106--113 J. R. J. Groves Rewriting systems and homology of groups 114--141 Graham Higman Transversals and conjugacy in the group of recursive permutations . . . . . . . 142--160 Walter D. Neumann On intersections of finitely generated subgroups of free groups . . . . . . . . 161--170 Shi Wujie and Bi Jianxing A characteristic property for each finite projective special linear group 171--180 V. E. Shpilrain On the centers of free central extensions of some groups . . . . . . . 181--184 John G. Thompson Groups of genus zero and certain rational functions . . . . . . . . . . . 185--190 G. E. Wall Dependence of Lie relators for Burnside varieties . . . . . . . . . . . . . . . 191--197 R. G. Burns Corrigenda to the paper `On the rank of the intersection of subgroups of a Fuchsian group' . . . . . . . . . . . . 198--198
R. Beauwens Modified incomplete factorization strategies . . . . . . . . . . . . . . . 1--16 R. Bramley and H.-C. Chen and U. Meier and A. Sameh On some parallel preconditioned CG schemes . . . . . . . . . . . . . . . . 17--27 Richard E. Ewing and Raytcho D. Lazarov and Peng Lu and Panayot S. Vassilevski Preconditioning indefinite systems arising from mixed finite element discretization of second-order elliptic problems . . . . . . . . . . . . . . . . 28--43 Ivar Gustafsson A class of preconditioned conjugate gradient methods applied to finite element equations . . . . . . . . . . . 44--57 David R. Kincaid and Thomas C. Oppe Recent vectorization and parallelization of ITPACKV . . . . . . . . . . . . . . . 58--78 J. Maubach On the sparsity patterns of hierarchical finite element matrices . . . . . . . . 79--104 Y. Notay Solving positive (semi)definite linear systems by preconditioned iterative methods . . . . . . . . . . . . . . . . 105--125 H. A. van der Vorst The convergence behaviour of preconditioned CG and CG-S in the presence of rounding errors . . . . . . 126--136 R. Weiss and W. Schönauer Data reduction (dare) preconditioning for generalized conjugate gradient methods . . . . . . . . . . . . . . . . 137--153 O. Axelsson and V. Eijkhout Analysis of a recursive $5$-point/$9$-point factorization method 154--173 O. Axelsson and W. Layton Iteration method as discretization procedures . . . . . . . . . . . . . . . 174--193
Renate Schaaf Dirichlet branches bifurcating from zero 1--44 Renate Schaaf Neumann problems, period maps and semilinear Dirichlet problems . . . . . 45--68 Renate Schaaf Generalizations . . . . . . . . . . . . 69--109 Renate Schaaf General properties of time maps . . . . 110--136
Dan Tiba Elements of nonlinear analysis . . . . . 1--28 Dan Tiba Semilinear equations . . . . . . . . . . 29--76 Dan Tiba Variational inequalities . . . . . . . . 77--121 Dan Tiba Free boundary problems . . . . . . . . . 122--151
A. M. Anile Modeling intense relativistic electron beams . . . . . . . . . . . . . . . . . 1--14 N. Bellomo and M. Lachowicz On the asymptotic theory of the Boltzmann and Enskog equations a rigorous $H$-theorem for the Enskog equation . . . . . . . . . . . . . . . . 15--30 F. Brezzi and L. D. Marini and P. Markowich and P. Pietra On some numerical problems in semiconductor device simulation . . . . 31--42 Dan G. Cacuci and V. Protopopescu Canonical propagators for nonlinear systems: Theory and sample applications 43--56 Russel E. Caflisch Singularity formation for vortex sheets and hyperbolic equations . . . . . . . . 57--69 Cornille Henri Exact exponential type solutions to the discrete Boltzmann models . . . . . . . 70--86 P. Degond and F. Guyot-Delaurens and F. J. Mustieles and F. Nier Semiconductor modelling via the Boltzmann equation . . . . . . . . . . . 87--106 Giovanni Frosali Functional-analytic techniques in the study of time-dependent electron swarms in weakly ionized gases . . . . . . . . 107--139 G. P. Galdi and M. Padula Further results in the nonlinear stability of the magnetic Bénard problem 140--151 François Golse Particle transport in nonhomogeneous media . . . . . . . . . . . . . . . . . 152--170 K. R. Rajagopal Some recent results on swirling flows of Newtonian and non-Newtonian fluids . . . 171--185 Yoshio Sone and Taku Ohwada and Kazuo Aoki Evaporation and condensation of a rarefied gas between its two parallel plane condensed phases with different temperatures and negative temperature-gradient phenomenon --- Numerical analysis of the Boltzmann equation for hard-sphere molecules . . . 186--202 Giampiero Spiga Rigorous solution to the extended kinetic equations for homogeneous gas mixtures . . . . . . . . . . . . . . . . 203--221
Rudolf Gorenflo and Sergio Vessella Introduction . . . . . . . . . . . . . . 1--7 Rudolf Gorenflo and Sergio Vessella Basic theory and representation formulas 8--25 Rudolf Gorenflo and Sergio Vessella Applications of Abel's original integral equation: Determination of potentials 26--34 Rudolf Gorenflo and Sergio Vessella Applications of a transformed Abel integral equation . . . . . . . . . . . 35--63 Rudolf Gorenflo and Sergio Vessella Smoothing properties of the Abel operators . . . . . . . . . . . . . . . 64--82 Rudolf Gorenflo and Sergio Vessella Existence and uniqueness theorems . . . 83--94 Rudolf Gorenflo and Sergio Vessella Relations between Abel transform and other integral transforms . . . . . . . 95--128 Rudolf Gorenflo and Sergio Vessella Nonlinear Abel integral equations of second kind . . . . . . . . . . . . . . 129--153 Rudolf Gorenflo and Sergio Vessella Illposedness and stabilization of linear Abel integral equations of first kind 154--181 Rudolf Gorenflo and Sergio Vessella On numerical treatment of first kind Abel integral equations . . . . . . . . 182--194
Malcolm R. Adams and Clint McCrory and Theodore Shifrin and Robert Varley Symmetric Lagrangian singularities and Gauss maps of theta divisors . . . . . . 1--26 Kurt Behnke On infinitesimal deformations of minimally elliptic singularities . . . . 27--41 K. Bekka $C$-Régularité et trivialité topologique. (French) [] . . . . . . . . . . . . . . 42--62 J. W. Bruce and T. C. Wilkinson Folding maps and focal sets . . . . . . 63--72 Julio Castellanos The dual graph for space curves . . . . 73--80 Jan Arthur Christophersen On the components and discriminant of the versal base space of cyclic quotient singularities . . . . . . . . . . . . . 81--92 James Damon - equivalence and the equivalence of sections of images and discriminants . . 93--121 Alexandru Dimca Differential forms and hypersurface singularities . . . . . . . . . . . . . 122--153 P. J. Giblin and F. Tari Local reflexional and rotational symmetry in the plane . . . . . . . . . 154--171 V. V. Goryunov The intersection form of a plane isolated line singularity . . . . . . . 172--184 S. M. Gusein-Zade On the degree of an equivariant map . . 185--193 Herwig Hauser and Gerd Müller Automorphisms of direct products of algebroid spaces . . . . . . . . . . . . 194--198 T. de Jong and D. van Straten Disentanglements . . . . . . . . . . . . 199--211 W. L. Marar The Euler characteristic of the disentanglement of the image of a corank $1$ map germ . . . . . . . . . . . . . . 212--220 David Mond Vanishing cycles for analytic maps . . . 221--234 Ruud Pellikaan On complete conditions in enumerative geometry . . . . . . . . . . . . . . . . 235--257 Andrew du Plessis and Leslie Charles Wilson Right-symmetry of mappings . . . . . . . 258--275 Rob Schrauwen Deformations and the Milnor number of non-isolated plane curve singularities 276--291 Dirk Siersma Vanishing cycles and special fibres . . 292--301 Jan Stevens On the versal deformation of cyclic quotient singularities . . . . . . . . . 302--319
P. J. Aston Scaling Laws and Bifurcation . . . . . . 1--21 David Chillingworth Bifurcation from a manifold . . . . . . 22--37 P. Chossat and D. Armbruster Structurally stable heteroclinic cycles in a system with $ O(3) $ symmetry . . . 38--62 J. D. Crawford and M. Golubitsky and M. G. M. Gomes and E. Knobloch and I. N. Stewart Boundary conditions as symmetry constraints . . . . . . . . . . . . . . 63--79 James Damon Equivariant bifurcations and morsifications for finite groups . . . . 80--106 G. Dangelmayr and M. Wegelin On a codimension-four bifurcation occurring in optical bistability . . . . 107--121 Odo Diekmann and Stephan A. van Gils The center manifold for delay equations in the light of suns and stars . . . . . 122--141 Mike Field Local structure of equivariant dynamics 142--166 J. E. Furter On the bifurcations of subharmonics in reversible systems . . . . . . . . . . . 167--192 Staszek Janeczko and Mark Roberts Classification of symmetric caustics I: symplectic equivalence . . . . . . . . . 193--219 S. Janeczko and Ian Stewart Symplectic singularities and optical diffraction . . . . . . . . . . . . . . 220--255 Reiner Lauterbach Dynamics near steady state bifurcations in problems with spherical symmetry . . 256--265 James Montaldi Caustics in time reversible Hamiltonian systems . . . . . . . . . . . . . . . . 266--277 Irene M. Moroz Some complex differential equations arising in telecommunications . . . . . 278--293 Martin Peters Classification of two-parameter bifurcations . . . . . . . . . . . . . . 294--300 Yieh-Hei Wan Versal deformations of infinitesimally symplectic transformations with antisymplectic involutions . . . . . . . 301--320
Donald L. Burkholder Explorations in martingale theory and its applications . . . . . . . . . . . . 1--66 Etienne Pardoux Filtrage Non Linéaire et Équations aux Derivées Partielles Stochastiques Associées. (French) [] . . . . . . . . . 68--163 Alain-Sol Sznitman Topics in propagation of chaos . . . . . 165--251
Guy David Wavelets . . . . . . . . . . . . . . . . 1--25 Guy David Singular integral operators . . . . . . 26--54 Guy David Singular integrals on curves and surfaces . . . . . . . . . . . . . . . . 55--92
Wojciech Banaszczyk Preliminaries . . . . . . . . . . . . . 1--44 Wojciech Banaszczyk Exotic groups . . . . . . . . . . . . . 45--71 Wojciech Banaszczyk Nuclear groups . . . . . . . . . . . . . 72--109 Wojciech Banaszczyk The Bochner theorem . . . . . . . . . . 110--131 Wojciech Banaszczyk Pontryagin duality . . . . . . . . . . . 132--167
Wolfgang M. Schmidt Siegel's lemma and heights . . . . . . . 1--33 Wolfgang M. Schmidt Diophantine approximation . . . . . . . 34--72 Wolfgang M. Schmidt The Thue equation . . . . . . . . . . . 73--126 Wolfgang M. Schmidt $S$-unit equations and hyperelliptic equations . . . . . . . . . . . . . . . 127--175 Wolfgang M. Schmidt Diophantine equations in more than two variables . . . . . . . . . . . . . . . 176--204
Akira Fujiki Hyperkähler structure on the moduli space of flat bundles . . . . . . . . . . . . 1--83 Hiroshige Shiga Hardy spaces and BMO on Riemann surfaces 84--93 Kensho Takegoshi Application of a certain integral formula to complex analysis . . . . . . 94--114 Toshihiro Nakanishi and John A. Velling On inner radii of Teichmüller spaces . . 115--126 Soji Kaneyuki On the causal structures of the Silov boundaries of symmetric bounded domains 127--159 Masahiko Taniguchi The behavior of the extremal length function on arbitrary Riemann surface 160--169 Takeo Ohsawa A strong harmonic representation theorem on complex spaces with isolated singularities . . . . . . . . . . . . . 170--176 Tetsuji Shioda Mordell--Weil lattices of type $ E_8 $ and deformation of singularities . . . . 177--202 Scott A. Wolpert The spectrum of a Riemann surface with a cusp . . . . . . . . . . . . . . . . . . 203--226 Toshiki Miyano and Junjiro Noguchi Moduli spaces of harmonic and holomorphic mappings and Diophantine geometry . . . . . . . . . . . . . . . . 227--253 Yum-Tong Siu Global nondeformability of the complex projective space . . . . . . . . . . . . 254--280 Ingrid Bauer and Siegmund Kosarew Some aspects of Hodge theory on non-complete algebraic manifolds . . . . 281--316 Steven Zucker $ L^p $-Cohomology and Satake compactifications . . . . . . . . . . . 317--339 Jürgen Jost and Shing-Tung Yau Harmonic maps and Kähler geometry . . . . 340--370 Yoshihiro Ohnita and Seiichi Udagawa Complex-analyticity of pluriharmonic maps and their constructions . . . . . . 371--407 Kyoji Saito Higher Eichler integrals and vector bundles over the moduli of spinned Riemann surfaces . . . . . . . . . . . . 408--421
Lennart Carleson Stochastic models of some dynamical systems . . . . . . . . . . . . . . . . 1--12 V. Milman Some applications of duality relations 13--40 Ya. G. Sinai Mathematical problems in the theory of quantum chaos . . . . . . . . . . . . . 41--59 P. M. Bleher Quasi-classical expansions and the problem of quantum chaos . . . . . . . . 60--89 Alexander G. Reznikov A strengthened isoperimetric inequality for simplices . . . . . . . . . . . . . 90--93 Michel Talagrand A new isoperimetric inequality and the concentration of measure phenomenon . . 94--124 Paul F. X. Müller Permutations of the Haar system . . . . 125--126 J. Bourgain On the distribution of polynomials on high dimensional convex sets . . . . . . 127--137 J. Bourgain and J. Lindenstrauss On convering a set in $ R^N $ by balls of the same diameter . . . . . . . . . . 138--144 M. Meyer and S. Reisner Characterization of affinely-rotation-invariant log-concave measures by section-centroid location 145--152 J. Bourgain Remarks on Montgomery's conjectures on Dirichlet sums . . . . . . . . . . . . . 153--165 M. Schmuckenschläger On the dependence on $ \epsilon $ in a theorem of J. Bourgain, J. Lindenstrauss and V. D. Milman . . . . . . . . . . . . 166--173 G. Schechtman and M. Schmuckenschläger Another remark on the volume of the intersection of two $ L_p^n $ balls . . 174--178 Jean Bourgain On the restriction and multiplier problems in $ R^3 $ . . . . . . . . . . 179--191
R. Haydon and E. Odell and H. Rosenthal On certain classes of Baire-1 functions with applications to Banach space theory 1--35 Keith Ball Normed spaces with a weak-Gordon--Lewis property . . . . . . . . . . . . . . . . 36--47 S. J. Szarek On the geometry of the Banach--Mazur compactum . . . . . . . . . . . . . . . 48--59 P. Wojtaszczyk Some remarks about the space of measures with uniformly bounded partial sums and Banach--Mazur distances between some spaces of polynomials . . . . . . . . . 60--67 N. Ghoussoub and W. B. Johnson Operators which factor through Banach lattices not containing $ c_0 $ . . . . 68--71 William B. Johnson and Gideon Schechtman Remarks on Talagrand's deviation inequality for Rademacher functions . . 72--77 M. Zippin A global approach to certain operator extension problems . . . . . . . . . . . 78--84 Helmut Knaust and Edward Odell Weakly null sequences with upper $ \ell_p$-estimates . . . . . . . . . . . 85--107 H. P. Rosenthal and S. J. Szarek On tensor products of operators from $ L^p $ to $ L^q $ . . . . . . . . . . . . 108--132 Thomas Schlumprecht Limited sets in injective tensor products . . . . . . . . . . . . . . . . 133--158 Frank Räbiger Lower and upper $2$-estimates for order bounded sequences and Dunford--Pettis operators between certain classes of Banach lattices . . . . . . . . . . . . 159--170 Denny H. Leung Embedding $ \ell^1 $ into tensor products of Banach spaces . . . . . . . 171--176 Pawel Hitczenko A remark on the paper ``Martingale inequalities in rearrangement invariant function spaces'' by W. B. Johnson and G. Schechtman . . . . . . . . . . . . . 177--182 Fouad Chaatit Twisted types and uniform stability . . 183--199
Alexey A. Panchishkin Front Matter . . . . . . . . . . . . . . N2--vii Alexey A. Panchishkin Introduction . . . . . . . . . . . . . . 1--8 Alexey A. Panchishkin Acknowledgement . . . . . . . . . . . . 8--8 Alexey A. Panchishkin Non-Archimedean analytic functions, measures and distributions . . . . . . . 9--34 Alexey A. Panchishkin Siegel modular forms and the holomorphic projection operator . . . . . . . . . . 35--80 Alexey A. Panchishkin Non-Archimedean standard zeta functions of Siegel modular forms . . . . . . . . 81--116 Alexey A. Panchishkin Non-Archimedean convolutions of Hilbert modular forms . . . . . . . . . . . . . 117--145 Alexey A. Panchishkin Back Matter . . . . . . . . . . . . . . 146--161 Michel Courtieu and Alexei A. Panchishkin Introduction . . . . . . . . . . . . . . 1--12 Michel Courtieu and Alexei A. Panchishkin 1. Non-Archimedean analytic functions, measures and distributions . . . . . . . 13--44 Michel Courtieu and Alexei A. Panchishkin 2. Siegel modular forms and the holomorphic projection operator . . . . 45--93 Michel Courtieu and Alexei A. Panchishkin 3. Arithmetical differential operators on nearly holomorphic Siegel modular forms . . . . . . . . . . . . . . . . . 95--125 Michel Courtieu and Alexei A. Panchishkin 4. Admissible measures for standard $L$-functions and nearly holomorphic Siegel modular forms . . . . . . . . . . 127--186 Michel Courtieu and Alexei A. Panchishkin References . . . . . . . . . . . . . . . 187--193
Torben T. Nielsen Introduction . . . . . . . . . . . . . . 1--3 Torben T. Nielsen The Bose algebra $ \Gamma_0 \mathfrak {H}, \langle, \rangle $ . . . . . . . . 4--22 Torben T. Nielsen Lifting operators to $ \Gamma $$ \mathfrak {H} $ . . . . . . . . . . . . 23--32 Torben T. Nielsen The coherent vectors in $ \Gamma $$ \mathfrak {H} $ . . . . . . . . . . . . 33--44 Torben T. Nielsen The Wick ordering and the Weyl relations 45--52 Torben T. Nielsen Some special operators . . . . . . . . . 53--65 Torben T. Nielsen The complex wave representation . . . . 66--71 Torben T. Nielsen The real wave representation . . . . . . 72--78 Torben T. Nielsen Bose algebras of operators . . . . . . . 79--88 Torben T. Nielsen Wave representations of $ \Gamma $($ \mathfrak {H} $+$ \mathfrak {H} $*) . . 89--93
Yoshiyuki Hino and Satoru Murakami and Toshiki Naito Phase Spaces . . . . . . . . . . . . . . 1--34 Yoshiyuki Hino and Satoru Murakami and Toshiki Naito Fundamental theorems . . . . . . . . . . 35--52 Yoshiyuki Hino and Satoru Murakami and Toshiki Naito Stieltjes integrals and linear operators on $ \mathcal {B} $ . . . . . . . . . . 53--98 Yoshiyuki Hino and Satoru Murakami and Toshiki Naito General linear systems . . . . . . . . . 99--129 Yoshiyuki Hino and Satoru Murakami and Toshiki Naito Linear autonomous systems . . . . . . . 130--176 Yoshiyuki Hino and Satoru Murakami and Toshiki Naito Linear periodic systems . . . . . . . . 177--186 Yoshiyuki Hino and Satoru Murakami and Toshiki Naito Fading memory spaces and functional differential equations . . . . . . . . . 187--214 Yoshiyuki Hino and Satoru Murakami and Toshiki Naito Stabilities in perturbed systems and limiting equations . . . . . . . . . . . 215--253 Yoshiyuki Hino and Satoru Murakami and Toshiki Naito Existence of periodic solutions and almost periodic solutions . . . . . . . 254--276
C. Allday and V. Puppe Some applications of shifted subgroups in transformation groups . . . . . . . . 1--19 Pawel Andrzejewski Equivariant finiteness obstruction and its geometric applications --- a survey 20--37 Giora Dula On conic spaces . . . . . . . . . . . . 38--58 Professor F. T. Farrell and Professor L. E. Jones Computations of stable pseudoisotopy spaces for aspherical manifolds . . . . 59--74 F. E. A. Johnson and E. G. Rees The fundamental groups of algebraic varieties . . . . . . . . . . . . . . . 75--82 Kunio Murasugi Invariants of graphs and their applications to knot theory . . . . . . 83--97 A. V. Pazhitnov Morse theory of closed $1$-forms . . . . 98--110 Urs Würgler Morava $K$-theories: a survey . . . . . 111--138 Frank Connolly and Tadeusz Ko\'zniewski Examples of lack of rigidity in crystallographic groups . . . . . . . . 139--145 Jean-Claude Hausmann Sur la Topologie des Bras Articulés. (French) [] . . . . . . . . . . . . . . 146--159 Ulrich Koschorke Semicontractible link maps and their suspensions . . . . . . . . . . . . . . 160--169 Jonathan Rosenberg The KO-assembly map and positive scalar curvature . . . . . . . . . . . . . . . 170--182 Micha\l Sadowski Equivariant splittings associated with smooth toral actions . . . . . . . . . . 183--192 E. V. Troitsky Lefschetz numbers of $ C* $-complexes 193--206 Hans Joachim Baues On the homotopy category of Moore spaces and an old result of Barratt . . . . . . 207--230 Jan Jaworowski An additive basis for the cohomology of real Grassmannians . . . . . . . . . . . 231--234 Nguyen Huynh Ph\`an On the topology of the space of reachable symmetric linear systems . . . 235--253 R. Schwänzl and R. M. Vogt Homotopy ring spaces and their matrix rings . . . . . . . . . . . . . . . . . 254--272 Jolanta S\lominska Homotopy colimits on $E$-$I$-categories 273--294 Vladimir V. Vershinin On bordism rings with principal torsion ideal . . . . . . . . . . . . . . . . . 295--309
Kenneth L. Cooke and Joseph Wiener A survey of differential equations with piecewise continuous arguments . . . . . 1--15 Jack K. Hale Dynamics and delays . . . . . . . . . . 16--30 Paul Waltman A brief survey of persistence in dynamical systems . . . . . . . . . . . 31--40 Felix Albrecht and Gabriele Villari Periodic orbits of planar polynomial Liénard systems with a small parameter 41--52 Herbert Amann Hopf bifurcation in quasilinear reaction-diffusion systems . . . . . . . 53--63 Ovide Arino Monotone semi-flows which have a monotone first integral . . . . . . . . 64--75 Anna Capietto and Jean Mawhin and Fabio Zanolin The coincidence degree of some functional differential operators in spaces of periodic functions and related continuation theorems . . . . . . . . . 76--87 L. A. V. Carvalho On the stability of discrete equations and ordinary differential equations . . 88--97 G. Conti and P. Nistri and P. Zecca Systems of set-valued equations in Banach spaces . . . . . . . . . . . . . 98--109 C. Corduneanu Abstract Volterra equations and weak topologies . . . . . . . . . . . . . . . 110--115 Odo Diekmann and Mats Gyllenberg and Horst R. Thieme Semigroups and renewal equations on dual Banach spaces with applications to population dynamics . . . . . . . . . . 116--129 W. E. Fitzgibbon and J. J. Morgan and R. S. Sanders and S. J. Waggoner Estimates for spatio-temporally dependent reaction diffusion systems . . 130--146 G. Fournier and M. Willem The mountain circle theorem . . . . . . 147--160 Jeffery M. Franke and Harlan W. Stech Extensions of an algorithm for the analysis of nongeneric Hopf bifurcations, with applications to delay-difference equations . . . . . . . 161--175 Massimo Furi and Maria Patrizia Pera The forced spherical pendulum does have forced oscillations . . . . . . . . . . 176--182 David Gurarie and Gerhard Kalisch and Mark Kon and Edward Landesman Radial bounds for Schrödinger operators in Euclidean domains . . . . . . . . . . 183--190 P. Habets and M. Ramos and L. Sanchez Jumping nonlinearity for 2nd order ODE with positive forcing . . . . . . . . . 191--203 Kenneth B. Hannsgen and Robert L. Wheeler Moment conditions for a Volterra integral equation in a Banach space . . 204--209 William A. Harris, Jr. and Yasutaka Sibuya Asymptotic behaviors of solutions of a system of linear ordinary differential equations as $ t \to \infty $ . . . . . 210--217 Tomasz Kaczynski Implicit differential equations which are not solvable for the highest derivative . . . . . . . . . . . . . . . 218--224
Mohamed Bekkali Nonmeasurable sets of reals . . . . . . 1--13 Mohamed Bekkali Measurability in $ L[\mathbb {R}] $ . . 15--22 Mohamed Bekkali Forcing axioms . . . . . . . . . . . . . 23--60 Mohamed Bekkali The method of minimal walks . . . . . . 61--104 Mohamed Bekkali Appendix . . . . . . . . . . . . . . . . 105--114
Ryszard Jajte Almost sure convergence in noncommutative $ L_2 $-spaces . . . . . 1--9 Ryszard Jajte Individual ergodic theorems in $ L_2 $ over a von Neumann algebra . . . . . . . 10--36 Ryszard Jajte Asymptotic formulae . . . . . . . . . . 37--51 Ryszard Jajte Convergence of iterates of contractions 52--63 Ryszard Jajte Convergence of orthogonal series and strong laws of large numbers . . . . . . 64--84 Ryszard Jajte Convergence of conditional expectations and martingales . . . . . . . . . . . . 85--89 Ryszard Jajte Miscellaneous results . . . . . . . . . 90--99
Jacques Dixmier Sur les invariants du groupe symétrique dans certaines représentations, II. (French) [] . . . . . . . . . . . . . . 1--34 Barbara J. Schmid Finite groups and invariant theory . . . 35--66 Jan-Erik Björk Derived categories . . . . . . . . . . . 67--129 Piotr Pragacz Algebro-geometric applications of Schur $s$- and $q$-polynomials . . . . . . . . 130--191 François Dumas Sous-corps de fractions rationnelles des corps gauches de séries de Laurent. (French) [] . . . . . . . . . . . . . . 192--214 Daniel Krob Expressions rationnelles sur un anneau. (French) [] . . . . . . . . . . . . . . 215--243 J. F. Pommaret Deformation theory of algebraic and geometric structures . . . . . . . . . . 244--254 Michel Van den Bergh Differential operators on semi-invariants for tori and weighted projective spaces . . . . . . . . . . . 255--272
V. A. Alexeev Theorems about good divisors on log Fano varieties (case of index $ r > (n - 2)$) 1--9 Donu Arapura Fano maps and fundamental groups . . . . 10--14 A. Bertram and Lawrence Ein and Robert Lazarsfeld Surjectivity of Gaussian maps for line bundles of large degree on curves . . . 15--25 V. I. Danilov De Rham complex on toroidal variety . . 26--38 Igor Dolgachev and Igor Reider On rank $2$ vector bundles with $ c_1^2 = 10$ and $ c_2 = 3$ on Enriques surfaces . . . . . . . . . . . . . . . . 39--49 V. A. Iskovskih Towards the problem of rationality of conic bundles . . . . . . . . . . . . . 50--56 M. M. Kapranov On DG-modules over the de Rham complex and the vanishing cycles functor . . . . 57--86 George R. Kempf More on computing invariants . . . . . . 87--89 George R. Kempf Effective methods in invariant theory 90--93 V. A. Kolyvagin On the structure of Shafarevich--Tate groups . . . . . . . . . . . . . . . . . 94--121 Vic. S. Kulikov On the fundamental group of the complement of a hypersurface in $ \mathbb {C}^n $ . . . . . . . . . . . . 122--130 Boris Moishezon and Mina Teicher Braid group technique $m$ complex geometry, II: From arrangements of lines and conics to cuspidal curves . . . . . 131--180 D. Yu. Nogin Notes on exceptional vector bundles and helices . . . . . . . . . . . . . . . . 181--195 Morihiko Saito Hodge conjecture and mixed motives II 196--215 Craig Seeley and Stephen S.-T. Yau Algebraic methods in the study of simple-elliptic singularities . . . . . 216--237 Roy Smith and Robert Varley Singularity theory applied to $ \Theta $-divisors . . . . . . . . . . . . . . . 238--257 A. N. Tyurin A slight generalization of the Mehta--Ramanathan theorem . . . . . . . 258--272 F. L. Zak Some properties of dual varieties and their applications in projective geometry . . . . . . . . . . . . . . . . 273--280 Yuri G. Zarhin Linear irreducible Lie algebras and Hodge structures . . . . . . . . . . . . 281--297 Yuri G. Zarhin Ussr participants . . . . . . . . . . . 298--300
Freddy Dumortier and Robert Roussarie and Jorge Sotomayor and Henryk \.Za\l\kadek Introduction . . . . . . . . . . . . . . 1--18 Freddy Dumortier and Robert Roussarie and Jorge Sotomayor and Henryk \.Za\l\kadek Definitions and notations . . . . . . . 19--21 Freddy Dumortier and Robert Roussarie and Jorge Sotomayor and Henryk \.Za\l\kadek Transformation into normal form . . . . 22--27 Freddy Dumortier and Robert Roussarie and Jorge Sotomayor and Henryk \.Za\l\kadek Bifurcations of codimension $1$ and $2$ 28--56 Freddy Dumortier and Robert Roussarie and Jorge Sotomayor and Henryk \.Za\l\kadek Elementary properties . . . . . . . . . 57--84 Freddy Dumortier and Robert Roussarie and Jorge Sotomayor and Henryk \.Za\l\kadek The central rescaling . . . . . . . . . 85--134 Freddy Dumortier and Robert Roussarie and Jorge Sotomayor and Henryk \.Za\l\kadek Conclusions and discussion of remaining problems . . . . . . . . . . . . . . . . 135--164 Freddy Dumortier and Robert Roussarie and Jorge Sotomayor and Henryk \.Za\l\kadek Abelian integrals in unfoldings of codimension $3$ singular planar vector fields . . . . . . . . . . . . . . . . . 165--224
Stefana Hineva and Evgeni Belchev On the minimal hypersurfaces of a locally symmetric manifold . . . . . . . 1--4 Novica Bla\vzi\'c and Neda Bokan and Peter Gilkey The spectral geometry of the Laplacian and the conformal Laplacian for manifolds with boundary . . . . . . . . 5--17 J. Bolton and W. M. Oxbury and L. M. Woodward and L. Vrancken Minimal immersions of $ {\rm Rp}^2 $ into $ \mathbb {C} p^n $ . . . . . . . . 18--27 Waldemar Cie\'slak and Andrzej Miernowski and Witold Mozgawa Isoptics of a closed strictly convex curve . . . . . . . . . . . . . . . . . 28--35 Franki Dillen and Luc Vrancken Generalized Cayley surfaces . . . . . . 36--47 A. Ferrández and O. J. Garay and P. Lucas On a certain class of conformally flat Euclidean hypersurfaces . . . . . . . . 48--54 Paul Gauduchon Self-dual manifolds with non-negative Ricci operator . . . . . . . . . . . . . 55--61 Bogus\law Hajduk On the obstruction group to existence of Riemannian metrics of positive scalar curvature . . . . . . . . . . . . . . . 62--72 Ursula Hamenstädt Compact manifolds with $ 1 / 4$-pinched negative curvature . . . . . . . . . . . 73--78 Jürgen Jost and Xiao-Wei Peng The geometry of moduli spaces of stable vector bundles over Riemann surfaces . . 79--96 O. Kowalski and F. Tricerri A canonical connection for locally homogeneous Riemannian manifolds . . . . 97--103 Michael Kozlowski Some improper affine spheres in $ A_3 $ 104--107 Rob Kusner A maximum principle at infinity and the topology of complete embedded surfaces with constant mean curvature . . . . . . 108--114 Li An-Min Affine completeness and Euclidean completeness . . . . . . . . . . . . . . 115--125 Ülo Lumiste On Submanifolds with parallel higher order fundamental form in Euclidean spaces . . . . . . . . . . . . . . . . . 126--137 A. Martínez and F. Milán Convex affine surfaces with constant affine mean curvature . . . . . . . . . 138--144 Maung Min-Oo and Ernst A. Ruh and Philippe Tondeur Transversal curvature and tautness for Riemannian foliations . . . . . . . . . 145--146 Sebastián Montiel and Antonio Ros Schrödinger operators associated to a holomorphic map . . . . . . . . . . . . 147--174 D. Motreanu Generic existence of Morse functions on infinite dimensional Riemannian manifolds and applications . . . . . . . 175--184 Barbara Opozda Some extensions of Radon's theorem . . . 185--191
Jan Chabrowski Introduction . . . . . . . . . . . . . . 1--4 Jan Chabrowski Weighted Sobolev space $ \tilde W^{1, 2} $ . . . . . . . . . . . . . . . . . . . 7--19 Jan Chabrowski The Dirichlet problem in a half-space 20--45 Jan Chabrowski The Dirichlet problem in a bounded domain . . . . . . . . . . . . . . . . . 46--66 Jan Chabrowski Estimates of derivatives . . . . . . . . 67--77 Jan Chabrowski Harmonic measure . . . . . . . . . . . . 78--89 Jan Chabrowski Exceptional sets on the boundary . . . . 90--103 Jan Chabrowski Applications of the $ L^2 $-method . . . 104--116 Jan Chabrowski Domains with $ C^{1, \alpha } $-boundary 117--130 Jan Chabrowski The space $ C_{n - 1} (\bar Q) $ . . . . 131--141 Jan Chabrowski $ C_{n - 1} $-estimate of the solution of the Dirichlet problem with $ L^2 $-boundary data . . . . . . . . . . . . 142--167
Eduard Reithmeier Introduction . . . . . . . . . . . . . . 3--8 Eduard Reithmeier Differentiable dynamical systems . . . . 9--109 Eduard Reithmeier Differentiable dynamical systems with discontinuities . . . . . . . . . . . . 110--151
Hans Delfs Abstract locally semialgebraic spaces 1--16 Hans Delfs Sheaf theory on locally semialgebraic spaces . . . . . . . . . . . . . . . . . 17--61 Hans Delfs Semialgebraic Borel--Moore-homology . . 62--114 Hans Delfs Some intersection theory . . . . . . . . 115--129
C. Dellacherie Théorie non linéaire du potentiel: Un principe unifié de domination et du maximum et quelques applications. (French) [] . . . . . . . . . . . . . . 1--9 M. Emery Quelques cas de représentation chaotique. (French) [] . . . . . . . . . . . . . . 10--23 Michael Schürmann The Azéma martingales as components of quantum independent increment processes 24--30 K. R. Parthasarathy Realisation of a class of Markov processes through unitary evolutions in Fock space . . . . . . . . . . . . . . . 31--36 K. R. Parthasarathy An additional remark on unitary evolutions in Fock space . . . . . . . . 37--38 B. V. Rajarama Bhat and K. R. Parthasarathy Generalized harmonic oscillators in quantum probability . . . . . . . . . . 39--51 P.-A. Meyer Application du ``Bébé Fock'' au mod\`ele d'Ising. (French) [] . . . . . . . . . . 52--60 P.-A. Meyer and J. A. Yan Les ``fonctions caractéristiques'' des distributions sur l'espace de Wiener. (French) [] . . . . . . . . . . . . . . 61--78 J. A. Yan Notes on the Wiener semigroup and renormalization . . . . . . . . . . . . 79--94 J. A. Yan Some remarks on the theory of stochastic integration . . . . . . . . . . . . . . 95--107 P.-A. Meyer Sur la méthode de L. Schwartz pour les é.d.s.. (French) [] . . . . . . . . . . . 108--112 Rajeeva L. Karandikar On almost sure convergence of modified Euler--Peano approximation of solution to an S.D.E. driven by a semimartingale 113--120 Shigetoku Kawabata and Toshio Yamada On Newton's method for stochastic differential equations . . . . . . . . . 121--137 J. Jacod and P. Protter Une remarque sur les équations différentielles stochastiques \`a solutions markoviennes. (French) [] . . 138--139 Jean Jacod Régularité d'ordre quelconque pour un mod\`ele statistique filtré. (French) [] 140--161 Jean Mémin and Leszek S\lominski Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques. (French) [] . . . . . . . 162--177 Xavier Fernique Convergence en loi de fonctions aléatoires continues ou c\`adl\`ag, propriétés de compacité des lois. (French) [] . . . . . . . . . . . . . . . . . . . 178--195 Jean Picard Calcul stochastique avec sauts sur une variété. (French) [] . . . . . . . . . . . 196--219 M. Emery and G. Mokobodzki Sur le barycentre d'une probabilité dans une variété. (French) [] . . . . . . . . . 220--233 Dominique Bakry Inégalités de Sobolev faibles: un crit\`ere $ \Gamma_2 $. (French) [] . . 234--261
Ludwig Arnold and Hans Crauel Random dynamical systems . . . . . . . . 1--22 I. Ya. Goldsheid Lyapunov exponents and asymptotic behaviour of the product of random matrices . . . . . . . . . . . . . . . . 23--37 Hans Crauel Lyapunov exponents of random dynamical systems on Grassmannians . . . . . . . . 38--50 Arie Leizarowitz Eigenvalue representation for the Lyapunov exponents of certain Markov processes . . . . . . . . . . . . . . . 51--63 Yuval Peres Analytic dependence of Lyapunov exponents on transition probabilities 64--80 Y. Le Jan A second order extension of Oseledets theorem . . . . . . . . . . . . . . . . 81--85 Oliver Knill The upper Lyapunov exponent of $ {\rm Sl}(2, R) $ cocycles: Discontinuity and the problem of positivity . . . . . . . 86--97 Yu. D. Latushkin and A. M. Stepin Linear skew-product flows and semigroups of weighted composition operators . . . 98--111 Philippe Bougerol Filtre de Kalman Bucy et exposants de Lyapounov. (French) [] . . . . . . . . . 112--122 Peter H. Baxendale Invariant measures for nonlinear stochastic differential equations . . . 123--140 Petra Boxler How to construct stochastic center manifolds on the level of vector fields 141--158 Ludwig Arnold and Petra Boxler Additive noise turns a hyperbolic fixed point into a stationary solution . . . . 159--164 Xuerong Mao Lyapunov functions and almost sure exponential stability . . . . . . . . . 165--177 Yuri Kifer Large deviations for random expanding maps . . . . . . . . . . . . . . . . . . 178--186 Kay-Uwe Schaumlöffel Multiplicative ergodic theorems in infinite dimensions . . . . . . . . . . 187--195 Franco Flandoli Stochastic flow and Lyapunov exponents for abstract stochastic PDEs of parabolic type . . . . . . . . . . . . . 196--205 R. W. R. Darling The Lyapunov exponent for products of infinite-dimensional random matrices . . 206--215 Gerhard Keller Lyapunov exponents and complexity for interval maps . . . . . . . . . . . . . 216--226 Franz Hofbauer An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval 227--231 P. Thieullen Généralisation du théor\`eme de Pesin pour l'$ \alpha $-entropie. (French) [] . . . 232--242
Eberhard Freitag Introduction . . . . . . . . . . . . . . 1--5 Eberhard Freitag Siegel modular forms . . . . . . . . . . 8--37 Eberhard Freitag Theta series with polynomial coefficients . . . . . . . . . . . . . . 38--69 Eberhard Freitag Singular weights . . . . . . . . . . . . 70--88 Eberhard Freitag Singular modular forms and theta series 89--110 Eberhard Freitag The fundamental lemma . . . . . . . . . 111--152 Eberhard Freitag The results . . . . . . . . . . . . . . 153--169
F. William Lawvere Some thoughts on the future of category theory . . . . . . . . . . . . . . . . . 1--13 Ji\vrí Adámek and Ji\vrí Rosický What are locally generated categories? 14--19 Jean Benabou Some remarks on free monoids in a topos 20--29 Francis Borceux and Gilberte Van den Bossche A generic sheaf representation for rings 30--42 Dominique Bourn Normalization equivalence, kernel equivalence and affine categories . . . 43--62 S. Carmody and R. F. C. Walters Computing quotients of actions of a free category . . . . . . . . . . . . . . . . 63--78 Antonio M. Cegarra and Antonio R. Garzón A long exact sequence in non-abelian cohomology . . . . . . . . . . . . . . . 79--94 Peter Freyd Algebraically complete categories . . . 95--104 John W. Gray Order-enriched sketches for typed lambda calculi. . . . . . . . . . . . . . . . . 105--130 J. M. E. Hyland First steps in synthetic domain theory 131--156 George Janelidze Precategories and Galois theory . . . . 157--173 George Janelidze and Walter Tholen How algebraic is the change-of-base functor? . . . . . . . . . . . . . . . . 174--186 C. Barry Jay Fixpoint and loop constructions as colimits . . . . . . . . . . . . . . . . 187--192 Peter Johnstone and Steven Vickers Preframe presentations present . . . . . 193--212 André Joyal and Myles Tierney Strong stacks and classifying spaces . . 213--236 S. Kasangian and S. Vigna Trees in distributive categories . . . . 237--248 G. M. Kelly A note on relations relative to a factorization system . . . . . . . . . . 249--261 Anders Kock Algebras for the partial map classifier monad . . . . . . . . . . . . . . . . . 262--278 F. William Lawvere Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes . . . . 279--281 John L. MacDonald Concretely functorial programming . . . 282--297
Alexander Mielke Introduction . . . . . . . . . . . . . . 1--6 Alexander Mielke Notations and basic facts on center manifolds . . . . . . . . . . . . . . . 9--16 Alexander Mielke The linear theory . . . . . . . . . . . 17--26 Alexander Mielke Hamiltonian flows on center manifolds 27--40 Alexander Mielke Hamiltonian systems with symmetries . . 41--59 Alexander Mielke Lagrangian systems . . . . . . . . . . . 61--83 Alexander Mielke Nonautonomous systems . . . . . . . . . 85--92 Alexander Mielke Elliptic variational problems on cylindrical domains . . . . . . . . . . 95--102 Alexander Mielke Capillarity surface waves . . . . . . . 103--108 Alexander Mielke Necking of strips . . . . . . . . . . . 109--119 Alexander Mielke Saint-Venant's problem . . . . . . . . . 121--131
Klaus Metsch Definition and basic properties of linear spaces . . . . . . . . . . . . . 1--8 Klaus Metsch Lower bounds for the number of lines . . 9--14 Klaus Metsch Basic properties and results of $ (n + 1, 1)$-designs . . . . . . . . . . . . . 15--20 Klaus Metsch Points of degree $n$ . . . . . . . . . . 21--30 Klaus Metsch Linear spaces with few lines . . . . . . 31--42 Klaus Metsch Embedding $ (n + 1, 1)$-designs into projective planes . . . . . . . . . . . 43--60 Klaus Metsch An optimal bound for embedding linear spaces into projective planes . . . . . 61--73 Klaus Metsch The theorem of totten . . . . . . . . . 74--85 Klaus Metsch Linear spaces with $ n^2 + n + 1 $ points . . . . . . . . . . . . . . . . . 86--93 Klaus Metsch A hypothetical structure . . . . . . . . 94--105 Klaus Metsch Linear spaces with $ n^2 + n + 2 $ lines 106--117 Klaus Metsch Points of degree $n$ and another characterization of the linear spaces $ L(n, d)$ . . . . . . . . . . . . . . . . 118--130 Klaus Metsch The non-existence of certain $ (7, 1)$-designs and determination of $ A(5)$ and $ A(6)$ . . . . . . . . . . . . . . 131--140 Klaus Metsch A result on graph theory with an application to linear spaces . . . . . . 141--149 Klaus Metsch Linear spaces in which every long line meets only few lines . . . . . . . . . . 150--160 Klaus Metsch $s$-Fold inflated projective planes . . 161--180 Klaus Metsch The Dowling Wilson Conjecture . . . . . 181--187 Klaus Metsch Uniqueness of embeddings . . . . . . . . 188--191
Keith R. Wicks Introduction . . . . . . . . . . . . . . 1--2 Keith R. Wicks Preliminaries . . . . . . . . . . . . . 3--12 Keith R. Wicks Nonstandard development of the Vietoris topology . . . . . . . . . . . . . . . . 13--28 Keith R. Wicks Nonstandard development of the Hausdorff metric . . . . . . . . . . . . . . . . . 29--43 Keith R. Wicks Hutchinson's invariant sets . . . . . . 44--85 Keith R. Wicks Views and fractal notions . . . . . . . 86--130
Claude Lobry Dynamic bifurcations . . . . . . . . . . 1--13 T. Erneux and E. L. Reiss and L. J. Holden and M. Georgiou Slow passage through bifurcation and limit points. Asymptotic theory and applications . . . . . . . . . . . . . . 14--28 Mireille Canalis-Durand Formal expansion of van der Pol equation canard solutions are Gevrey . . . . . . 29--39 Véronique Gautheron and Emmanuel Isambert Finitely differentiable ducks and finite expansions . . . . . . . . . . . . . . . 40--56 Guy Wallet Overstability in arbitrary dimension . . 57--70 Francine Diener and Marc Diener Maximal delay . . . . . . . . . . . . . 71--86 Augustin Fruchard Existence of bifurcation delay: The discrete case . . . . . . . . . . . . . 87--106 Claude Baesens Noise effect on dynamic bifurcations: The case of a period-doubling cascade 107--130 Eric Benoit Linear dynamic bifurcation with noise 131--150 Antoine Delcroix A tool for the local study of slow-fast vector fields: The zoom . . . . . . . . 151--167 S. N. Samborski Rivers from the point of view of the qualitative theory . . . . . . . . . . . 168--180 François Blais Asymptotic expansions of rivers . . . . 181--189 Imme P. van den Berg Macroscopic rivers . . . . . . . . . . . 190--209
Der-Chen Chang Nankai lecture in $ \bar \partial $-Neumann problem . . . . . . . . . . . 1--22 Chen Jie-cheng and Luo Cheng Duality of $ H^1 $ and BMO on positively curved manifolds and their characterizations . . . . . . . . . . . 23--38 Chen Tian-Ping and Zhang De-Zhi Oscillatory integral with polynomial phase . . . . . . . . . . . . . . . . . 39--45 Dong-gao Deng and Yongsheng Han On a generalized paraproduct defined by non-convolution . . . . . . . . . . . . 46--53 Yongsheng Han $ H^p $ boundedness of Calderón--Zygmund operators for product domains . . . . . 54--67 Wei Hu and Xianliang Shi and Qiyu Sun $ A_\infty $ condition characterized by maximal geometric mean operator . . . . 68--72 Yue Hu A weighted norm inequality for oscillatory singular integrals . . . . . 73--81 Yaping Jiang and Xuebo Luo The nilpotent Lie group $ G^{d + 2} $ and a class of differential operators with multiple characteristics . . . . . 82--83 Chun Li Characterization of BMO$_p^{sq}$-functions by generalized Carleson measure . . . . . . . . . . . . 84--94 Peng Lin and Lizhong Peng Besov spaces of Paley--Wiener type . . . 95--112 He-ping Liu The weak $ H^p $ spaces on homogeneous groups . . . . . . . . . . . . . . . . . 113--118 Zhixin Liu and Shanzhen Lu Applications of Hörmander multiplier theorem to approximation in real Hardy spaces . . . . . . . . . . . . . . . . . 119--129 Hongwei Lou Weighted norm inequalities for the restriction of Fourier transform to $ S^{n - 1} $ . . . . . . . . . . . . . . 130--130 Ruilin Long and Fusheng Nie Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators . . . . . . . . . . . . . . . 131--141 Alan McIntosh and Qian Tao Convolution singular integral operators on Lipschitz curves . . . . . . . . . . 142--162 Guangzhong Ouyang Multipliers from $ L_1 (G) $ to a reflexive Segal algebra . . . . . . . . 163--168 Wenjie Pan Weighted norm inequalities for certain maximal operators with approach regions 169--175 Dao-chun Sun and Zhi-ying Wen The Hausdorff dimension of a class of lacunary trigonometric series . . . . . 176--181 Li-min Sun Hermitian nilpotent Lie groups: Harmonic analysis as spectral theory of Laplacians . . . . . . . . . . . . . . . 182--184 Xue-Ping Wang Weak coupling asymptotics of Schrödinger operators with Stark effect . . . . . . 185--195
Jean-Michel Bony Analyse microlocale des équations aux dérivées partielles non linéaires. (French) [] . . . . . . . . . . . . . . . . . . . 1--45 Gerd Grubb Parabolic pseudo-differential boundary problems and applications . . . . . . . 46--117 Lars Hörmander Quadratic hyperbolic operators . . . . . 118--160 Hikosaburo Komatsu Microlocal analysis in Gevrey classes and in complex domains . . . . . . . . . 161--236 Johannes Sjöstrand Microlocal analysis for the periodic magnetic Schrödinger equation and related questions . . . . . . . . . . . . . . . 237--332
Ciprian Foia\cs Commutant lifting techniques for computing optimal $ H^\infty $ controllers . . . . . . . . . . . . . . 1--36 Bruce Francis Lectures on $ H_\infty $ control and sampled-data systems . . . . . . . . . . 37--105 J. William Helton Two topics in systems engineering: Frequency domain design and nonlinear systems . . . . . . . . . . . . . . . . 106--140 Huibert Kwakernaak The polynomial approach to $ H_\infty $-optimal regulation . . . . . . . . . . 141--221 J. B. Pearson Notes on $ l^1 $-optimal control . . . . 222--249 P. A. Fuhrmann On the Hamiltonian structure in the computation of singular values for a class of Hankel operators . . . . . . . 250--276 Joseph A. Ball and Israel Gohberg and Leiba Rodman Nehari interpolation problem for rational matrix functions: The generic case . . . . . . . . . . . . . . . . . . 277--308 I. Gohberg and M. A. Kaashoek and H. J. Woerdeman Time variant extension problems of Nehari type and the band method . . . . 309--323
Jan Boman Helgason's support theorem for Radon transforms --- A new proof and a generalization . . . . . . . . . . . . . 1--5 Peter Maass Singular value decompositions for Radon transforms . . . . . . . . . . . . . . . 6--14 W. R. Madych Image reconstruction in Hilbert space 15--45 R. G. Mukhometov A problem of integral geometry for a family of rays with multiple reflections 46--52 Victor P. Palamodov Inversion formulas for the three-dimensional ray transform . . . . 53--62 Volkmar Friedrich Backscattered photons --- Are they useful for a surface-near tomography? 63--65 Pierre Grangeat Mathematical framework of cone beam $3$D reconstruction via the first derivative of the Radon transform . . . . . . . . . 66--97 Patricia Grassin and Bernard Duchene and Walid Tabbara Diffraction tomography some applications and extension to $3$-D ultrasound imaging . . . . . . . . . . . . . . . . 98--105 F. Alberto Grünbaum Diffuse tomography: a refined model . . 106--111 Rainer Kress and Axel Zinn Three dimensional reconstructions in inverse obstacle scattering . . . . . . 112--125 Alfred K. Louis Mathematical questions of a biomagnetic imaging problem . . . . . . . . . . . . 126--132 Yair Censor On variable block algebraic reconstruction techniques . . . . . . . 133--140 P. P. B. Eggermont On Volterra--Lotka differential equations and multiplicative algorithms for monotone complementarity problems 141--152 Tommy Elfving Constrained regularized least squares problems . . . . . . . . . . . . . . . . 153--166 Alvaro R. De Pierro Multiplicative iterative methods in computed tomography . . . . . . . . . . 167--186 P. C. Sabatier Remark on the informative content of few measurements . . . . . . . . . . . . . . 187--193 W. G. Hawkins and N.-C. Yang and P. K. Leichner Theorems for the number of zeros of the projection radial modulators of the $2$D exponential Radon transform . . . . . . 194--214 Gabor T. Herman and Dewey Odhner Evaluation of reconstruction algorithms 215--228 Hidemitsu Ogawa and Itsuo Kumazawa Radon transform and analog coding . . . 229--241 Louis R. Oudin Determination of the specific density of an aerosol through tomography . . . . . 242--260
Reinhard Lang Introduction . . . . . . . . . . . . . . 1--5 Reinhard Lang Two simple examples . . . . . . . . . . 6--18 Reinhard Lang The general heuristic picture . . . . . 19--29 Reinhard Lang Some known results and open problems . . 30--42 Reinhard Lang Explanation of Theorem 1 and introduction to an extended Boltzmann theory of entropy . . . . . . . . . . . 43--70 Reinhard Lang Explanation of Theorem 2 and introduction to an extended Floquet--Weyl theory . . . . . . . . . . 71--112 Reinhard Lang Conclusion . . . . . . . . . . . . . . . 113--118
Kazuaki Taira Introduction and results . . . . . . . . 1--9 Kazuaki Taira Semigroup theory . . . . . . . . . . . . 10--22 Kazuaki Taira $ L^p $ theory of pseudo-differential operators . . . . . . . . . . . . . . . 23--40 Kazuaki Taira $ L^p $ approach to elliptic boundary value problems . . . . . . . . . . . . . 41--49 Kazuaki Taira Proof of Theorem 1 . . . . . . . . . . . 50--54 Kazuaki Taira A priori estimates . . . . . . . . . . . 55--60 Kazuaki Taira Proof of Theorem 2 . . . . . . . . . . . 61--69 Kazuaki Taira Proof of Theorem 3 --- Part (I) . . . . 70--80 Kazuaki Taira Proof of Theorem 3 --- Part (II) . . . . 81--104 Kazuaki Taira Application to semilinear initial-boundary value problems . . . . 105--111
Anna De Masi and Errico Presutti Introduction . . . . . . . . . . . . . . 1--6 Anna De Masi and Errico Presutti Hydrodynamic limits for independent particles . . . . . . . . . . . . . . . 7--32 Anna De Masi and Errico Presutti Hydrodynamics of the zero range process 33--51 Anna De Masi and Errico Presutti Particle models for reaction-diffusion equations . . . . . . . . . . . . . . . 52--66 Anna De Masi and Errico Presutti Particle models for the Carleman equation . . . . . . . . . . . . . . . . 67--96 Anna De Masi and Errico Presutti The Glauber $+$ Kawasaki process . . . . 97--111 Anna De Masi and Errico Presutti Hydrodynamic limits in kinetic models 112--127 Anna De Masi and Errico Presutti Phase separation and interface dynamics 128--146 Anna De Masi and Errico Presutti Escape from an unstable equilibrium . . 147--166 Anna De Masi and Errico Presutti Estimates on the $V$-functions . . . . . 167--188
Carlos Simpson Introduction . . . . . . . . . . . . . . 1--11 Carlos Simpson Ordinary differential equations on a Riemann surface . . . . . . . . . . . . 12--16 Carlos Simpson Laplace transform, asymptotic expansions, and the method of stationary phase . . . . . . . . . . . . . . . . . 17--30 Carlos Simpson Construction of flows . . . . . . . . . 31--40 Carlos Simpson Moving relative homology chains . . . . 41--53 Carlos Simpson The main lemma . . . . . . . . . . . . . 54--59 Carlos Simpson Finiteness lemmas . . . . . . . . . . . 60--67 Carlos Simpson Sizes of cells . . . . . . . . . . . . . 68--83 Carlos Simpson Moving the cycle of integration . . . . 84--92 Carlos Simpson Bounds on multiplicities . . . . . . . . 93--100 Carlos Simpson Regularity of individual terms . . . . . 101--110 Carlos Simpson Complements and examples . . . . . . . . 111--126 Carlos Simpson The Sturm--Liouville problem . . . . . . 127--134
Jeff Cheeger Critical points of distance functions and applications to geometry . . . . . . 1--38 M. Gromov and P. Pansu Rigidity of lattices: an introduction 39--137 Christian Okonek Instanton invariants and algebraic surfaces . . . . . . . . . . . . . . . . 138--186
Kunihiko Kajitani Fourier integral operators with complex-valued phase function and the Cauchy problem for hyperbolic operators 1--70 Tatsuo Nishitani The effectively hyperbolic Cauchy problem . . . . . . . . . . . . . . . . 71--167
Emilio Iluis-Puebla Introduction to algebraic $K$-theory . . 1--30 Jean-Louis Loday Introduction to algebraic $K$-theory and cyclic homology . . . . . . . . . . . . 31--54 Henri Gillet Comparing algebraic and topological $K$-theory . . . . . . . . . . . . . . . 55--99 Christophe Soulé Algebraic $K$-theory of the integers . . 100--132 Victor Snaith Applications of group cohomology to bilinear forms . . . . . . . . . . . . . 133--164
Jean-Pierre Serre Front Matter . . . . . . . . . . . . . . I--VII Jean-Pierre Serre Front Matter . . . . . . . . . . . . . . 1--1 Jean-Pierre Serre Lie Algebras: Definition and Examples 2--5 Jean-Pierre Serre Filtered Groups and Lie Algebras . . . . 6--10 Jean-Pierre Serre Universal Algebra of a Lie Algebra . . . 11--17 Jean-Pierre Serre Free Lie Algebras . . . . . . . . . . . 18--30 Jean-Pierre Serre Nilpotent and Solvable Lie Algebras . . 31--43 Jean-Pierre Serre Semisimple Lie Algebras . . . . . . . . 44--55 Jean-Pierre Serre Representations of $ \mathfrak {sl}_{\mathfrak {n}} $ . . . . . . . . . 56--62 Jean-Pierre Serre Front Matter . . . . . . . . . . . . . . 63--63 Jean-Pierre Serre Complete Fields . . . . . . . . . . . . 64--66 Jean-Pierre Serre Analytic Functions . . . . . . . . . . . 67--75 Jean-Pierre Serre Analytic Manifolds . . . . . . . . . . . 76--101 Jean-Pierre Serre Analytic Groups . . . . . . . . . . . . 102--128 Jean-Pierre Serre Lie Theory . . . . . . . . . . . . . . . 129--160 Jean-Pierre Serre Back Matter . . . . . . . . . . . . . . 161--172
Salahoddin Shokranian Number theory and automorphic representations . . . . . . . . . . . . 1--10 Salahoddin Shokranian Selberg's trace formula . . . . . . . . 11--23 Salahoddin Shokranian Kernel functions and the convergence theorem . . . . . . . . . . . . . . . . 24--40 Salahoddin Shokranian The Ad\`elic theory . . . . . . . . . . 41--44 Salahoddin Shokranian The geometric theory . . . . . . . . . . 45--59 Salahoddin Shokranian The geometric expansion of the trace formula . . . . . . . . . . . . . . . . 60--68 Salahoddin Shokranian The spectral theory . . . . . . . . . . 69--78 Salahoddin Shokranian The invariant trace formula and its applications . . . . . . . . . . . . . . 79--86
Alexandru Buium Terminology and conventions . . . . . . 1--6 Alexandru Buium First properties . . . . . . . . . . . . 7--29 Alexandru Buium Affine $D$-group schemes . . . . . . . . 30--59 Alexandru Buium Commutative algebraic $D$-groups . . . . 60--86 Alexandru Buium General algebraic $D$-groups . . . . . . 87--98 Alexandru Buium Applications to differential algebraic groups . . . . . . . . . . . . . . . . . 99--136
Arnaud Beauville Annulation du $ H^1 $ pour les fibrés en droites plats. (French) [] . . . . . . . 1--15 Mauro C. Beltrametti and Andrew J. Sommese and Jaros\law A. Wi\'sniewski Results on varieties with many lines and their applications to adjunction theory 16--38 Guntram Bohnhorst and Heinz Spindler The stability of certain vector bundles on $ \mathbb {P}^n $ . . . . . . . . . . 39--50 F. Catanese and F. Tovena Vector bundles, linear systems and extensions of $ \pi_1 $ . . . . . . . . 51--70 Olivier Debarre Vers une stratification de l'espace des modules des variétés abeliennes principalement polarisées. (French) [] 71--86 Jean-Pierre Damailly Singular Hermitian metrics on positive line bundles . . . . . . . . . . . . . . 87--104 Takao Fujita On adjoint bundles of ample vector bundles . . . . . . . . . . . . . . . . 105--112 Yujiro Kawamata Moderate degenerations of algebraic surfaces . . . . . . . . . . . . . . . . 113--132 Ulf Persson Genus two fibrations revisited . . . . . 133--144 Th. Peternell and M. Szurek and J. A. Wi\'sniewski Numerically effective vector bundles with small Chern classes . . . . . . . . 145--156 C. A. M. Peters On the rank of non-rigid period maps in the weight one and two case . . . . . . 157--165 A. N. Tyurin The geometry of the special components of moduli space of vector bundles over algebraic surfaces of general type . . . 166--175
G. D. Anderson and M. K. Vamanamurthy and M. Vuorinen Conformal invariants, quasiconformal maps, and special functions . . . . . . 1--19 F. W. Gehring Topics in quasiconformal mappings . . . 20--38 Tadeusz Iwaniec $ L^p $-theory of quasiregular mappings 39--64 Olli Martio Partial differential equations and quasiregular mappings . . . . . . . . . 65--79 Yu. G. Reshetnyak On functional classes invariant relative to homotheties . . . . . . . . . . . . . 80--92 Seppo Rickman Picard's theorem and defect relation for quasiregular mappings . . . . . . . . . 93--103 Uri Srebro Topological properties of quasiregular mappings . . . . . . . . . . . . . . . . 104--118 Jussi Väisälä Domains and maps . . . . . . . . . . . . 119--131 V. A. Zorich The global homeomorphism theorem for space quasiconformal mappings, its development and related open problems 132--148
Alejandro Adem On the geometry and cohomology of finite simple groups . . . . . . . . . . . . . 1--9 D. J. Benson Resolutions and Poincaré duality for finite groups . . . . . . . . . . . . . 10--19 A. J. Berrick and Carles Casacuberta Groups and spaces with all localizations trivial . . . . . . . . . . . . . . . . 20--29 Imre Bokor and Irene Llerena More examples of non-cancellation in homotopy . . . . . . . . . . . . . . . . 30--34 Carlos Broto and Sa\"\id Zarati On sub-$ a*_p$-algebras of $ H*V$ . . . 35--49 Alberto Cavicchioli and Fulvia Spaggiari The classification of $3$-manifolds with spines related to Fibonacci groups . . . 50--78 B. Cenkl and R. Porter Algorithm for the computation of the cohomology of $ \Im $-groups . . . . . . 79--94 F. R. Cohen Remarks on the homotopy theory associated to perfect groups . . . . . . 95--103 Emmanuel Dror Farjoun Homotopy localization and $ V_1 $-periodic spaces . . . . . . . . . . . 104--113 Nguy\cftilen Vi\cfudotet D\~ung The modulo $2$ cohomology algebra of the wreath product $ \Sigma_\infty \int X$ 115--119 John C. Harris and R. James Shank Lannes' division functors on summands of $ H *(B (Z / p)^r) $ . . . . . . . . . . 120--133 Claude Hayat-Legrand Classes homotopiques associées á une $G$-opération. (French) [] . . . . . . . 134--138 Friedrich Hegenbarth A note on the Brauer lift map . . . . . 139--145 L. J. Hernández and T. Porter Categorical models of $N$-types for pro-crossed complexes and $ \Im_n$-prospaces . . . . . . . . . . . . 146--185 Michael J. Hopkins and Nicholas J. Kuhn and Douglas C. Ravenel Morava $K$-theories of classifying spaces and generalized characters for finite groups . . . . . . . . . . . . . 186--209 Kenshi Ishiguro Classifying spaces of compact simple Lie groups and $p$-tori . . . . . . . . . . 210--226 Marek Izydorek and S\lawomir Rybicki On parametrized Borsuk--Ulam theorem for free $ Z_p $-action . . . . . . . . . . 227--234 Alain Jeanneret and Ulrich Suter Réalisation topologique de certaines alg\`ebres associées aux alg\`ebres de Dickson. (French) [] . . . . . . . . . . 235--239 Luciano Lomonaco Normalized operations in cohomology . . 240--249 Albert T. Lundell Concise tables of James numbers and some homotopy of classical Lie groups and associated homogeneous spaces . . . . . 250--272
V. G. Drinfel'd On some unsolved problems in quantum group theory . . . . . . . . . . . . . . 1--8 Murray Gerstenhaber and Anthony Giaquinto and Samuel D. Schack Quantum symmetry . . . . . . . . . . . . 9--46 D. Gurevich and V. Rubtsov Yang--Baxter equation and deformation of associative and Lie algebras . . . . . . 47--55 L. I. Korogodsky and L. L. Vaksman Quantum $G$-spaces and Heisenberg algebra . . . . . . . . . . . . . . . . 56--66 Vladimir Lyubashenko Real and imaginary forms of quantum groups . . . . . . . . . . . . . . . . . 67--78 Shahn Majid Rank of quantum groups and braided groups in dual form . . . . . . . . . . 79--89 M. L. Nazarov Yangians of the ``strange'' Lie superalgebras . . . . . . . . . . . . . 90--97 Masatoshi Noumi and Katsuhisa Mimachi Askey--Wilson polynomials as spherical functions on $ {\rm SU}_q(2) $ . . . . . 98--103 G. I. Ol'shanski\u\i Twisted Yangians and infinite-dimensional classical Lie algebras . . . . . . . . . . . . . . . . 104--119 Jim Stasheff Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras . . . . . . . . . . . . . . . . 120--137 Earl J. Taft Quantum deformation of the flag variety 138--141 Kimio Ueno and Tadayoshi Takebayashi Zonal spherical functions on quantum symmetric spaces and MacDonald's symmetric polynomials . . . . . . . . . 142--147 A. Alekseev and L. Faddeev and M. Semenov-Tian-Shansky Hidden quantum groups inside Kac--Moody algebras . . . . . . . . . . . . . . . . 148--158 O. Babelon Liouville theory on the lattice and universal exchange algebra for Bloch waves . . . . . . . . . . . . . . . . . 159--175 Denis Bernard and André Leclair Non-local currents in $2$D QFT: an alternative to the quantum inverse scattering method . . . . . . . . . . . 176--196 L. C. Biedenharn and M. A. Lohe Induced representations and tensor operators for quantum groups . . . . . . 197--209 H. W. Braden and E. Corrigan and P. E. Dorey and R. Sasaki Affine Toda field theory: $S$-matrix vs perturbation . . . . . . . . . . . . . . 210--220 E. Celeghini and R. Giachetti and E. Sorace and M. Tarlini Contractions of quantum groups . . . . . 221--244 Mo-Lin Ge New solutions of Yang--Baxter equations and quantum group structures . . . . . . 245--258 Jean-Loup Gervais Quantum group symmetry of $2$D gravity 259--276
Ajay Kumar A qualitative uncertainity principle for hypergroups . . . . . . . . . . . . . . 1--9 Alan Lambert Weighted shifts and composition operators on $ L^2 $ . . . . . . . . . . 10--17 A. S. Cavaretta, Jr. and A. Sharma Variation diminishing properties and convexity for the tensor product Bernstein operator . . . . . . . . . . . 18--32 B. L. Wadhwa and B. S. Yadav Approximation in weighted Banach spaces of power series . . . . . . . . . . . . 33--46 B. P. Duggal A note on generalised commutativity theorems in the Schatten norm . . . . . 47--54 B. S. Yadav and Dinesh Singh and Sanjeev Agrawal De Branges modules in $ H^2 (\mathbb {C}^K) $ of the torus . . . . . . . . . 55--74 Donald Sarason Weak compactness of holomorphic composition operators on $ H^1 $ . . . . 75--79 Geetha S. Rao and T. L. Bhaskaramurthi Nonexpansive mappings and proximinality in normed almost linear spaces . . . . . 80--87 Henry Helson and John E. McCarthy Continuity of seminorms . . . . . . . . 88--90 Jamil A. Siddiqi Maximal ideals in local Carleman algebras . . . . . . . . . . . . . . . . 91--99 J. G. Clunie Convergence of polynomials with restricted zeros . . . . . . . . . . . . 100--105 Jean-Pierre Kahane On a theorem of Pólya . . . . . . . . . . 106--112 M. H. Vasavada and R. D. Mehta Algebra direct sum decomposition of $ C_R(X) $ . . . . . . . . . . . . . . . . 113--119 Pradipta Bandyopadhyaya Exposed points and points of continuity in closed bounded convex sets . . . . . 120--127 P. K. Jain and A. M. Jarrah and D. P. Sinha Boundedly complete bases in various locally convex Spaces . . . . . . . . . 128--140 R. Vasudevan A representation of the multipler module $ {\rm hom}_A(A, W) $ . . . . . . . . . 141--146 S. C. Arora and Sharda Sharma On two-parameter semigroup of operators 147--153 Saheb Dayal Higher Fréchet and discrete Gâteaux differentiability of $n$-convex functions on Banach spaces . . . . . . . 154--171 Shashi Kiran and Ajit Iqbal Singh Role of James like spaces in multiplicative linear functionals on operator algebras . . . . . . . . . . . 172--180 U. N. Singh The Carleman--Fourier transform and its applications . . . . . . . . . . . . . . 181--214
Leonard M. Adleman and Ming-Deh A. Huang Introduction . . . . . . . . . . . . . . 1--3 Leonard M. Adleman and Ming-Deh A. Huang Acknowledgement . . . . . . . . . . . . 4--4 Leonard M. Adleman and Ming-Deh A. Huang Overview of the algorithm and the proof of the main theorem . . . . . . . . . . 5--14 Leonard M. Adleman and Ming-Deh A. Huang Reduction of main theorem to three propositions . . . . . . . . . . . . . . 15--21 Leonard M. Adleman and Ming-Deh A. Huang Proof of proposition 1 . . . . . . . . . 21--109 Leonard M. Adleman and Ming-Deh A. Huang Proof of proposition 2 . . . . . . . . . 110--125 Leonard M. Adleman and Ming-Deh A. Huang Proof of proposition 3 . . . . . . . . . 126--136
Louis Stuart Block and William Andrew Coppel Introduction . . . . . . . . . . . . . . 1--3 Louis Stuart Block and William Andrew Coppel Periodic orbits . . . . . . . . . . . . 5--23 Louis Stuart Block and William Andrew Coppel Turbulence . . . . . . . . . . . . . . . 25--46 Louis Stuart Block and William Andrew Coppel Unstable manifolds and homoclinic points 47--67 Louis Stuart Block and William Andrew Coppel Topological dynamics . . . . . . . . . . 69--89 Louis Stuart Block and William Andrew Coppel Topological dynamics (continued) . . . . 91--119 Louis Stuart Block and William Andrew Coppel Chaotic and non-chaotic maps . . . . . . 121--166 Louis Stuart Block and William Andrew Coppel Types of periodic orbits . . . . . . . . 167--188 Louis Stuart Block and William Andrew Coppel Topological Entropy . . . . . . . . . . 189--218 Louis Stuart Block and William Andrew Coppel Maps of the circle . . . . . . . . . . . 219--234
Christoph Bandt and Karsten Keller Symbolic dynamics for angle-doubling on the circle I. The topology of locally connected Julia sets . . . . . . . . . . 1--23 A. M. Blokh Spectral decomposition, periods of cycles and a conjecture of M. Misiurewicz for graph maps . . . . . . . 24--31 Thomas Bogenschütz and Hans Crauel The Abramov--Rokhlin formula . . . . . . 32--35 H. G. Bothe Expanding attractors with stable foliations of class $ C^0 $ . . . . . . 36--61 L. A. Bunimovich On absolutely focusing mirrors . . . . . 62--82 M. Denker and K. F. Krämer Upper and lower class results for subsequences of the Champernowne number 83--89 Manfred Denker and Mariusz Urba\'nski The dichotomy of Hausdorff measures and equilibrium states for parabolic rational maps . . . . . . . . . . . . . 90--113 Theodore P. Hill and Ulrich Krengel On the construction of generalized measure preserving transformations with given marginals . . . . . . . . . . . . 114--123 Anzelm Iwanik Positive entropy implies infinite $ L^p $-multiplicity for $ p > 1 $ . . . . . . 124--127 Zbigniew S. Kowalski On mixing generalized skew products . . 128--130 François Ledrappier Ergodic properties of the stable foliations . . . . . . . . . . . . . . . 131--145 Emmanuel Lesigne Ergodic theorem along a return time sequence . . . . . . . . . . . . . . . . 146--152 Jan Malczak Some limit theorems for Markov operators and their applications . . . . . . . . . 153--162 Ivan Mizera Generic properties of one-dimensional dynamical systems . . . . . . . . . . . 163--173 J. Schmeling and Ra. Siegmund-Schultze Hölder continuity of the holonomy maps for hyperbolic basic sets I . . . . . . 174--191 Ján \vSipo\vs Peculiar submeasures on finite algebras 192--197 Ulrich Wacker Invariance principles and central limit theorems for nonadditive, stationary processes . . . . . . . . . . . . . . . 198--228 Rainer Wittmann Fixed point rays of nonexpansive mappings . . . . . . . . . . . . . . . . 229--233
M. Andreatta and E. Ballico and J. Wi\'sniewski Projective manifolds containing large linear subspaces . . . . . . . . . . . . 1--11 Fabio Bardelli Algebraic cohomology classes on some special threefolds . . . . . . . . . . . 12--20 Ch. Birkenhake and H. Lange Norm-endomorphisms of abelian subvarieties . . . . . . . . . . . . . . 21--32 Ciro Ciliberto and Gerard van der Geer On the Jacobian of a hyperplane section of a surface . . . . . . . . . . . . . . 33--40 Ciro Ciliberto and Joe Harris and Montserrat Teixidor i Bigas On the endomorphisms of $ {\rm Jac}(W^1_d(C)) $ when $ p = 1 $ and $C$ has general moduli . . . . . . . . . . . 41--67 Bert van Geemen Projective models of Picard modular varieties . . . . . . . . . . . . . . . 68--99 János Kollár and Yoichi Miyaoka and Shigefumi Mori Rational curves on Fano varieties . . . 100--105 Riccardo Salvati Manni Modular forms of the fourth degree . . . 106--111 Angelo Vistoli Equivariant Grothendieck groups and equivariant Chow groups . . . . . . . . 112--133 Angelo Vistoli Trento examples . . . . . . . . . . . . 134--139 E. Ballico and C. Ciliberto and F. Catanese Open problems . . . . . . . . . . . . . 140--146
Rudolph A. Lorentz Introduction . . . . . . . . . . . . . . 1--3 Rudolph A. Lorentz Univariate interpolation . . . . . . . . 4--8 Rudolph A. Lorentz Basic properties of Birkhoff interpolation . . . . . . . . . . . . . 9--22 Rudolph A. Lorentz Singular interpolation schemes . . . . . 23--49 Rudolph A. Lorentz Shifts and coalescences . . . . . . . . 50--61 Rudolph A. Lorentz Decomposition theorems . . . . . . . . . 62--71 Rudolph A. Lorentz Reduction . . . . . . . . . . . . . . . 72--74 Rudolph A. Lorentz Examples . . . . . . . . . . . . . . . . 75--89 Rudolph A. Lorentz Uniform Hermite interpolation of tensor-product type . . . . . . . . . . 90--102 Rudolph A. Lorentz Uniform Hermite interpolation of type total degree . . . . . . . . . . . . . . 103--138 Rudolph A. Lorentz Vandermonde determinants . . . . . . . . 139--155 Rudolph A. Lorentz A theorem of Severi . . . . . . . . . . 156--161 Rudolph A. Lorentz Kergin interpolation via Birkhoff interpolation . . . . . . . . . . . . . 162--170
Klaus Keimel and Walter Roth Introduction . . . . . . . . . . . . . . 1--7 Klaus Keimel and Walter Roth Locally convex cones . . . . . . . . . . 8--24 Klaus Keimel and Walter Roth Uniformly continuous operators and the dual cone . . . . . . . . . . . . . . . 25--54 Klaus Keimel and Walter Roth Subcones . . . . . . . . . . . . . . . . 55--67 Klaus Keimel and Walter Roth Approximation . . . . . . . . . . . . . 68--80 Klaus Keimel and Walter Roth Nachbin cones . . . . . . . . . . . . . 81--105 Klaus Keimel and Walter Roth Quantitative estimates . . . . . . . . . 106--128
Henning Stichtenoth and Michael A. Tsfasman Algebraic geometry and coding theory an introduction . . . . . . . . . . . . . . 1--3 Yves Aubry Reed--Muller codes associated to projective algebraic varieties . . . . . 4--17 Dirk Ehrhard Decoding Algebraic-Geometric Codes by solving a key equation . . . . . . . . . 18--25 Gerhard Frey and Marc Perret and Henning Stichtenoth On the different of abelian extensions of global fields . . . . . . . . . . . . 26--32 Arnaldo García and R. F. Lax Goppa codes and Weierstrass gaps . . . . 33--42 Noboru Hamada and Tor Helleseth On a characterization of some minihypers in $ {\rm PG}(t, q) $ ($ q = 3 $ or $4$) and its applications to error-correcting codes . . . . . . . . . . . . . . . . . 43--62 Johan P. Hansen Deligne--Lusztig varieties and group codes . . . . . . . . . . . . . . . . . 63--81 Gregory L. Katsman and Michael A. Tsfasman and Serge G. Vladu\ct Spectra of linear codes and error probability of decoding . . . . . . . . 82--98 Kyeongcheol Yang and P. Vijay Kumar On the true minimum distance of Hermitian codes . . . . . . . . . . . . 99--107 Boris \`E. Kunyavskii Sphere packings centered at $S$-units of algebraic tori . . . . . . . . . . . . . 108--121 Jens Peter Pedersen A function field related to the Ree group . . . . . . . . . . . . . . . . . 122--131 Ruud Pellikaan On the gonality of curves, abundant codes and decoding . . . . . . . . . . . 132--144 Igor E. Shparlinski and Michael A. Tsfasman and Serge G. Vladut Curves with many points and multiplication in finite fields . . . . 145--169 Philip Stokes The domain of covering codes . . . . . . 170--177 Michael A. Tsfasman Some remarks on the asymptotic number of points . . . . . . . . . . . . . . . . . 178--192 Conny Voss On the weights of trace codes . . . . . 193--198 François Rodier Minoration de Certaines Sommes Exponentielles Binaires. (French) [] . . 199--209 Alexei N. Skorobogatov Linear codes, strata of Grassmannians, and the problems of Segre . . . . . . . 210--223
Mark W. Short Introduction . . . . . . . . . . . . . . 1--9 Mark W. Short Background theory . . . . . . . . . . . 10--42 Mark W. Short The imprimitive soluble subgroups of $ {\rm GL}(2, p^k) $ . . . . . . . . . . . 43--54 Mark W. Short The normaliser of a Singer cycle of prime degree . . . . . . . . . . . . . . 55--61 Mark W. Short The irreducible soluble subgroups of $ {\rm GL}(2, p^k) $ . . . . . . . . . . . 62--74 Mark W. Short Some irreducible soluble subgroups of $ {\rm GL}(q, p^k) $, $ q > 2 $ . . . . . . 75--83 Mark W. Short The imprimitive soluble subgroups of $ {\rm GL}(4, 2) $ and $ {\rm GL}(4, 3) $ 84--92 Mark W. Short The primitive soluble subgroups of $ {\rm GL}(4, p^k) $ . . . . . . . . . . . 93--107 Mark W. Short The irreducible soluble subgroups of $ {\rm GL}(6, 2) $ . . . . . . . . . . . . 108--113 Mark W. Short Conclusion . . . . . . . . . . . . . . . 114--120 Mark W. Short The primitive soluble permutation groups of degree less than $ 256 $ . . . . . . 146--146
Yu. E. Gliklikh Stochastic analysis, groups of diffemorphisms and Lagrangian description of viscous incompressible fluid . . . . . . . . . . . . . . . . . 1--18 A. Ya. Helemski\u\i From topological homology: algebras with different properties of homological triviality . . . . . . . . . . . . . . . 19--40 V. V. Lychagin and L. V. Zil'bergle\u\it Duality in stable Spencer cohomologies 41--55 O. R. Musin On some problems of computational geometry and topology . . . . . . . . . 57--80 V. E. Naza\u\ikinski\u\i and B. Yu. Sternin and V. E. Shatalov Introduction to Maslov's operational method (non-commutative analysis and differential equations) . . . . . . . . 81--91 Yu. B. Rudyak The problem of realization of homology classes from Poincaré up to the present 93--110 V. G. Zvyagin and N. M. Ratiner Oriented degree of Fredholm maps of non-negative index and its application to global bifurcation of solutions . . . 111--137 A. A. Bolibruch Fuchsian systems with reducible monodromy and the Riemann--Hilbert problem . . . . . . . . . . . . . . . . 139--155 I. U. Bronste\u\in and A. Ya. Kopanski\u\i Finitely smooth normal forms of vector fields in the vicinity of a rest point 157--172 B. D. Gel'man Generalized degree of multi-valued mappings . . . . . . . . . . . . . . . . 173--192 G. N. Khimshiashvili On Fredholmian aspects of linear transmission problems . . . . . . . . . 193--216 A. S. Mishchenko Stationary solutions of nonlinear stochastic equations . . . . . . . . . . 217--236 B. Yu. Sternin and V. E. Shatalov Continuation of solutions to elliptic equations and localization of singularities . . . . . . . . . . . . . 237--259 V. G. Zvyagin and V. T. Dmitrienko Properness of nonlinear elliptic differential operators in Hölder spaces 261--284
H. K. Kuiken Mathematical modelling of industrial processes . . . . . . . . . . . . . . . 1--63 Bruno Forte Inverse problems in mathematics for industry . . . . . . . . . . . . . . . . 64--110 Stavros Busenberg Case studies in industrial mathematics 111--153
Jean-Marc Delort Front Matter . . . . . . . . . . . . . . i--vi Jean-Marc Delort Introduction . . . . . . . . . . . . . . 1--6 Jean-Marc Delort Fourier--Bros--Iagolnitzer transformation and first microlocalization . . . . . . . . . . . 7--27 Jean-Marc Delort Second microlocalization . . . . . . . . 28--46 Jean-Marc Delort Geometric upper bounds . . . . . . . . . 47--71 Jean-Marc Delort Semilinear Cauchy problem . . . . . . . 72--98 Jean-Marc Delort Back Matter . . . . . . . . . . . . . . 99--101
Weimin Xue Introduction to Morita duality . . . . . 1--53 Weimin Xue Morita duality and ring extensions . . . 54--83 Weimin Xue Artinian rings with Morita duality (I) 84--110 Weimin Xue Artinian rings (II) --- Azumaya's exact rings . . . . . . . . . . . . . . . . . 111--148 Weimin Xue Other types of rings with duality . . . 149--159
Manfred Knebusch Semialgebraic topology in the last ten years . . . . . . . . . . . . . . . . . 1--36 R. Parimala Algebraic geometric methods in real algebraic geometry . . . . . . . . . . . 37--51 G. M. Polotovski\u\i On the classification of decomposing plane algebraic curves . . . . . . . . . 52--74 Claus Scheiderer Real algebra and its applications to geometry in the last ten years: Some major developments and results . . . . . 75--96 E. I. Shustin Topology of real plane algebraic curves 97--109 R. Silhol Moduli problems in real algebraic geometry . . . . . . . . . . . . . . . . 110--119 S. Akbulut and H. King Constructing strange real algebraic sets 120--127 Carlos Andradas and Jesús M. Ruíz More on basic semialgebraic sets . . . . 128--139 Alberto Borobia Mirror property for nonsingular mixed configurations of one line and $k$ points in $ R^3$ . . . . . . . . . . . . 140--144 Ludwig Bröcker Families of semialgebraic sets and limits . . . . . . . . . . . . . . . . . 145--162 G. W. Brumfiel A Hopf fixed point theorem for semi-algebraic maps . . . . . . . . . . 163--169 G. W. Brumfiel On regular open semi-algebraic sets . . 170--173 Ana Castilla Sums of $ 2 n$-th powers meromorphic functions with compact zero set . . . . 174--177 Zygmunt Charzy\'nski and Przemys\law Skibi\'nski Pseudoorthogonality of powers of the coordinates of a holomorphic mapping in two variables with the constant Jacobian 178--192 Michel Coste and Miloud Reguiat Trivialités en famille. (French) [] . . . 193--204 A. I. Degtyarev Stiefel orientations on a real algebraic variety . . . . . . . . . . . . . . . . 205--220 Zofia Denkowska Subanaliticity and the second part of Hilbert's $ 16^{\rm th} $ problem . . . 221--234 J.-P. Françoise and F. Ronga The decidability of real algebraic sets by the index formula . . . . . . . . . . 235--239 J. M. Gamboa and C. Ueno Proper polynomial maps: The real case 240--256 Danielle Gondard-Cozette Sur les ordres de niveau $ 2^n $ et sur une extension du 17\`eme probl\`eme de Hilbert. (French) [] . . . . . . . . . . 257--266
René Thom Leaving mathematics for philosophy . . . 1--12 Sergei Novikov Rôle of integrable models in the development of mathematics . . . . . . . 13--28 Shing-Tung Yau The current state and prospects of geometry and nonlinear differential equations . . . . . . . . . . . . . . . 29--39 Alain Connes Noncommutative geometry . . . . . . . . 40--58 Stephen Smale Theory of computation . . . . . . . . . 59--69 Vaughan F. R. Jones Knots in mathematics and physics . . . . 70--77 Gerd Faltings Recent progress in Diophantine geometry 78--86 Alain Connes and Gerd Faltings and Vaughan Jones and Stephen Smale and René Thom and Jorge Wagensberg Round-table discussion . . . . . . . . . 87--108
Richard Bass and Davar Khoshnevisan Stochastic calculus and the continuity of local times of Lévy processes . . . . 1--10 Eduardo Mayer-Wolf and David Nualart and Víctor Pérez-Abreu Large deviations for multiple Wiener--Itô integral processes . . . . . . . . . . . 11--31 Aihua Xia Weak convergence of jump processes . . . 32--46 Laurent Miclo Recuit simulé sans potentiel sur un ensemble fini. (French) [] . . . . . . . 47--60 Luca Pratelli Une caractérisation de la convergence dans $ L^1 $. Application aux quasimartingales. (French) [] . . . . . 61--69 Martin T. Barlow and Peter Imkeller On some sample path properties of Skorohod integral processes . . . . . . 70--80 Krzysztof Burdzy and Donald Marshall Hitting a boundary point with reflected Brownian motion . . . . . . . . . . . . 81--94 T. S. Mountford Quasi-everywhere upper functions . . . . 95--106 T. S. Mountford A critical function for the planar Brownian convex hull . . . . . . . . . . 107--112 J. C. Taylor Skew products, regular conditional probabilities and stochastic differential equations: a technical remark . . . . . . . . . . . . . . . . . 113--126 Monique Pontier and Anne Estrade Relévement horizontal d'une semi-martingale c\`adl\`ag. (French) [] 127--145 Marc Arnaudon Connexions et martingales dans les groupes de Lie. (French) [] . . . . . . 146--156 Lester E. Dubins and Meir Smorodinsky The modified, discrete, Lévy-transformation is Bernoulli . . . . 157--161 Hac\`ene Boutabia and Bernard Maisonneuve Lois conditionnelles des excursions markoviennes . . . . . . . . . . . . . . 162--166 D. Lépingle Orthogonalité et intégrabilité uniforme de martingales discr\`etes. (French) [] . . 167--169 Dominique Bakry and Dominique Michel Sur les inégalités FKG. (French) [] . . . 170--188 J. R. Norris A complete differential formalism for stochastic calculus in manifolds . . . . 189--209 Martin Baxter Markov processes on the boundary of the binary tree . . . . . . . . . . . . . . 210--224 Philippe Biane Fronti\`ere de Martin du dual de $ {\rm SU}(2) $. (French) [] . . . . . . . . . 225--233 Paul McGill Generalised transforms, quasi-diffusions, and Désiré André's equation . . . . . . . . . . . . . . . . 234--247
Mark I. Freidlin Semi-linear pde's and limit theorems for large deviations . . . . . . . . . . . . 1--109 Jean-François Le Gall Some properties of planar Brownian motion . . . . . . . . . . . . . . . . . 111--235
G. Isac Introduction . . . . . . . . . . . . . . 1--3 G. Isac Preliminaries and definitions of principal complementarity problems . . . 4--15 G. Isac Models and applications . . . . . . . . 16--51 G. Isac Equivalences . . . . . . . . . . . . . . 52--69 G. Isac Existence theorems . . . . . . . . . . . 70--138 G. Isac The order complementarity problem . . . 139--161 G. Isac The implicit complementarity problem . . 162--195 G. Isac Isotone projection cones and complementarity . . . . . . . . . . . . 196--219 G. Isac Topics on complementarity problems . . . 220--269 G. Isac Errata . . . . . . . . . . . . . . . . . e1--e2
Jan van Neerven The adjoint semigroup . . . . . . . . . 1--18 Jan van Neerven The $ \sigma (X, X^\odot) $-topology . . 19--39 Jan van Neerven Interpolation, extrapolation and duality 40--68 Jan van Neerven Perturbation theory . . . . . . . . . . 69--95 Jan van Neerven Dichotomy theorems . . . . . . . . . . . 96--110 Jan van Neerven Adjoint semigroups and the RNP . . . . . 111--121 Jan van Neerven Tensor products . . . . . . . . . . . . 122--143 Jan van Neerven The adjoint of a positive semigroup . . 144--175
Leonid K. Antanovskii Analyticity of a free boundary in plane quasi-steady flow of a liquid form subject to variable surface tension . . 1--16 Jürgen Socolowsky On a free boundary problem for the stationary Navier--Stokes equations with a dynamic contact line . . . . . . . . . 17--29 V. A. Solonnikov and A. Tani Evolution free boundary problem for equations of motion of viscous compressible barotropic liquid . . . . . 30--55 Michael Wolff Heat-conducting fluids with free surface in the case of slip-condition on the walls . . . . . . . . . . . . . . . . . 56--70 Wolfgang Borchers and Tetsuro Miyakawa On some coercive estimates for the Stokes problem in unbounded domains . . 71--84 Huakang Chang The steady Navier--Stokes problem for low Reynolds number viscous jets into a half space . . . . . . . . . . . . . . . 85--96 Reinhard Farwig and Hermann Sohr An approach to resolvent estimates for the Stokes equations in $ L^q $-spaces 97--110 Giovanni P. Galdi On the Oseen boundary-value problem in exterior domains . . . . . . . . . . . . 111--131 Rodolfo Salvi The exterior problem for the stationary Navier--Stokes equations: On the existence and regularity . . . . . . . . 132--145 Maria E. Schonbek Some results on the asymptotic behaviour of solutions to the Navier--Stokes equations . . . . . . . . . . . . . . . 146--160 Michael Wiegner Approximation of weak solutions of the Navier--Stokes equations in unbounded domains . . . . . . . . . . . . . . . . 161--166 Rolf Rannacher On Chorin's projection method for the incompressible Navier--Stokes equations 167--183 Endre Süli and Antony F. Ware Analysis of the spectral Lagrange--Galerkin method for the Navier--Stokes equations . . . . . . . . 184--195 Werner Varnhorn A fractional step method for regularized Navier--Stokes equations . . . . . . . . 196--209 Brian T. R. Wetton Finite difference vorticity methods . . 210--225 A. V. Fursikov The closure problem for the chain of the Friedman--Keller moment equations in the case of large Reynolds numbers . . . . . 226--245 Atsushi Inoue A tiny step towards a theory of functional derivative equations --- A strong solution of the space-time Hopf equation . . . . . . . . . . . . . . . . 246--261 Gerd Grubb Initial value problems for the Navier--Stokes equations with Neumann conditions . . . . . . . . . . . . . . . 262--283 Il'ia Mogilevskii Estimates in $ C^{2 l, l} $ for solution of a boundary value problem for the nonstationary Stokes system with a surface tension in boundary condition 284--290 Burkhard J. Schmitt and Wolf von Wahl Decomposition of solenoidal fields into poloidal fields, toroidal fields and the mean flow. Applications to the Boussinesq-equations . . . . . . . . . . 291--305
Mechthild Stoer Motivation . . . . . . . . . . . . . . . 5--6 Mechthild Stoer Network survivability models using node types . . . . . . . . . . . . . . . . . 7--18 Mechthild Stoer Survivable network design under connectivity constraints --- a survey 19--32 Mechthild Stoer Decomposition . . . . . . . . . . . . . 33--47 Mechthild Stoer Basic inequalities . . . . . . . . . . . 49--68 Mechthild Stoer Lifting theorems . . . . . . . . . . . . 69--76 Mechthild Stoer Partition inequalities . . . . . . . . . 77--90 Mechthild Stoer Node partition inequalities . . . . . . 91--99 Mechthild Stoer Lifted $r$-cover inequalities . . . . . 101--112 Mechthild Stoer Comb inequalities . . . . . . . . . . . 113--123 Mechthild Stoer How to find valid inequalities . . . . . 125--154 Mechthild Stoer Implementation of the cutting plane algorithm . . . . . . . . . . . . . . . 155--173 Mechthild Stoer Computational results . . . . . . . . . 175--194
Jean François Colombeau Introduction to generalized functions and distributions . . . . . . . . . . . 1--12 Jean François Colombeau Multiplications of distributions in classical physics . . . . . . . . . . . 13--29 Jean François Colombeau Elementary introduction . . . . . . . . 30--61 Jean François Colombeau Jump formulas for systems in nonconservative form. New numerical methods . . . . . . . . . . . . . . . . 62--96 Jean François Colombeau The case of several constitutive equations . . . . . . . . . . . . . . . 97--123 Jean François Colombeau Linear wave propagation in a medium with piecewise $ C^\infty $ characteristics 124--143 Jean François Colombeau The canonical Hamiltonian formalism of interacting quantum fields . . . . . . . 144--157 Jean François Colombeau The abstract theory of generalized functions . . . . . . . . . . . . . . . 158--171
Peter Jipsen and Henry Rose Preliminaries . . . . . . . . . . . . . 1--12 Peter Jipsen and Henry Rose General results . . . . . . . . . . . . 13--45 Peter Jipsen and Henry Rose Modular varieties . . . . . . . . . . . 46--76 Peter Jipsen and Henry Rose Nonmodular varieties . . . . . . . . . . 77--114 Peter Jipsen and Henry Rose Equational bases . . . . . . . . . . . . 115--127 Peter Jipsen and Henry Rose Amalgamation in lattice varieties . . . 128--148
Cornelius Greither Galois theory of commutative rings . . . 1--31 Cornelius Greither Cyclotomic descent . . . . . . . . . . . 32--54 Cornelius Greither Corestriction and Hilbert's Theorem 90 55--66 Cornelius Greither Calculations with units . . . . . . . . 67--76 Cornelius Greither Cyclic $p$-extensions and ie771--extensions of number fields . . . 77--96 Cornelius Greither Geometric theory: cyclic extensions of finitely generated fields . . . . . . . 97--108 Cornelius Greither Cyclic Galois theory without the condition ```$ p^{ - 1} \geq R $'' . . . 109--139
Anthony B. Evans Introduction . . . . . . . . . . . . . . 1--24 Anthony B. Evans Elementary abelian groups . . . . . . . 25--34 Anthony B. Evans Cyclotomic orthomorphisms . . . . . . . 35--49 Anthony B. Evans Automorphisms and translation nets . . . 50--56 Anthony B. Evans Further results . . . . . . . . . . . . 57--76 Anthony B. Evans Data for small groups . . . . . . . . . 77--90 Anthony B. Evans Research directions . . . . . . . . . . 91--104
Man Kam Kwong and Anton Zettl Introduction . . . . . . . . . . . . . . 1--2 Man Kam Kwong and Anton Zettl Unit weight functions . . . . . . . . . 3--34 Man Kam Kwong and Anton Zettl The norms of $y$, $ y^\prime $, $ y^{\prime \prime }$ . . . . . . . . . . 35--83 Man Kam Kwong and Anton Zettl Weights . . . . . . . . . . . . . . . . 84--116 Man Kam Kwong and Anton Zettl The difference operator . . . . . . . . 117--143
Robert R. Phelps Front Matter . . . . . . . . . . . . . . I--XI Robert R. Phelps Convex functions on real Banach spaces 1--16 Robert R. Phelps Monotone operators, subdifferentials and Asplund spaces . . . . . . . . . . . . . 17--37 Robert R. Phelps Lower semicontinuous convex functions 38--57 Robert R. Phelps Smooth variational principles, Asplund spaces, weak Asplund spaces . . . . . . 58--78 Robert R. Phelps Asplund spaces, the RNP and perturbed optimization . . . . . . . . . . . . . . 79--94 Robert R. Phelps Gâteaux differentiability spaces . . . . 95--101 Robert R. Phelps A generalization of monotone operators: Usco maps . . . . . . . . . . . . . . . 102--109 Robert R. Phelps Back Matter . . . . . . . . . . . . . . 110--120
Patrick Fitzpatrick and Mario Martelli and Jean Mawhin and Roger Nussbaum Front Matter . . . . . . . . . . . . . . ?? Patrick Fitzpatrick The parity as an invariant for detecting bifurcation of the zeroes of one parameter families of nonlinear Fredholm maps . . . . . . . . . . . . . . . . . . 1--31 Mario Martelli Continuation principles and boundary value problems . . . . . . . . . . . . . 32--73 J. Mawhin Topological degree and boundary value problems for nonlinear differential equations . . . . . . . . . . . . . . . 74--142 Roger D. Nussbaum The fixed point index and fixed point theorems . . . . . . . . . . . . . . . . 143--205 Roger D. Nussbaum Back Matter . . . . . . . . . . . . . . ??
Paul-André Meyer Front Matter . . . . . . . . . . . . . . N2--X Paul-André Meyer Non-Commutative Probability . . . . . . 1--10 Paul-André Meyer Spin . . . . . . . . . . . . . . . . . . 11--40 Paul-André Meyer The Harmonic Oscillator . . . . . . . . 41--54 Paul-André Meyer Fock Space (1) . . . . . . . . . . . . . 55--96 Paul-André Meyer Fock Space (2): Multiple Fock Spaces . . 97--116 Paul-André Meyer Stochastic Calculus in Fock Space . . . 117--186 Paul-André Meyer Independent Increments . . . . . . . . . 187--200 Paul-André Meyer Back Matter . . . . . . . . . . . . . . 201--293
Michel Coornaert and Athanase Papadopoulos Introduction . . . . . . . . . . . . . . 1--4 Michel Coornaert and Athanase Papadopoulos A quick review of Gromov hyperbolic spaces . . . . . . . . . . . . . . . . . 5--18 Michel Coornaert and Athanase Papadopoulos Symbolic dynamics . . . . . . . . . . . 19--42 Michel Coornaert and Athanase Papadopoulos The boundary of a hyperbolic group as a finitely presented dynamical system . . 43--68 Michel Coornaert and Athanase Papadopoulos Another finite presentation for the action of a hyperbolic group on its boundary . . . . . . . . . . . . . . . . 69--90 Michel Coornaert and Athanase Papadopoulos Trees and hyperbolic boundary . . . . . 91--106 Michel Coornaert and Athanase Papadopoulos Semi-Markovian spaces . . . . . . . . . 107--117 Michel Coornaert and Athanase Papadopoulos The boundary of a torsion-free hyperbolic group as a semi-Markovian space . . . . . . . . . . . . . . . . . 118--134
C. A. Berenstein and T. Kawai and D. C. Struppa Interpolation theorems in several complex variables and applications . . . 1--9 Ha\"\im Brézis New energies for harmonic maps and liquid crystals . . . . . . . . . . . . 11--24 Giovanni Dore $ L^p $ regularity for abstract differential equations . . . . . . . . . 25--38 Daisuke Fujiwara Some Feynman path integrals as oscillatory integrals over a Sobolev manifold . . . . . . . . . . . . . . . . 39--53 Mariko Giga and Yoshikazu Giga and Hermann Sohr $ L^p $ estimates for the Stokes system 55--67 Kiyosi It\=o Semigroups in probability theory . . . . 69--83 Toshiyuki Iwamiya and Tadayasu Takahashi and Shinnosuke Oharu Characterization of nonlinearly perturbed semigroups . . . . . . . . . . 85--102 Tosio Kato Abstract evolution equations, linear and quasilinear, revisited . . . . . . . . . 103--125 Yasuyuki Kawahigashi Exactly solvable orbifold models and subfactors . . . . . . . . . . . . . . . 127--147 Hitoshi Kitada Asymptotic completeness of $N$-body wave operators II. A new proof for the short-range case and the asymptotic clustering for long-range systems . . . 149--189 Yoshikazu Kobayashi and Shinnosuke Oharu Semigroups of locally Lipschitzian operators and applications . . . . . . . 191--211 Hikosaburo Komatsu Operational calculus and semi-groups of operators . . . . . . . . . . . . . . . 213--234 Yukio K\=omura and Kiyoko Furuya Wave equations in nonreflexive spaces 235--238 J.-L. Lions Remarks on systems with incompletely given initial data and incompletely given part of the boundary . . . . . . . 239--250 Shigetake Matsuura On non-convex curves of constant angle 251--268 Hiroko Morimoto Asymptotic behavior of weak solutions of the convection equation . . . . . . . . 269--276 Minoru Murata Uniform restricted parabolic Harnack inequality, separation principle, and ultracontractivity for parabolic equations . . . . . . . . . . . . . . . 277--288 P. P. Narayanaswami The separable quotient problem for barrelled spaces . . . . . . . . . . . . 289--308 H. Okamoto and M. Sh\=oji and M. Katsurada A computer-assisted analysis of the two dimensional Navier--Stokes equations . . 309--318 Mitsuharu Ôtani A priori estimates for some nonlinear parabolic equations via Lyapunov functions . . . . . . . . . . . . . . . 319--327
Donald A. Dawson Measure-valued Markov processes . . . . 1--260 Bernard Maisonneuve Processus de Markov: Naissance, retournement, régénération. (French) [] . . 261--292 Joel Spencer Nine lectures on random graphs . . . . . 293--347
Jürg Fröhlich and Thomas Kerler Introduction and survey of results . . . 1--16 Jürg Fröhlich and Thomas Kerler Local quantum theory with braid group statistics . . . . . . . . . . . . . . . 17--44 Jürg Fröhlich and Thomas Kerler Superselection sectors and the structure of fusion rule algebras . . . . . . . . 45--101 Jürg Fröhlich and Thomas Kerler Hopf algebras and quantum groups at roots of unity . . . . . . . . . . . . . 102--118 Jürg Fröhlich and Thomas Kerler Representation theory of $ U_q^{\rm red}(s \ell_2) $ . . . . . . . . . . . . 119--140 Jürg Fröhlich and Thomas Kerler Path representations of the braid groups for quantum groups at roots of unity . . 141--175 Jürg Fröhlich and Thomas Kerler Duality theory for local quantum theories, dimensions and balancing in quantum categories . . . . . . . . . . . 176--283 Jürg Fröhlich and Thomas Kerler The quantum categories with a generator of dimension less than two . . . . . . . 284--411
Asen L. Dontchev and Tullio Zolezzi Tykhonov well-posedness . . . . . . . . 1--37 Asen L. Dontchev and Tullio Zolezzi Hadamard and Tykhonov well-posedness . . 38--80 Asen L. Dontchev and Tullio Zolezzi Generic well-posedness . . . . . . . . . 81--115 Asen L. Dontchev and Tullio Zolezzi Well-posedness and variational, epi- and Mosco convergences . . . . . . . . . . . 116--175 Asen L. Dontchev and Tullio Zolezzi Well-posedness in optimal control . . . 176--229 Asen L. Dontchev and Tullio Zolezzi Relaxation and value Hadamard well-posedness in optimal control . . . 230--247 Asen L. Dontchev and Tullio Zolezzi Singular perturbations in optimal control . . . . . . . . . . . . . . . . 248--282 Asen L. Dontchev and Tullio Zolezzi Well-posedness in the calculus of variations . . . . . . . . . . . . . . . 283--334 Asen L. Dontchev and Tullio Zolezzi Hadamard well-posedness in mathematical programming . . . . . . . . . . . . . . 335--380
Michael Schürmann Introduction . . . . . . . . . . . . . . 1--11 Michael Schürmann Basic concepts and first results . . . . 12--40 Michael Schürmann Symmetric white noise on Bose Fock space 41--68 Michael Schürmann Symmetrization . . . . . . . . . . . . . 69--80 Michael Schürmann White noise on Bose Fock space . . . . . 81--113 Michael Schürmann Quadratic components of conditionally positive linear functionals . . . . . . 114--127 Michael Schürmann Limit theorems . . . . . . . . . . . . . 128--137
John W. Morgan and Kieran G. O'Grady Introduction . . . . . . . . . . . . . . 1--11 John W. Morgan and Kieran G. O'Grady Unstable polynomials of algebraic surfaces . . . . . . . . . . . . . . . . 12--32 John W. Morgan and Kieran G. O'Grady Identification of $ \delta_{3, r}(S, H) $ with $ \gamma_3 (S) $ . . . . . . . . 33--56 John W. Morgan and Kieran G. O'Grady Certain moduli spaces for bundles on elliptic surfaces with $ p_g = 1 $ . . . 57--98 John W. Morgan and Kieran G. O'Grady Representatives for classes in the image of the $ \nu $-map . . . . . . . . . . . 99--111 John W. Morgan and Kieran G. O'Grady The blow-up formula . . . . . . . . . . 112--166 John W. Morgan and Kieran G. O'Grady The proof of Theorem 1.1.1 . . . . . . . 167--210
Caterina Dimaki and Evdokia Xekalaki Characterizations of the Pareto distribution based on order statistics 1--16 B. Dimitrov and Z. Khalil Some characterizations of the exponential distribution based on the service time properties of an unreliable server . . . . . . . . . . . . . . . . . 17--25 Mark Finkelstein and Howard G. Tucker On the distribution of the Wilcoxon Rank-Sum statistic . . . . . . . . . . . 26--32 W. Hazod On different stability-concepts for probabilities on groups . . . . . . . . 33--44 Herbert Heyer Functional limit theorems for random walks on one-dimensional hypergroups . . 45--57 Peter Jagers Stabilities and instabilities in population dynamics . . . . . . . . . . 58--67 Slobodanka Jankovi\'c Some properties of random variables which are stable with respect to the random sample size . . . . . . . . . . . 68--75 V. V. Kalashnikov Two-side estimates of geometric convolutions . . . . . . . . . . . . . . 76--88 L. B. Klebanov and A. Yu. Yakovlev A stochastic model of radiation carcinogenesis . . . . . . . . . . . . . 89--99 V. Yu. Korolev and V. M. Kruglov Limit theorems for random sums of independent random variables . . . . . . 100--120 I. S. Molchanov On regularly varying multivalued functions . . . . . . . . . . . . . . . 121--129 E. V. Morozov A comparison theorem for queueing system with non-identical channels . . . . . . 130--133 Josep M. Oller On an intrinsic bias measure . . . . . . 134--158 Jerzy Pusz Characterization of exponential distributions by conditional moments . . 159--162 Yu. S. Khokhlov The functional limit theorem on nilpotent Lie group . . . . . . . . . . 163--166 M. Yu. Svertchkov On wide-sense regeneration . . . . . . . 167--169 S. M. Shkol'nik Some properties of the median of the stable distributions close to the symmetric ones . . . . . . . . . . . . . 170--173 Hermann Thorisson Regeneration, stationarity and simulation . . . . . . . . . . . . . . . 174--179 Jacek Weso\lowski Multivariate infinitely divisible distributions with the Gaussian second order conditional structure . . . . . . 180--183 O. L. Yanushkevichiene On the convergence of random symmetric polynomials . . . . . . . . . . . . . . 184--188
Peter Harmand and Dirk Werner and Wend Werner Basic theory of $M$-ideals . . . . . . . 1--47 Peter Harmand and Dirk Werner and Wend Werner Geometric properties of $M$-ideals . . . 49--100 Peter Harmand and Dirk Werner and Wend Werner Banach spaces which are $M$-ideals in their biduals . . . . . . . . . . . . . 101--155 Peter Harmand and Dirk Werner and Wend Werner Banach spaces which are $L$-summands in their biduals . . . . . . . . . . . . . 157--214 Peter Harmand and Dirk Werner and Wend Werner $M$-ideals in Banach algebras . . . . . 215--261 Peter Harmand and Dirk Werner and Wend Werner $M$-ideals in spaces of bounded operators . . . . . . . . . . . . . . . 263--344
Tohsuke Urabe Introduction . . . . . . . . . . . . . . 1--16 Tohsuke Urabe Quadrilateral singularities and elliptic $ K3 $ surfaces . . . . . . . . . . . . 17--59 Tohsuke Urabe Theorems with the Ik-conditions for $ J_{3, 0} $, $ Z_{1, 0} $ and $ Q_{2, 0} $ . . . . . . . . . . . . . . . . . . . 60--97 Tohsuke Urabe Obstruction components . . . . . . . . . 98--184 Tohsuke Urabe Concept of co-root modules . . . . . . . 185--226
Gennadi Vainikko Some problems leading to multidimensional weakly singular integral equations . . . . . . . . . . . 1--9 Gennadi Vainikko Preliminaries . . . . . . . . . . . . . 10--23 Gennadi Vainikko Smoothness of the solution . . . . . . . 24--50 Gennadi Vainikko Outlines of the discrete convergence theory . . . . . . . . . . . . . . . . . 51--59 Gennadi Vainikko Piecewise constant collocation and related methods . . . . . . . . . . . . 60--93 Gennadi Vainikko Composite cubature algorithms . . . . . 94--111 Gennadi Vainikko Higher order methods . . . . . . . . . . 112--136 Gennadi Vainikko Nonlinear integral equation . . . . . . 137--144
Thomas Bagby and Norman Levenberg Bernstein theorems for harmonic functions . . . . . . . . . . . . . . . 7--18 A. P. Buslaev and V. M. Tikhomirov Spectral theory of nonlinear equations and $n$-widths of Sobolev spaces . . . . 19--30 Charles K. Chui On wavelet analysis . . . . . . . . . . 31--42 J. S. Geronimo Polynomials orthogonal on the unit circle with random recurrence coefficients . . . . . . . . . . . . . . 43--61 Charles A. Micchelli Using the refinement equation for the construction of pre-wavelets IV: Cube splines and elliptic splines united . . 62--70 E. A. Rakhmanov Strong asymptotics for orthogonal polynomials . . . . . . . . . . . . . . 71--97 A. L. Levin and E. B. Saff Exact convergence rates for best $ L_P $ rational approximation to the signum function and for optimal quadrature in $ H^P $ . . . . . . . . . . . . . . . . . 98--109 Herbert Stahl Uniform rational approximation of $ | X | $ . . . . . . . . . . . . . . . . . . 110--130 Mizan Rahman and S. K. Suslov Classical biorthogonal rational functions . . . . . . . . . . . . . . . 131--146 A. I. Aptekarev A direct proof for Trefethen's conjecture . . . . . . . . . . . . . . . 147--148 V. P. Havin and A. Presa Sagué Approximation properties of harmonic vector fields and differential forms . . 149--156 Oleg V. Ivanov A problem of Axler and Shields on nontangential limits and maximal ideal space of some pseudonanalytic algebras 157--159 V. V. Ma\u\imeskul Degree of approximation of analytic functions by ``near the best'' polynomial approximants . . . . . . . . 160--163 O. G. Parfënov Extremal problems for Blaschke products and widths . . . . . . . . . . . . . . . 164--168 I. E. Pritsker On the convergence of Bieberbach polynomials in domains with interior zero angles . . . . . . . . . . . . . . 169--172 Boris Shekhtman Duality principle in linearized rational approximation . . . . . . . . . . . . . 173--177 V. N. Temlyakov Universality of the Fibonacci cubature formulas . . . . . . . . . . . . . . . . 178--184 S. Khrushchëv Parameters of orthogonal polynomials . . 185--191 Amos J. Carpenter and Richard S. Varga Some numerical results on best uniform polynomial approximation of $ X^\alpha $ on $ [0, 1] $ . . . . . . . . . . . . . 192--222
Leif Arkeryd and Pierre-Louis Lions and Peter A. Markowich and Srinivasa R. S. Varadhan Front Matter . . . . . . . . . . . . . . ?? C. Cercignani and M. Pulvirenti Nonequilibrium problems in many-particle systems. An introduction . . . . . . . . 1--13 L. Arkeryd Some examples of NSA methods in kinetic theory . . . . . . . . . . . . . . . . . 14--57 P.-L. Lions Global solutions of kinetic models and related questions . . . . . . . . . . . 58--86 Peter A. Markowich Kinetic models for semiconductors . . . 87--111 S. R. S. Varadhan Entropy methods in hydrodynamic scaling 112--145 S. R. S. Varadhan Back Matter . . . . . . . . . . . . . . ??
Joachim Hilgert and Karl-Hermann Neeb Lie semigroups and their tangent wedges 1--46 Joachim Hilgert and Karl-Hermann Neeb Examples . . . . . . . . . . . . . . . . 47--79 Joachim Hilgert and Karl-Hermann Neeb Geometry and topology of Lie semigroups 80--112 Joachim Hilgert and Karl-Hermann Neeb Ordered homogeneous spaces . . . . . . . 113--147 Joachim Hilgert and Karl-Hermann Neeb Applications of ordered spaces to Lie semigroups . . . . . . . . . . . . . . . 148--161 Joachim Hilgert and Karl-Hermann Neeb Maximal semigroups in groups with cocompact radical . . . . . . . . . . . 162--176 Joachim Hilgert and Karl-Hermann Neeb Invariant Cones and Ol'shanskii semigroups . . . . . . . . . . . . . . . 177--201 Joachim Hilgert and Karl-Hermann Neeb Compression semigroups . . . . . . . . . 202--253 Joachim Hilgert and Karl-Hermann Neeb Representation theory . . . . . . . . . 254--296 Joachim Hilgert and Karl-Hermann Neeb The theory for $ {\rm Sl}(2) $ . . . . . 297--302
Jean-Louis Colliot-Thél\`ene and Kazuya Kato and Paul Vojta Front Matter . . . . . . . . . . . . . . ?? Jean-Louis Colliot-Thél\`ene Cycles algébriques de torsion et $K$-théorie algébrique. Cours au C.I.M.E., juin 1991. (French) [] . . . . . . . . . 1--49 Kazuya Kato Lectures on the approach to Iwasawa theory for Hasse--Weil $L$-functions via $ B_{dR}$. Part I . . . . . . . . . . . 50--163 Paul Vojta Applications of arithmetic algebraic geometry to Diophantine approximations 164--208 Jean-Louis Colliot-Thél\`ene and Kazuya Kato and Paul Vojta Arithmetic algebraic geometry, Trento, Italy 1991 . . . . . . . . . . . . . . . e1--e2 Jean-Louis Colliot-Thél\`ene and Kazuya Kato and Paul Vojta Back Matter . . . . . . . . . . . . . . ??
H. W. Lenstra, Jr. The number field sieve: an annotated bibliography . . . . . . . . . . . . . . 1--3 J. M. Pollard Factoring with cubic integers . . . . . 4--10 A. K. Lenstra and H. W. Lenstra, Jr. and M. S. Manasse and J. M. Pollard The number field sieve . . . . . . . . . 11--42 J. M. Pollard The lattice sieve . . . . . . . . . . . 43--49 J. P. Buhler and H. W. Lenstra, Jr. and Carl Pomerance Factoring integers with the number field sieve . . . . . . . . . . . . . . . . . 50--94 Jean-Marc Couveignes Computing a square root for the number field sieve . . . . . . . . . . . . . . 95--102 Daniel J. Bernstein and A. K. Lenstra A general number field sieve implementation . . . . . . . . . . . . . 103--126
Otto Liess Introduction . . . . . . . . . . . . . . 1--32 Otto Liess Higher order wave front sets . . . . . . 33--93 Otto Liess Pseudodifferential operators . . . . . . 95--144 Otto Liess Bi-symplectic geometry and multihomogeneous maps . . . . . . . . . 145--191 Otto Liess Fourier Integral Operators . . . . . . . 193--223 Otto Liess Conical refraction, hyperbolicity and slowness surfaces . . . . . . . . . . . 225--278 Otto Liess Propagation of regularity up to the boundary . . . . . . . . . . . . . . . . 279--308 Otto Liess Some results on transmission problems 309--345 Otto Liess Partial analyticity, higher microlocalization and sheaves . . . . . 347--379
Sergej B. Kuksin Symplectic structures and Hamiltonian systems in scales of Hilbert spaces . . 1--12 Sergej B. Kuksin Statement of the main theorem and its consequences . . . . . . . . . . . . . . 13--44 Sergej B. Kuksin Proof of the main theorem . . . . . . . 45--90
Masao Nagasawa Principle of superposition and interference of diffusion processes . . 1--14 Thierry de la Rue Espaces de Lebesgue. (French) [Lebesgue spaces] . . . . . . . . . . . . . . . . 15--21 J. P. Ansel and C. Stricker Unicité et existence de la loi minimale. (French) [] . . . . . . . . . . . . . . 22--29 J. P. Ansel and C. Stricker Décomposition de Kunita--Watanabe. (French) [] . . . . . . . . . . . . . . 30--32 Jean Bertoin Une preuve simple du théor\`eme de Shimura sur les points méandre du mouvement brownien plan. (French) [] . . 33--35 Frank Knight Some remarks on mutual windings . . . . 36--43 Oliver Brockhaus Sufficient statistics for the Brownian sheet . . . . . . . . . . . . . . . . . 44--52 T. Jeulin and M. Yor Moyennes mobiles et semimartingales. (French) [] . . . . . . . . . . . . . . 53--77 Kiyoshi Kawazu and Hiroshi Tanaka On the maximum of a diffusion process in a drifted Brownian environment . . . . . 78--85 Yaozhong Hu Hypercontractivité pour les fermions, d'apr\`es Carlen--Lieb. (French) [] . . 86--96 P.-A. Meyer Représentation de martingales d'opérateurs d'apr\`es Parthasarathy--Sinha. (French) [] . . . . . . . . . . . . . . . . . . . 97--105 P.-A. Meyer Les syst\`emes-produits et l'espace de Fock d'apr\`es W. Arveson. (French) [] 106--113 P.-A. Meyer Représentation des fonctions conditionnellement de type positif d'apr\`es V. P. Belavkin. (French) [] 114--121 L. E. Dubins and Michel Émery and M. Yor On the Lévy transformation of Brownian motions and continuous martingales . . . 122--132 J. Azéma and T. Jeulin and F. Knight and M. Yor Le théor\`eme d'arrêt en une fin d'ensemble prévisible. (French) [] . . . 133--158 K. D. Elworthy and M. Yor Conditional expectations for derivatives of certain stochastic flows . . . . . . 159--172 John B. Walsh Some remarks on $ A(t, B_t) $ . . . . . 173--176 Krzysztof Burdzy Excursion laws and exceptional points on Brownian paths . . . . . . . . . . . . . 177--181 Marc Arnaudon Propriétés asymptotiques des semi-martingales \`a valeurs dans des variétés \`a bord continu. (French) [] . . 182--201 Dominique Schneider and Michel Weber Une remarque sur un théor\`eme de Bourgain. (French) [] . . . . . . . . . 202--206
Thomas J. Bridges and Jacques E. Furter Introduction . . . . . . . . . . . . . . 1--8 Thomas J. Bridges and Jacques E. Furter Generic bifurcation of periodic points 9--31 Thomas J. Bridges and Jacques E. Furter Singularity theory for equivariant gradient bifurcation problems . . . . . 33--62 Thomas J. Bridges and Jacques E. Furter Classification of Zq-equivariant gradient bifurcation problems . . . . . 63--83 Thomas J. Bridges and Jacques E. Furter Period-$3$ points of the generalized standard map . . . . . . . . . . . . . . 85--88 Thomas J. Bridges and Jacques E. Furter Classification of Dq-equivariant gradient bifurcation problems . . . . . 89--99 Thomas J. Bridges and Jacques E. Furter Reversibility and degenerate bifurcation of period-$q$ points of multiparameter maps . . . . . . . . . . . . . . . . . . 101--118 Thomas J. Bridges and Jacques E. Furter Periodic points of equivariant symplectic maps . . . . . . . . . . . . 119--147 Thomas J. Bridges and Jacques E. Furter Collision of multipliers at rational points for symplectic maps . . . . . . . 149--174 Thomas J. Bridges and Jacques E. Furter Equivariant maps and the collision of multipliers . . . . . . . . . . . . . . 175--183
Vladimir G. Sprind\vzuk Origins . . . . . . . . . . . . . . . . 1--13 Vladimir G. Sprind\vzuk Algebraic foundations . . . . . . . . . 14--29 Vladimir G. Sprind\vzuk Linear forms in the logarithms of algebraic numbers . . . . . . . . . . . 30--60 Vladimir G. Sprind\vzuk The Thue equation . . . . . . . . . . . 61--84 Vladimir G. Sprind\vzuk The Thue--Mahler equation . . . . . . . 85--110 Vladimir G. Sprind\vzuk Elliptic and hyperelliptic equations . . 111--137 Vladimir G. Sprind\vzuk Equations of hyperelliptic type . . . . 138--154 Vladimir G. Sprind\vzuk The class number value problem . . . . . 155--187 Vladimir G. Sprind\vzuk Reducibility of polynomials and Diophantine equations . . . . . . . . . 188--218
Thomas Bartsch Introduction . . . . . . . . . . . . . . 1--7 Thomas Bartsch Category, genus and critical point theory with symmetries . . . . . . . . . 8--29 Thomas Bartsch Category and genus of infinite-dimensional representation spheres . . . . . . . . . . . . . . . . 30--52 Thomas Bartsch The length of $G$-spaces . . . . . . . . 53--71 Thomas Bartsch The length of representation spheres . . 72--85 Thomas Bartsch The length and Conley index theory . . . 86--95 Thomas Bartsch The exit-length . . . . . . . . . . . . 96--112 Thomas Bartsch Bifurcation for $ O(3) $-equivariant problems . . . . . . . . . . . . . . . . 113--126 Thomas Bartsch Multiple periodic solutions near equilibria of symmetric Hamiltonian systems . . . . . . . . . . . . . . . . 127--141
Ilya S. Molchanov Distributions of random closed sets . . 1--14 Ilya S. Molchanov Survey on stability of random sets and limit theorems for Minkowski addition 15--27 Ilya S. Molchanov Infinite divisibility and stability of random sets with respect to unions . . . 29--44 Ilya S. Molchanov Limit theorems for normalized unions of random closed sets . . . . . . . . . . . 45--65 Ilya S. Molchanov Almost sure convergence of unions of random closed sets . . . . . . . . . . . 67--84 Ilya S. Molchanov Multivalued regularly varying functions and their applications to limit theorems for unions of random sets . . . . . . . 85--99 Ilya S. Molchanov Probability metrics in the space of random sets distributions . . . . . . . 101--121 Ilya S. Molchanov Applications of limit theorems . . . . . 123--145
Günter Harder Die Be\u\ilinson--Deligne-Vermutungen. (German) [The Be\u\ilinson--Deligne conjectures] . . . . . . . . . . . . . . 1--30 Günter Harder Die Kohomologie von Shimura-Varietäten. (German) [The Cohomology of Shimura Varieties] . . . . . . . . . . . . . . . 31--69 Günter Harder Die Beispiele. (German) [The examples] 70--102 Günter Harder Andersons gemischte Motive. (German) [Anderson's mixed motives] . . . . . . . 103--142
Eugene Fabes and Masatoshi Fukushima and Leonard Gross and Carlos Kenig and Michael Röckner and Daniel W. Stroock Front Matter . . . . . . . . . . . . . . ?? E. B. Fabes Gaussian upper bounds on fundamental solutions of parabolic equations; the method of Nash . . . . . . . . . . . . . 1--20 Masatoshi Fukushima Two topics related to Dirichlet forms: quasi everywhere convergences and additive functionals . . . . . . . . . . 21--53 Leonard Gross Logarithmic Sobolev inequalities and contractivity properties of semigroups 54--88 Carlos E. Kenig Potential theory of non-divergence form elliptic equations . . . . . . . . . . . 89--128 Michael Röckner General theory of Dirichlet forms and applications . . . . . . . . . . . . . . 129--193 Daniel W. Stroock Logarithmic Sobolev inequalities for Gibbs states . . . . . . . . . . . . . . 194--228 Daniel W. Stroock Back Matter . . . . . . . . . . . . . . ??
Jay A. Jorgenson and Serge Lang Some complex analytic properties of regularized products and series . . . . ix-88 Jay A. Jorgenson and Serge Lang A Parseval formula for functions with a singular asymptotic expansion at the origin . . . . . . . . . . . . . . . . . 89--117
L. Boutet de Monvel Indice des syst\`emes différentiels. (French) [] . . . . . . . . . . . . . . 1--30 C. De Concini and C. Procesi Quantum groups . . . . . . . . . . . . . 31--140 Pierre Schapira and Jean-Pierre Schneiders Index theorems for $R$-constructible sheaves and for $D$-modules . . . . . . 141--156 Nicole Berline and Mich\`ele Vergne The equivariant Chern character and index of $G$-invariant operators. Lectures at CIME, Venise 1992 . . . . . 157--200
Frits Beukers Diophantine Equations and Approximation 1--11 Rob Tijdeman Diophantine Approximation and its Applications . . . . . . . . . . . . . . 13--20 Rob Tijdeman Roth's Theorem . . . . . . . . . . . . . 21--30 Jan-Hendrik Evertse The Subspace Theorem of W. M. Schmidt 31--50 Johan Huisman Heights on Abelian Varieties . . . . . . 51--61 Jaap Top D. Mumford's ``A Remark on Mordell's Conjecture'' . . . . . . . . . . . . . . 63--67 Johan de Jong Ample Line Bundles and Intersection Theory . . . . . . . . . . . . . . . . . 69--76 Marius van der Put The Product Theorem . . . . . . . . . . 77--82 Carel Faber Geometric Part of Faltings's Proof . . . 83--91 Robert-Jan Kooman Faltings's Version of Siegel's Lemma . . 93--96 Bas Edixhoven Arithmetic Part of Faltings's Proof . . 97--110 Gerard van der Geer Points of Degree $d$ on Curves over Number Fields . . . . . . . . . . . . . 111--116 Frans Oort ``The'' General Case of S. Lang's Conjecture (after Faltings) . . . . . . 117--122 Frans Oort Back Matter . . . . . . . . . . . . . . 123--127
Roland Lvovich Dobrushin and Shigeo Kusuoka Front Matter . . . . . . . . . . . . . . ?? R. L. Dobrushin On the way to the mathematical foundations of statistical mechanics . . 1--37 S. Kusuoka Lecture on diffusion processes on nested fractals . . . . . . . . . . . . . . . . 39--98
Jean-Pierre Serre Cohomologie des groupes profinis. (French) [] . . . . . . . . . . . . . . 1--79 Jean-Pierre Serre Cohomologie galoisi\`eme --- cas commutatif. (French) [Galois cohomology --- commutative case] . . . . . . . . . 81--126 Jean-Pierre Serre Cohomologie galoisienne non commutative. (French) [Noncommutative Galois cohomology] . . . . . . . . . . . . . . 127--170
Ferenc Weisz Preliminaries and notations . . . . . . 1--12 Ferenc Weisz One-parameter Martingale Hardy spaces 13--79 Ferenc Weisz Two-Parameter Martingale Hardy spaces 80--140 Ferenc Weisz Tree martingales . . . . . . . . . . . . 141--163 Ferenc Weisz Real interpolation . . . . . . . . . . . 164--182 Ferenc Weisz Inequalities for Vilenkin--Fourier coefficients . . . . . . . . . . . . . . 183--203
Vilmos Totik Introduction . . . . . . . . . . . . . . 1--5 Vilmos Totik Freud weights . . . . . . . . . . . . . 7--20 Vilmos Totik Approximation with general weights . . . 21--48 Vilmos Totik Varying weights . . . . . . . . . . . . 49--77 Vilmos Totik Applications . . . . . . . . . . . . . . 79--110
Ralph deLaubenfels Intuition and elementary examples . . . 1--6 Ralph deLaubenfels Existence families . . . . . . . . . . . 7--12 Ralph deLaubenfels Regularized semigroups . . . . . . . . . 13--23 Ralph deLaubenfels The solution space of an operator and automatic well-posedness . . . . . . . . 24--37 Ralph deLaubenfels Exponentially bounded (Banach) solution spaces . . . . . . . . . . . . . . . . . 38--54 Ralph deLaubenfels Well-posedness on a larger space; Generalized solutions . . . . . . . . . 55--59 Ralph deLaubenfels Entire vectors and entire existence families . . . . . . . . . . . . . . . . 60--65 Ralph deLaubenfels Reversibility of parabolic problems . . 66--70 Ralph deLaubenfels The Cauchy problem for the Laplace equation . . . . . . . . . . . . . . . . 71--72 Ralph deLaubenfels Boundary values of holomorphic semigroups . . . . . . . . . . . . . . . 73--75 Ralph deLaubenfels The Schrödinger equation . . . . . . . . 76--78 Ralph deLaubenfels Functional calculus for commuting generators of bounded strongly continuous groups . . . . . . . . . . . 79--85 Ralph deLaubenfels Petrovsky correct matrices of generators of bounded strongly continuous groups 86--91 Ralph deLaubenfels Arbitrary matrices of generators of bounded strongly continuous groups . . . 92--93 Ralph deLaubenfels More examples of regularized semigroups 94--96 Ralph deLaubenfels Existence and uniqueness families . . . 97--103 Ralph deLaubenfels $C$-resolvents and Hille--Yosida type theorems . . . . . . . . . . . . . . . . 104--109 Ralph deLaubenfels Relationship to integrated semigroups 110--112 Ralph deLaubenfels Perturbations . . . . . . . . . . . . . 113--124 Ralph deLaubenfels Type of an operator . . . . . . . . . . 125--127
Sergei Yu. Pilyugin Definitions and preliminary results . . 1--21 Sergei Yu. Pilyugin Generic properties of dynamical systems 23--52 Sergei Yu. Pilyugin Topological stability . . . . . . . . . 53--85 Sergei Yu. Pilyugin Perturbations of attractors . . . . . . 87--123 Sergei Yu. Pilyugin Limit sets of domains . . . . . . . . . 125--142
Lothar Göttsche Fundamental facts . . . . . . . . . . . 1--11 Lothar Göttsche Computation of the Betti numbers of Hilbert schemes . . . . . . . . . . . . 12--80 Lothar Göttsche The varieties of second and higher order data . . . . . . . . . . . . . . . . . . 81--144 Lothar Göttsche The Chow ring of relative Hilbert schemes of projective bundles . . . . . 145--183
S. V. Kisliakov Banach spaces . . . . . . . . . . . . . 1--50 H. G. Dales and A. Ya. Helemskii Banach algebras . . . . . . . . . . . . 51--154 Jean-Pierre Kahane Probabilistic problems . . . . . . . . . 155--178 I. Gohberg and M. A. Kaashoek Holomorphic operator functions . . . . . 179--210 Peter Rosenthal General operator theory . . . . . . . . 211--258 M. Sh. Birman Perturbation theory scattering theory 259--292 Jaak Peetre Hankel and Toeplitz operators . . . . . 293--358 John B. Conway Close to normal operators . . . . . . . 359--388 N. K. Nikolskii and V. I. Vasyunin Functional models . . . . . . . . . . . 389--408 E. M. Dyn'kin and S. V. Kisliakov Singular integrals, BMO, $ H^p $ . . . . 409--464
N. K. Nikolski Spectral analysis and synthesis . . . . 1--72 J. Brennan and A. Volberg and V. P. Havin Approximation and capacities . . . . . . 73--176 Paul Nevai Orthogonal polynomials . . . . . . . . . 177--206 J. Brennan and A. Volberg and V. P. Havin Uniqueness, moments, normality . . . . . 207--258 N. K. Nikolski Interpolation, bases, multipliers . . . 259--294 A. A. Goldberg and B. Ya. Levin and I. V. Ostrovskii Entire and subharmonic functions. . . . 295--338 L. A. Aizenberg $ \mathbb {C}^n $ . . . . . . . . . . . 339--382 P. Duren Geometric function theory . . . . . . . 383--422 B. Bielefeld and M. Lyubich Holomorphic dynamics . . . . . . . . . . 423--462 B. Bielefeld and M. Lyubich Miscellaneous problems . . . . . . . . . 463--482
Marius Mitrea Clifford algebras . . . . . . . . . . . 1--15 Marius Mitrea Constructions of Clifford wavelets . . . 16--41 Marius Mitrea The $ L^2 $ Boundedness of Clifford algebra valued singular integral operators . . . . . . . . . . . . . . . 42--59 Marius Mitrea Hardy spaces of monogenic functions . . 60--86 Marius Mitrea Applications to the theory of harmonic functions . . . . . . . . . . . . . . . 87--105
Kazuaki Kitahara Preliminaries . . . . . . . . . . . . . 1--7 Kazuaki Kitahara Characterizations of approximating spaces of $ C[a, b] $ or $ C_0 (Q) $ . . 8--29 Kazuaki Kitahara Some topics of Haar-like spaces of $ F [a, b] $ . . . . . . . . . . . . . . . . 30--57 Kazuaki Kitahara Approximation by vector-valued monotone increasing or convex functions . . . . . 58--77 Kazuaki Kitahara Approximation by step functions . . . . 78--89
Nobuaki Obata Prerequisites . . . . . . . . . . . . . 1--18 Nobuaki Obata White noise space . . . . . . . . . . . 19--32 Nobuaki Obata White noise functionals . . . . . . . . 33--70 Nobuaki Obata Operator theory . . . . . . . . . . . . 71--108 Nobuaki Obata Toward harmonic analysis . . . . . . . . 109--150 Nobuaki Obata Addendum . . . . . . . . . . . . . . . . 151--166
Joseph Bernstein and Valery Lunts Introduction . . . . . . . . . . . . . . 1--1 Joseph Bernstein and Valery Lunts Derived category $ D_G(X) $ and functors 2--67 Joseph Bernstein and Valery Lunts DG-modules and equivariant cohomology 68--125 Joseph Bernstein and Valery Lunts Equivariant cohomology of toric varieties . . . . . . . . . . . . . . . 126--132
Norihiko Kazamaki Exponential martingales . . . . . . . . 1--24 Norihiko Kazamaki BMO-martingales . . . . . . . . . . . . 25--52 Norihiko Kazamaki Exponential of BMO . . . . . . . . . . . 53--84
Mario Milman Introduction . . . . . . . . . . . . . . 1--5 Mario Milman Background on extrapolation theory . . . 7--34 Mario Milman $ K / J $ inequalities and limiting embedding theorems . . . . . . . . . . . 35--41 Mario Milman Calculations with the $ \Delta $ method and applications . . . . . . . . . . . . 43--57 Mario Milman Bilinear extrapolation and a limiting case of a theorem by Cwikel . . . . . . 59--73 Mario Milman Extrapolation, reiteration, and applications . . . . . . . . . . . . . . 75--93 Mario Milman Estimates for commutators in real interpolation . . . . . . . . . . . . . 95--126 Mario Milman Sobolev imbedding theorems and extrapolation of infinitely many operators . . . . . . . . . . . . . . . 127--130 Mario Milman Some remarks on extrapolation spaces and abstract parabolic equations . . . . . . 131--137 Mario Milman Optimal decompositions, scales, and Nash--Moser iteration . . . . . . . . . 139--147
Dominique Bakry L'hypercontractivité et son utilisation en théorie des semigroupes. (French) [] 1--114 Richard D. Gill Lectures on survival analysis . . . . . 115--241 S. Molchanov Lectures on random media . . . . . . . . 242--411
Werner Balser Asymptotic power series . . . . . . . . 1--12 Werner Balser Laplace and Borel transforms . . . . . . 13--22 Werner Balser Summable power series . . . . . . . . . 23--32 Werner Balser Cauchy--Heine transform . . . . . . . . 33--40 Werner Balser Acceleration operators . . . . . . . . . 41--52 Werner Balser Multisummable power series . . . . . . . 53--74 Werner Balser Some equivalent definitions of multisummability . . . . . . . . . . . . 75--81 Werner Balser Formal solutions to non-linear ODE . . . 83--101
Laurent Schwartz Semi-martingales banachiques: Le théor\`eme des trois opérateurs. (French) [] . . . . . . . . . . . . . . . . . . . 1--20 J. Jacod and A. V. Skorohod Jumping filtrations and martingales with finite variation . . . . . . . . . . . . 21--35 Annie Millet and Marta Sanz-Solé A simple proof of the support theorem for diffusion processes . . . . . . . . 36--48 T. J. Rabeherimanana and S. N. Smirnov Petites perturbations de syst\`emes dynamiques et Alg\`ebres de Lie Nilpotentes. Une extension des estimations de Doss & Stroock. (French) [] . . . . . . . . . . . . . . . . . . . 49--72 Pierre Vallois Orthogonalité et uniforme intégrabilité de martingales. Étude d'une classe d'exemples. (French) [] . . . . . . . . 73--91 P. Monat Remarques sur les inégalités de Burkholder--Davis--Gundy. (French) [] 92--97 P.-A. Meyer Sur une transformation du mouvement brownien due \`a Jeulin et Yor. (French) [] . . . . . . . . . . . . . . . . . . . 98--101 Michael B. Marcus and Jay Rosen Exact rates of convergence to the local times of symmetric Lévy processes . . . . 102--109 Luca Pratelli Deux contre-exemples sur la convergence d'intégrales anticipatives. (French) [] 110--112 Gladys Bobadilla and Rolando Rebolledo and Eugenio Saavedra Corrections \`a: ``Sur la convergence d'intégrales anticipatives''. (French) [] 113--115 J. Bertoin and R. A. Doney On conditioning random walks in an exponential family to stay nonnegative 116--121 Z. Shi Liminf behaviours of the windings and Lévy's stochastic areas of planar Brownian motion . . . . . . . . . . . . 122--137 Jean Bertoin and Wendelin Werner Asymptotic windings of planar Brownian motion revisited via the Ornstein--Uhlenbeck process . . . . . . 138--152 Wendelin Werner Rate of explosion of the Amp\`erean area of the planar Brownian loop . . . . . . 153--163 Jean Bertoin and Wendelin Werner Comportement asymptotique du nombre de tours effectués par la trajectoire brownienne plane. (French) [] . . . . . 164--171 Jean-François Le Gall Exponential moments for the renormalized self-intersection local time of planar Brownian motion . . . . . . . . . . . . 172--180 Jean-Pascal Ansel Remarques sur le prix des actifs contingents. (French) [] . . . . . . . . 181--188 P. Monat and C. Stricker Fermeture de $ G_T(\Theta) $ et de $ L^2 (\mathcal {F}_0) + G_T(\Theta) $. (French) [] . . . . . . . . . . . . . . 189--194 Sophie Maille Sur l'utilisation de processus de Markov dans le mod\`ele d'Ising: attractivité et couplage. (French) [] . . . . . . . . . 195--235 Jacques Azéma and Catherine Rainer Sur l'équation de structure $ d[X, X]_t = d t - X_{t - }^+ d X_t $. (French) [] 236--255
Martin Brokate Hysteresis operators . . . . . . . . . . 1--38 Nobuyuki Kenmochi Systems of nonlinear PDEs arising from dynamical phase transitions . . . . . . 39--86 Y. Huo and I. Müller and S. Seelecke Quasiplasticity and pseudoelasticity in shape memory alloys . . . . . . . . . . 87--146 José-Francisco Rodrigues Variational methods in the Stefan problem . . . . . . . . . . . . . . . . 147--212 Claudio Verdi Numerical aspects of parabolic free boundary and hysteresis problems . . . . 213--284
Ian Kiming On the experimental verification of the Artin conjecture for $2$-dimensional odd Galois representations over $Q$ liftings of $2$-dimensional projective Galois representations over $Q$ . . . . . . . . 1--36 Jacques Basmaji and Ian Kiming A table of $ A_5 $-fields . . . . . . . 37--46 Martin Kinzelbach A. Geometrical construction of $2$-dimensional Galois representations of $ A_5$-type. B. On the realisation of the groups $ {\rm PSL}_2 (1)$ as Galois groups over number fields by means of $l$-torsion points of elliptic curves 47--58 Lo\"\ic Merel Universal Fourier expansions of modular forms . . . . . . . . . . . . . . . . . 59--94 Xiangdong Wang The Hecke operators on the cusp forms of $ \Gamma_0 (N) $ with nebentype . . . . 95--108 Ian Kiming and Xiangdong Wang Examples of $2$-dimensional, odd Galois representations of $ A_5$-type over $ \mathbb {Q}$ satisfying the Artin conjecture . . . . . . . . . . . . . . . 109--121
Rodney Nillsen Introduction . . . . . . . . . . . . . . 1--8 Rodney Nillsen General and preparatory results . . . . 9--43 Rodney Nillsen Multiplication and difference spaces on $ R^n $ . . . . . . . . . . . . . . . . 44--117 Rodney Nillsen Applications to differential and singular integral operators . . . . . . 118--151 Rodney Nillsen Results for $ L^p $ spaces on general groups . . . . . . . . . . . . . . . . . 152--174
Nanhua Xi Hecke algebras . . . . . . . . . . . . . 1--17 Nanhua Xi Affine Weyl groups and affine Hecke algebras . . . . . . . . . . . . . . . . 18--26 Nanhua Xi A generalized two-sided cell of an affine Weyl group . . . . . . . . . . . 27--43 Nanhua Xi $ q_s$-Analogue of weight multiplicity 44--47 Nanhua Xi Kazhdan--Lusztig classification on simple modules of affine Hecke algebras 48--62 Nanhua Xi An equivalence relation in $ T \times \mathbb {C}^* $ . . . . . . . . . . . . 63--79 Nanhua Xi The lowest two-sided cell . . . . . . . 80--84 Nanhua Xi Principal series representations and induced modules . . . . . . . . . . . . 85--92 Nanhua Xi Isogenous affine Hecke algebras . . . . 93--98 Nanhua Xi Quotient algebras . . . . . . . . . . . 99--101 Nanhua Xi The based rings of cells in affine Weyl groups of type $ \widetilde {G_2 }, \widetilde {B_2 }, \widetilde {A_2 } $ 102--115 Nanhua Xi Simple modules attached to $ c_1 $ . . . 116--128
Claus Scheiderer Real spectrum and real étale site . . . . 1--8 Claus Scheiderer Glueing étale and real étale site . . . . 9--17 Claus Scheiderer Limit theorems, stalks, and other basic facts . . . . . . . . . . . . . . . . . 18--29 Claus Scheiderer Some reminders on Weil restrictions . . 30--41 Claus Scheiderer Real spectrum of $X$ and étale site of $ X[\sqrt {-1}]$ . . . . . . . . . . . . . 42--55 Claus Scheiderer The fundamental long exact sequence . . 56--67 Claus Scheiderer Cohomological dimension of $ X_b $, I: Reduction to the field case . . . . . . 68--86 Claus Scheiderer Equivariant sheaves for actions of topological groups . . . . . . . . . . . 87--95 Claus Scheiderer Cohomological dimension of $ X_b $, II: The field case . . . . . . . . . . . . . 96--106 Claus Scheiderer $G$-toposes . . . . . . . . . . . . . . 107--127 Claus Scheiderer Inverse limits of $G$-toposes: Two examples . . . . . . . . . . . . . . . . 128--160 Claus Scheiderer Group actions on spaces: Topological versus topos-theoretic constructions . . 161--165 Claus Scheiderer Quotient topos of a $G$-topos, for $G$ of prime order . . . . . . . . . . . . . 166--172 Claus Scheiderer Comparison theorems . . . . . . . . . . 173--179 Claus Scheiderer Base change theorems . . . . . . . . . . 180--190 Claus Scheiderer Constructible sheaves and finiteness theorems . . . . . . . . . . . . . . . . 191--204 Claus Scheiderer Cohomology of affine varieties . . . . . 205--211 Claus Scheiderer Relations to the Zariski topology . . . 212--218 Claus Scheiderer Examples and complements . . . . . . . . 219--243
Jean Bellissard and Mirko Degli Esposti and Giovanni Forni and Sandro Graffi and Stefano Isola and John N. Mather Front Matter . . . . . . . . . . . . . . ?? Jean Bellissard Non commutative methods in semiclassical analysis . . . . . . . . . . . . . . . . 1--64 Mirko Degli Esposti and Sandro Graffi and Stefano Isola Equidistribution of periodic orbits: an overview of classical VS quantum results 65--91 John N. Mather and Giovanni Forni Action minimizing orbits in Hamiltonian systems . . . . . . . . . . . . . . . . 92--186 John N. Mather and Giovanni Forni Back Matter . . . . . . . . . . . . . . ??
Paolo M. Soardi Kirchhoff's laws . . . . . . . . . . . . 1--21 Paolo M. Soardi Finite networks . . . . . . . . . . . . 22--31 Paolo M. Soardi Currents and potentials with finite energy . . . . . . . . . . . . . . . . . 32--71 Paolo M. Soardi Uniqueness and related topics . . . . . 72--99 Paolo M. Soardi Some examples and computations . . . . . 100--130 Paolo M. Soardi Royden's compactification . . . . . . . 131--159 Paolo M. Soardi Rough isometries . . . . . . . . . . . . 160--172
Marco Abate and Giorgio Patrizio Real Finsler geometry . . . . . . . . . 1--62 Marco Abate and Giorgio Patrizio Complex Finsler geometry . . . . . . . . 63--125 Marco Abate and Giorgio Patrizio Manifolds with constant holomorphic curvature . . . . . . . . . . . . . . . 127--170
Karl Wilhelm Breitung Introduction . . . . . . . . . . . . . . 1--8 Karl Wilhelm Breitung Mathematical preliminaries . . . . . . . 9--33 Karl Wilhelm Breitung Asymptotic analysis . . . . . . . . . . 34--44 Karl Wilhelm Breitung Univariate integrals . . . . . . . . . . 45--50 Karl Wilhelm Breitung Multivariate Laplace type integrals . . 51--84 Karl Wilhelm Breitung Approximations for normal integrals . . 85--105 Karl Wilhelm Breitung Arbitrary probability integrals . . . . 106--120 Karl Wilhelm Breitung Crossing rates of stochastic processes 121--134
Jay Jorgenson and Serge Lang Explicit formulas for regularized products and series . . . . . . . . . . 1--134 Dorian Goldfeld A spectral interpretation of Weil's explicit formula . . . . . . . . . . . . 135--152
Mark L. Green Infinitesimal Methods in Hodge Theory 1--92 Jacob P. Murre Algebraic Cycles and Algebraic Aspects of Cohomology and $K$-Theory . . . . . . 93--152 Claire Voisin Transcendental Methods in the Study of Algebraic Cycles . . . . . . . . . . . . 153--222 Gian Pietro Pirola The Infinitesimal Invariant of $ C^+ - C^- $ . . . . . . . . . . . . . . . . . 223--232 Bert van Geemen An Introduction to the Hodge Conjecture for Abelian Varieties . . . . . . . . . 233--252 Stefan Müller-Stach A Remark on Height Pairings . . . . . . 253--259
Robert D. M. Accola Review of some basic concepts in the theory of Riemann surfaces . . . . . . . 1--12 Robert D. M. Accola Some exceptional points on Riemann surfaces . . . . . . . . . . . . . . . . 13--19 Robert D. M. Accola The inequality of Castelnuovo--Severi 20--29 Robert D. M. Accola Smooth and branched coverings of Riemann surfaces . . . . . . . . . . . . . . . . 30--41 Robert D. M. Accola Automorphisms of Riemann surfaces, I . . 42--51 Robert D. M. Accola When are fixed points of automorphisms exceptional in some other sense? . . . . 52--73 Robert D. M. Accola Automorphisms of Riemann surfaces, II; $ N(p) $ . . . . . . . . . . . . . . . . . 74--98
Lutz Heindorf and Sakaé Fuchino and Leonid B. Shapiro Introduction . . . . . . . . . . . . . . 1--10 Lutz Heindorf and Sakaé Fuchino and Leonid B. Shapiro Setting the stage . . . . . . . . . . . 11--35 Lutz Heindorf and Sakaé Fuchino and Leonid B. Shapiro rc-Filtered Boolean algebras . . . . . . 37--68 Lutz Heindorf and Sakaé Fuchino and Leonid B. Shapiro Functors . . . . . . . . . . . . . . . . 69--96 Lutz Heindorf and Sakaé Fuchino and Leonid B. Shapiro $ \sigma $-filtered Boolean algebras . . 97--109 Lutz Heindorf and Sakaé Fuchino and Leonid B. Shapiro Weakly projective and regularly filtered algebras . . . . . . . . . . . . . . . . 111--145 Lutz Heindorf and Sakaé Fuchino and Leonid B. Shapiro The twisted embedding and its applications . . . . . . . . . . . . . . 147--163
Bernd Herzog Ring filtrations . . . . . . . . . . . . 1--17 Bernd Herzog Basic lemmas . . . . . . . . . . . . . . 18--29 Bernd Herzog Tangential flatness under base change 30--47 Bernd Herzog Relation to flatness . . . . . . . . . . 48--58 Bernd Herzog Distinguished bases . . . . . . . . . . 59--75 Bernd Herzog Hilbert series . . . . . . . . . . . . . 76--90 Bernd Herzog Flatifying filtrations . . . . . . . . . 91--100 Bernd Herzog Kodaira--Spencer maps . . . . . . . . . 101--126 Bernd Herzog Inequalities related with flat couples of local rings . . . . . . . . . . . . . 127--142 Bernd Herzog On the local rings of the Hilbert scheme 143--170
Paul-André Meyer Non-commutative probability . . . . . . 1--11 Paul-André Meyer Spin . . . . . . . . . . . . . . . . . . 13--42 Paul-André Meyer The harmonic oscillator . . . . . . . . 43--56 Paul-André Meyer Fock space (1) . . . . . . . . . . . . . 57--102 Paul-André Meyer Fock space (2): Multiple Fock spaces . . 103--124 Paul-André Meyer Stochastic calculus in Fock space . . . 125--194 Paul-André Meyer Independent increments . . . . . . . . . 195--208
Jürgen Berndt and Franco Tricerri and Lieven Vanhecke Introduction . . . . . . . . . . . . . . 1--3 Jürgen Berndt and Franco Tricerri and Lieven Vanhecke Symmetric-like Riemannian manifolds . . 4--20 Jürgen Berndt and Franco Tricerri and Lieven Vanhecke Generalized Heisenberg groups . . . . . 21--77 Jürgen Berndt and Franco Tricerri and Lieven Vanhecke Damek--Ricci spaces . . . . . . . . . . 78--114
Klaus Johannson Handlebodies . . . . . . . . . . . . . . 1--36 Klaus Johannson Relative handlebodies . . . . . . . . . 37--146 Klaus Johannson Generalized one-relator $3$-manifolds 147--245 Klaus Johannson $N$-relation $3$-manifolds . . . . . . . 246--282 Klaus Johannson The space of Heegaard graphs . . . . . . 283--426
W\ladys\law Narkiewicz Rings of integral-valued polynomials . . 1--66 W\ladys\law Narkiewicz Fully invariant sets for polynomial mappings . . . . . . . . . . . . . . . . 67--109
Alexander Pott Preliminaries: Incidence structures with Singer groups . . . . . . . . . . . . . 1--33 Alexander Pott Examples: Existence and non-existence 35--68 Alexander Pott Difference sets with classical parameters . . . . . . . . . . . . . . . 69--102 Alexander Pott Semiregular relative difference sets . . 103--111 Alexander Pott Projective planes with quasiregular collineation groups . . . . . . . . . . 113--147 Alexander Pott Codes and sequences . . . . . . . . . . 149--168
Jörg Winkelmann Survey . . . . . . . . . . . . . . . . . 1--19 Jörg Winkelmann The classification of three-dimensional homogeneous complex manifolds $ X = G / H $ where $G$ is a complex Lie group . . 20--84 Jörg Winkelmann The classification of three-dimensional homogeneous complex manifolds $ X = G / H $ where $G$ is a real Lie group . . . 85--224
Vasile Ene Preliminaries . . . . . . . . . . . . . 1--23 Vasile Ene Classes of functions . . . . . . . . . . 25--125 Vasile Ene Finite representations for continuous functions . . . . . . . . . . . . . . . 127--139 Vasile Ene Monotonicity . . . . . . . . . . . . . . 141--159 Vasile Ene Integrals . . . . . . . . . . . . . . . 161--211 Vasile Ene Examples . . . . . . . . . . . . . . . . 213--292
Annette Huber Basic notions . . . . . . . . . . . . . 2--10 Annette Huber Derived categories of exact categories 10--21 Annette Huber Filtered derived categories . . . . . . 22--27 Annette Huber Gluing of categories . . . . . . . . . . 28--45 Annette Huber Godement resolutions . . . . . . . . . . 45--48 Annette Huber Singular cohomology . . . . . . . . . . 50--56 Annette Huber De Rham cohomology . . . . . . . . . . . 57--60 Annette Huber Hodge realization . . . . . . . . . . . 60--73 Annette Huber $1$-adic cohomology . . . . . . . . . . 73--80 Annette Huber Comparison functors: $1$-adic versus singular realization . . . . . . . . . . 80--86 Annette Huber The mixed realization . . . . . . . . . 86--95 Annette Huber The Tate twist . . . . . . . . . . . . . 98--102 Annette Huber $ \otimes $-product and internal Hom on $ D_{\rm MR}$ . . . . . . . . . . . . . 102--112 Annette Huber The Künneth morphism . . . . . . . . . . 112--122 Annette Huber The Bloch--Ogus axioms . . . . . . . . . 122--138 Annette Huber The Chern class of a line bundle . . . . 140--146 Annette Huber Classifying spaces . . . . . . . . . . . 146--154 Annette Huber Higher Chern classes . . . . . . . . . . 154--169 Annette Huber Operations of correspondences . . . . . 172--177 Annette Huber Grothendieck motives . . . . . . . . . . 177--182
Lars B. Wahlbin Some one-dimensional superconvergence results . . . . . . . . . . . . . . . . 1--27 Lars B. Wahlbin Remarks about some of the tools used in Chapter 1 . . . . . . . . . . . . . . . 28--35 Lars B. Wahlbin Local and global properties of $ L_2 $-projections . . . . . . . . . . . . . 36--41 Lars B. Wahlbin Introduction to several space dimensions: some results about superconvergence in $ L_2 $-projections 42--47 Lars B. Wahlbin Second order elliptic boundary value problems in any number of space dimensions: preliminary considerations on local and global estimates and presentation of the main technical tools for showing superconvergence . . . . . . 48--64 Lars B. Wahlbin Superconvergence in tensor-product elements . . . . . . . . . . . . . . . . 65--73 Lars B. Wahlbin Superconvergence by local symmetry . . . 74--83 Lars B. Wahlbin Superconvergence for difference quotients on translation invariant meshes . . . . . . . . . . . . . . . . . 84--92 Lars B. Wahlbin On superconvergence in nonlinear problems . . . . . . . . . . . . . . . . 93--97 Lars B. Wahlbin Chapter 10. Superconvergence in isoparametric mappings of translation invariant meshes: an example . . . . . . 98--106 Lars B. Wahlbin Superconvergence by averaging: mainly, the $K$-operator . . . . . . . . . . . . 107--124 Lars B. Wahlbin A computational investigation of superconvergence for first derivatives in the plane . . . . . . . . . . . . . . 125--135
Pei-Dong Liu and Min Qian Preliminaries . . . . . . . . . . . . . 1--21 Pei-Dong Liu and Min Qian Entropy and Lyapunov exponents of random diffeomorphisms . . . . . . . . . . . . 22--44 Pei-Dong Liu and Min Qian Estimation of entropy from above through Lyapunov exponents . . . . . . . . . . . 45--54 Pei-Dong Liu and Min Qian Stable invariant manifolds of random diffeomorphisms . . . . . . . . . . . . 55--90 Pei-Dong Liu and Min Qian Estimation of entropy from below through Lyapunov exponents . . . . . . . . . . . 91--108 Pei-Dong Liu and Min Qian Stochastic flows of diffeomorphisms . . 109--127 Pei-Dong Liu and Min Qian Characterization of measures satisfying entropy formula . . . . . . . . . . . . 128--181 Pei-Dong Liu and Min Qian Random perturbations of hyperbolic attractors . . . . . . . . . . . . . . . 182--206
Günter Schwarz Introduction . . . . . . . . . . . . . . 1--8 Günter Schwarz Analysis of differential forms . . . . . 9--58 Günter Schwarz The Hodge decomposition . . . . . . . . 59--112 Günter Schwarz Boundary value problems for differential forms . . . . . . . . . . . . . . . . . 113--145
Philippe Biane Calcul stochastique non-commutatif. (French) [] . . . . . . . . . . . . . . 1--96 Rick Durrett Ten lectures on particle systems . . . . 97--201
Ludwig Arnold and Christopher K. R. T. Jones and Konstantin Mischaikow and Genevi\`eve Raugel Front Matter . . . . . . . . . . . . . . ?? Ludwig Arnold Random dynamical systems . . . . . . . . 1--43 Christopher K. R. T. Jones Geometric singular perturbation theory 44--118 Konstantin Mischaikow Conley index theory . . . . . . . . . . 119--207 Genevi\`eve Raugel Dynamics of partial differential equations on thin domains . . . . . . . 208--315 Genevi\`eve Raugel Back Matter . . . . . . . . . . . . . . ??
Ali Süleyman Üstünel Preliminaries . . . . . . . . . . . . . 1--7 Ali Süleyman Üstünel Gross--Sobolev derivative, divergence and Ornstein--Uhlenbeck operator . . . . 9--18 Ali Süleyman Üstünel Meyer inequalities . . . . . . . . . . . 19--25 Ali Süleyman Üstünel Hypercontractivity . . . . . . . . . . . 27--30 Ali Süleyman Üstünel $ L^p $-multipliers theorem, Meyer inequalities and distributions . . . . . 31--39 Ali Süleyman Üstünel Some applications of the distributions 41--51 Ali Süleyman Üstünel Positive distributions and applications 53--60 Ali Süleyman Üstünel Characterization of independence of some Wiener functionals . . . . . . . . . . . 61--67 Ali Süleyman Üstünel Moment inequalities for Wiener functional . . . . . . . . . . . . . . . 69--79 Ali Süleyman Üstünel Introduction to the theorem of Ramer . . 81--90
Norbert Knarr Introduction . . . . . . . . . . . . . . 1--4 Norbert Knarr Foundations . . . . . . . . . . . . . . 5--24 Norbert Knarr Spreads of $3$-dimensional projective spaces . . . . . . . . . . . . . . . . . 25--39 Norbert Knarr Kinematic spaces . . . . . . . . . . . . 40--47 Norbert Knarr Examples and supplements . . . . . . . . 48--60 Norbert Knarr Locally compact $4$-dimensional translation planes . . . . . . . . . . . 61--77 Norbert Knarr Planes of Lenz type V with complex kernel . . . . . . . . . . . . . . . . . 78--94 Norbert Knarr Locally compact translation planes of higher dimension . . . . . . . . . . . . 95--103
Wolfgang Kühnel Introduction and basic notions . . . . . 1--5 Wolfgang Kühnel Tight polyhedral surfaces . . . . . . . 6--40 Wolfgang Kühnel Tightness and $k$-tightness . . . . . . 41--55 Wolfgang Kühnel $ (k - 1)$-connected $ 2 k$-manifolds 56--77 Wolfgang Kühnel $3$-manifolds and twisted sphere bundles 78--84 Wolfgang Kühnel Connected sums and manifolds with boundary . . . . . . . . . . . . . . . . 85--94 Wolfgang Kühnel Miscellaneous cases and pseudomanifolds 95--109
A. M. Chebotarev and F. Fagnola On quantum extensions of the Azéma martingale semigroup . . . . . . . . . . 1--16 F. Delbaen and W. Schachermayer An inequality for the predictable projection of an adapted process . . . . 17--24 N. V. Krylov A martingale proof of the Khinchin iterated logarithm law for Wiener processes . . . . . . . . . . . . . . . 25--29 Philippe Biane Intertwining of Markov semi-groups, some examples . . . . . . . . . . . . . . . . 30--36 Wendelin Werner Some remarks on perturbed reflecting Brownian motion . . . . . . . . . . . . 37--43 Mireille Chaleyat-Maurel and David Nualart Onsager--Machlup functionals for solutions of stochastic boundary value problems . . . . . . . . . . . . . . . . 44--55 S. Attal and K. Burdzy and M. Émery and Y. Hu Sur quelques filtrations et transformations browniennes. (French) [] 56--69 Marc Arnaudon Barycentres convexes et approximations des martingales continues dans les variétés. (French) [] . . . . . . . . . . 70--85 Emmanuel Cépa Équations différentielles stochastiques multivoques. (French) [] . . . . . . . . 86--107 L. Overbeck On the predictable representation property for superprocesses . . . . . . 108--116 A. Dermoune Chaoticity on a stochastic interval $ [0, T] $ . . . . . . . . . . . . . . . . 117--124 Jean Bertoin and Ma.-Emilia Caballero On the rate of growth of subordinators with slowly varying Laplace exponent . . 125--132 S. Fourati Une propriété de Markov pour les processus indexés par $ \mathbb {R} $. (French) [] 133--154 David Williams Non-linear Wiener--Hopf theory, 1: an appetizer . . . . . . . . . . . . . . . 155--161 Yukuang Chiu From an example of Lévy's . . . . . . . . 162--165 David Applebaum A horizontal Lévy process on the bundle of orthonormal frames over a complete Reimannian manifold . . . . . . . . . . 166--180 S. Cohen Some Markov properties of stochastic differential equations with jumps . . . 181--193 J. Franchi Chaos multiplicatif: un traitement simple et complet de la fonction de partition. (French) [] . . . . . . . . . 194--201 Zhongmin Qian and Sheng-Wu He On the hypercontractivity of Ornstein--Uhlenbeck semigroups with drift . . . . . . . . . . . . . . . . . 202--217 Yaozhong Hu On the differentiability of functions of an operator . . . . . . . . . . . . . . 218--219
Alexander Koshelev Weak solutions and the universal iterative process . . . . . . . . . . . 1--22 Alexander Koshelev Regularity of solutions for non degenerated quasilinear second order elliptic systems of the divergent form with bounded nonlinearities . . . . . . 23--71 Alexander Koshelev Some properties and applications of regular solutions for quasilinear elliptic systems . . . . . . . . . . . . 72--107 Alexander Koshelev Differentiability of solutions for second order elliptic systems . . . . . 108--174 Alexander Koshelev Regularity of solutions for parabolic systems with some applications . . . . . 175--215 Alexander Koshelev The Navier--Stokes system; strong solutions . . . . . . . . . . . . . . . 216--247
David B. Massey Introduction . . . . . . . . . . . . . . 1--7 David B. Massey Definitions and basic properties . . . . 8--30 David B. Massey Elementary examples . . . . . . . . . . 31--36 David B. Massey A handle decomposition of the Milnor fibre . . . . . . . . . . . . . . . . . 37--41 David B. Massey Generalized Lê--Iomdine formulas . . . . 42--60 David B. Massey Lê numbers and hyperplane arrangements 61--67 David B. Massey Thom's $ a_f $ condition . . . . . . . . 68--74 David B. Massey Aligned singularities . . . . . . . . . 75--80 David B. Massey Suspending singularities . . . . . . . . 81--85 David B. Massey Constancy of the Milnor fibrations . . . 86--91 David B. Massey Other characterizations of the Lê cycles 92--104
Izak Moerdijk Introduction . . . . . . . . . . . . . . 1--4 Izak Moerdijk Background in topos theory . . . . . . . 5--19 Izak Moerdijk Classifying topoi . . . . . . . . . . . 21--55 Izak Moerdijk Geometric realization . . . . . . . . . 57--76 Izak Moerdijk Comparison theorems . . . . . . . . . . 77--88 Izak Moerdijk Classifying spaces and classifying topoi 95--95
Vadim Vladimirovich Yurinsky Gaussian measures in Euclidean space . . 1--42 Vadim Vladimirovich Yurinsky Seminorms of Gaussian vectors in infinite dimensions . . . . . . . . . . 43--78 Vadim Vladimirovich Yurinsky Inequalities for seminorms: Sums of independent random vectors . . . . . . . 79--122 Vadim Vladimirovich Yurinsky Rough asymptotics of large deviations 123--162 Vadim Vladimirovich Yurinsky Gaussian and related approximations for distributions of sums . . . . . . . . . 163--216 Vadim Vladimirovich Yurinsky Fine asymptotics of moderate deviations 217--254
Gilles Pisier Front Matter . . . . . . . . . . . . . . N2--vii Gilles Pisier Introduction. Description of contents 1--12 Gilles Pisier Von Neumann's inequality and Ando's generalization . . . . . . . . . . . . . 13--29 Gilles Pisier Non-unitarizable uniformly bounded group representations . . . . . . . . . . . . 30--52 Gilles Pisier Completely bounded maps . . . . . . . . 53--69 Gilles Pisier Completely bounded homomorphisms and derivations . . . . . . . . . . . . . . 70--91 Gilles Pisier Schur multipliers and Grothendieck's inequality . . . . . . . . . . . . . . . 92--106 Gilles Pisier Hankelian Schur multipliers. Herz--Schur multipliers . . . . . . . . . . . . . . 107--115 Gilles Pisier The similarity problem for cyclic homomorphisms on a $ C* $-algebra . . . 116--132 Gilles Pisier Completely bounded maps in the Banach space setting . . . . . . . . . . . . . 133--142 Gilles Pisier Back Matter . . . . . . . . . . . . . . 143--161
Erasmus Landvogt Introduction . . . . . . . . . . . . . . 1--13 Erasmus Landvogt The apartment . . . . . . . . . . . . . 14--30 Erasmus Landvogt The $ o_K $-group schemes in the quasi-split case . . . . . . . . . . . . 31--66 Erasmus Landvogt The building in the quasi-split case . . 67--97 Erasmus Landvogt The building and its compactification 98--149
Ron Donagi and Eyal Markman Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles . . . . . 1--119 Boris Dubrovin Geometry of $2$D topological field theories . . . . . . . . . . . . . . . . 120--348 Boris Feigin and Edward Frenkel Integrals of motion and quantum groups 349--418 Emma Previato Seventy years of spectral curves: 1923--1993 . . . . . . . . . . . . . . . 419--481
Hyman Bass and Maria Victoria Otero-Espinar and Daniel Rockmore and Charles Tresser Cyclic renormalization . . . . . . . . . 1--51 Hyman Bass and Maria Victoria Otero-Espinar and Daniel Rockmore and Charles Tresser Itinerary calculus and renormalization 53--101 Hyman Bass and Maria Victoria Otero-Espinar and Daniel Rockmore and Charles Tresser Spherically transitive automorphisms of rooted trees . . . . . . . . . . . . . . 103--133 Hyman Bass and Maria Victoria Otero-Espinar and Daniel Rockmore and Charles Tresser Closed normal subgroups of $ {\rm Aut}(X (q)) $ . . . . . . . . . . . . . . . . . 135--156
Emmanuel Dror Farjoun Coaugmented homotopy idempotent localization functors . . . . . . . . . 1--38 Emmanuel Dror Farjoun Augmented homotopy idempotent functors 39--58 Emmanuel Dror Farjoun Commutation rules for $ \Omega $, $ L_f $ and $ {\rm CW}_A $, preservation of fibrations and cofibrations . . . . . . 59--78 Emmanuel Dror Farjoun Dold--Thom symmetric products and other colimits . . . . . . . . . . . . . . . . 79--99 Emmanuel Dror Farjoun General theory of fibrations, GEM error terms . . . . . . . . . . . . . . . . . 100--126 Emmanuel Dror Farjoun Homological localization nearly preserves fibrations . . . . . . . . . . 127--134 Emmanuel Dror Farjoun Classification of nullity and cellular types of finite $p$-torsion suspension spaces . . . . . . . . . . . . . . . . . 135--143 Emmanuel Dror Farjoun $ v_1$-periodic spaces and $K$-theory 144--154 Emmanuel Dror Farjoun Cellular inequalities . . . . . . . . . 155--175
Hian-Poh Yap Basic terminology and introduction . . . 1--6 Hian-Poh Yap Some basic results . . . . . . . . . . . 7--14 Hian-Poh Yap Complete $r$-partite graphs . . . . . . 15--24 Hian-Poh Yap Graphs of low degree . . . . . . . . . . 25--34 Hian-Poh Yap Graphs of high degree . . . . . . . . . 35--52 Hian-Poh Yap Classification of type $1$ and type $2$ graphs . . . . . . . . . . . . . . . . . 53--95 Hian-Poh Yap Total chromatic number of planar graphs 96--103 Hian-Poh Yap Some upper bounds for the total chromatic number of graphs . . . . . . . 104--113 Hian-Poh Yap Concluding remarks . . . . . . . . . . . 114--120
Vasile Br\^\inz\uanescu Vector bundles over complex manifolds 1--27 Vasile Br\^\inz\uanescu Facts on compact complex surfaces . . . 29--52 Vasile Br\^\inz\uanescu Line bundles over surfaces . . . . . . . 53--83 Vasile Br\^\inz\uanescu Existence of holomorphic vector bundles 85--117 Vasile Br\^\inz\uanescu Classification of vector bundles . . . . 119--155
Serge Lang Existence and uniqueness . . . . . . . . 3--36 Serge Lang Relations with subgroups . . . . . . . . 37--61 Serge Lang Cohomological triviality . . . . . . . . 62--72 Serge Lang Cup products . . . . . . . . . . . . . . 73--108 Serge Lang Augmented products . . . . . . . . . . . 109--115 Serge Lang Spectral sequences . . . . . . . . . . . 116--122 Serge Lang Groups of Galois type . . . . . . . . . 123--155 Serge Lang Group extensions . . . . . . . . . . . . 156--165 Serge Lang Class formations . . . . . . . . . . . . 166--187 John Tate Applications of Galois cohomology in algebraic geometry . . . . . . . . . . . 188--215
Professeur S. D. Chatterji Remarques sur l'intégrale de Riemann généralisée. (French) [] . . . . . . . . . 1--11 Tahir Choulli and Christophe Stricker Deux applications de la décomposition de Galtchouk--Kunita--Watanabe. (French) [] 12--23 C. Cocozza-Thivent and M. Roussignol Comparaison des lois stationnaires et quasi-stationnaires d'un processus de Markov et application \`a la fiabilité. (French) [] . . . . . . . . . . . . . . 24--39 Peter Jagers and Olle Nerman The asymptotic composition of supercritical, multi-type branching populations . . . . . . . . . . . . . . 40--54 C. Kipnis and E. Saada Un lien entre réseaux de neurones et syst\`emes de particules: Un mod\`ele de rétinotopie. (French) [] . . . . . . . . 55--67 R. Léandre Cohomologie de Bismut--Nualart--Pardoux et cohomologie de Hochschild enti\`ere. (French) [] . . . . . . . . . . . . . . 68--99 J. De Sam Lazaro Un contre-exemple touchant \`a l'indépendance. (French) [] . . . . . . . 100--103 J. A. Yan An asymptotic evaluation of heat kernel for short time . . . . . . . . . . . . . 104--107 Weian Zheng Meyer's Topology and Brownian motion in a composite medium . . . . . . . . . . . 108--116 Wilhelm von Waldenfels Continuous Maassen kernels and the inverse oscillator . . . . . . . . . . . 117--161 Mireille Echerbault Sur le mod\`ele d'Heisenberg. (French) [On the Heisenberg model] . . . . . . . 162--177 Dominique Bakry and Mireille Echerbault Sur les inégalités GKS. (French) [] . . . 178--206 Zhan Shi How long does it take a transient Bessel process to reach its future infimum? . . 207--217 Yaozhong Hu Strong and weak order of time discretization schemes of stochastic differential equations . . . . . . . . . 218--227 Catherine Rainer Projection d'une diffusion sur sa filtration lente. (French) [] . . . . . 228--242 J. Azéma and C. Rainer and M. Yor Une propriété des martingales pures. (French) [] . . . . . . . . . . . . . . 243--254 Christophe Leuridan Une démonstration élémentaire d'une identité de Biane et Yor. (French) [] . . . . . . 255--260 B. Rajeev First order calculus and last entrance times . . . . . . . . . . . . . . . . . 261--287 P. Cattiaux and C. Léonard Minimization of the Kullback information for some Markov processes . . . . . . . 288--311 J. Azéma and T. Jeulin and F. Knight and G. Mokobodzki and M. Yor Sur les processus croissants de type injectif. (French) [] . . . . . . . . . 312--343
Carl Graham and Thomas G. Kurtz and Sylvie Méléard and Philip E. Protter and Mario Pulvirenti and Denis Talay Front Matter . . . . . . . . . . . . . . ?? Thomas G. Kurtz and Philip E. Protter Weak convergence of stochastic integrals and differential equations . . . . . . . 1--41 Sylvie Méléard Asymptotic behaviour of some interacting particle systems; McKean--Vlasov and Boltzmann models . . . . . . . . . . . . 42--95 Mario Pulvirenti Kinetic limits for stochastic particle systems . . . . . . . . . . . . . . . . 96--126 Carl Graham A statistical physics approach to large networks . . . . . . . . . . . . . . . . 127--147 Denis Talay Probabilistic numerical methods for partial differential equations: Elements of analysis . . . . . . . . . . . . . . 148--196 Thomas G. Kurtz and Philip E. Protter Weak convergence of stochastic integrals and differential equations II: Infinite dimensional case . . . . . . . . . . . . 197--285 Thomas G. Kurtz and Philip E. Protter Back Matter . . . . . . . . . . . . . . ??
Paul-Hermann Zieschang Basic results . . . . . . . . . . . . . 1--32 Paul-Hermann Zieschang Decomposition theory . . . . . . . . . . 33--64 Paul-Hermann Zieschang Algebraic prerequisites . . . . . . . . 65--96 Paul-Hermann Zieschang Representation theory . . . . . . . . . 97--121 Paul-Hermann Zieschang Theory of generators . . . . . . . . . . 123--176
John D. Moore Preliminaries . . . . . . . . . . . . . 1--38 John D. Moore Spin geometry on four-manifolds . . . . 39--64 John D. Moore Global analysis of the Seiberg--Witten equations . . . . . . . . . . . . . . . 65--100
Daniel Neuenschwander Introduction . . . . . . . . . . . . . . 1--6 Daniel Neuenschwander Probability theory on simply connected nilpotent Lie groups . . . . . . . . . . 7--27 Daniel Neuenschwander Brownian motions on $H$ . . . . . . . . 29--84 Daniel Neuenschwander Other limit theorems on $H$ . . . . . . 85--123
Kumiko Nishioka Transcendence theory of Mahler functions of one variable . . . . . . . . . . . . 1--32 Kumiko Nishioka Transcendence theory of Mahler functions of several variables . . . . . . . . . . 33--77 Kumiko Nishioka Algebraic independence of Mahler functions and their values . . . . . . . 78--117 Kumiko Nishioka Applications of elimination theory . . . 118--149 Kumiko Nishioka Regular sequences and Mahler functions 150--175
Alexander Kushkuley and Zalman Balanov Introduction . . . . . . . . . . . . . . 1--12 Alexander Kushkuley and Zalman Balanov Fundamental domains and extension of equivariant maps . . . . . . . . . . . . 13--30 Alexander Kushkuley and Zalman Balanov Degree theory for equivariant maps of finite-dimensional manifolds: Topological actions . . . . . . . . . . 31--42 Alexander Kushkuley and Zalman Balanov Degree theory for equivariant maps of finite-dimensional manifolds: Smooth actions . . . . . . . . . . . . . . . . 43--73 Alexander Kushkuley and Zalman Balanov A winding number of equivariant vector fields in infinite dimensional Banach spaces . . . . . . . . . . . . . . . . . 74--85 Alexander Kushkuley and Zalman Balanov Some applications . . . . . . . . . . . 86--125
Matts Essén Potential theory part I . . . . . . . . 3--100 Hiroaki Aikawa Potential theory part II . . . . . . . . 103--200
Jinzhong Xu Introduction . . . . . . . . . . . . . . 1--3 Jinzhong Xu Envelopes and covers . . . . . . . . . . 5--25 Jinzhong Xu Fundamental theorems . . . . . . . . . . 27--50 Jinzhong Xu Flat covers and cotorsion envelopes . . 51--79 Jinzhong Xu Flat covers over commutative rings . . . 81--106 Jinzhong Xu Applications in commutative rings . . . 107--151
Emmanuel Hebey Geometric preliminaries . . . . . . . . 1--9 Emmanuel Hebey Sobolev spaces . . . . . . . . . . . . . 10--16 Emmanuel Hebey Sobolev embeddings . . . . . . . . . . . 17--57 Emmanuel Hebey The best constants problems . . . . . . 58--89 Emmanuel Hebey Sobolev spaces in the presence of symmetries . . . . . . . . . . . . . . . 90--105
Murray A. Marshall Introduction . . . . . . . . . . . . . . 1--4 Murray A. Marshall Orderings on fields . . . . . . . . . . 5--17 Murray A. Marshall Spaces of orderings . . . . . . . . . . 19--35 Murray A. Marshall Fans and the representation theorem . . 37--59 Murray A. Marshall $P$-structures, connected components and $0$ the isotropy theorem . . . . . . . . 61--82 Murray A. Marshall The real spectrum of a ring . . . . . . 83--97 Murray A. Marshall Abstract real spectra . . . . . . . . . 99--131 Murray A. Marshall Minimal generation of constructible sets 133--150 Murray A. Marshall Structure results and realization results . . . . . . . . . . . . . . . . 151--181
Bruce Hunt Introduction . . . . . . . . . . . . . . 1--14 Bruce Hunt Moduli spaces of PEL structures . . . . 15--35 Bruce Hunt Arithmetic quotients . . . . . . . . . . 36--65 Bruce Hunt Projective embeddings of modular varieties . . . . . . . . . . . . . . . 66--107 Bruce Hunt The $ 27 $ lines on a cubic surface . . 108--167 Bruce Hunt The Burkhardt quartic . . . . . . . . . 168--221 Bruce Hunt A gem of the modular universe . . . . . 222--254
Pol Vanhaecke Front Matter . . . . . . . . . . . . . . N2--viii Pol Vanhaecke Introduction . . . . . . . . . . . . . . 1--15 Pol Vanhaecke Integrable Hamiltonian systems on affine Poisson varieties . . . . . . . . . . . 17--65 Pol Vanhaecke Integrable Hamiltonian systems and symmetric products of curves . . . . . . 67--93 Pol Vanhaecke Interludium: the geometry of Abelian varieties . . . . . . . . . . . . . . . 95--122 Pol Vanhaecke Algebraic completely integrable Hamiltonian systems . . . . . . . . . . 123--138 Pol Vanhaecke The master systems . . . . . . . . . . . 139--169 Pol Vanhaecke The Garnier and Hénon--Heiles potentials and the Toda lattice . . . . . . . . . . 171--208 Pol Vanhaecke Back Matter . . . . . . . . . . . . . . 209--221
Karel Dekimpe Preliminaries and notational conventions 1--11 Karel Dekimpe Infra-nilmanifolds and Almost-Bieberbach groups . . . . . . . . . . . . . . . . . 13--30 Karel Dekimpe Algebraic characterizations of almost-crystallographic groups . . . . . 31--46 Karel Dekimpe Canonical type representations . . . . . 47--102 Karel Dekimpe The Cohomology of virtually nilpotent groups . . . . . . . . . . . . . . . . . 103--120 Karel Dekimpe Infra-nilmanifolds and their topological invariants . . . . . . . . . . . . . . . 121--157 Karel Dekimpe Classification survey . . . . . . . . . 159--230
Guy Boillat and Constantin M. Dafermos and Peter D. Lax and Tai-Ping Liu Front Matter . . . . . . . . . . . . . . ?? Guy Boillat Non linear hyperbolic fields and waves 1--47 C. M. Dafermos Entropy and the stability of classical solutions of hyperbolic systems of conservation laws . . . . . . . . . . . 48--69 Peter D. Lax Outline of a theory of the KdV equation 70--102 Tai-Ping Liu Nonlinear hyperbolic-dissipative partial differential equations . . . . . . . . . 103--136 Tai-Ping Liu Back Matter . . . . . . . . . . . . . . ??
Peter Abramenko Introduction . . . . . . . . . . . . . . 1--10 Peter Abramenko Groups acting on twin buildings . . . . 11--55 Peter Abramenko Homotopy properties of $ \oint \Delta^0 (a) \oint $ . . . . . . . . . . . . . . 56--106 Peter Abramenko Finiteness properties of classical $ F_q $ over $ F_q[t] $ . . . . . . . . . . . 107--114
Michael Puschnigg The asymptotic homotopy category . . . . 1--18 Michael Puschnigg Algebraic de Rham complexes . . . . . . 19--26 Michael Puschnigg Cyclic cohomology . . . . . . . . . . . 27--39 Michael Puschnigg Homotopy properties of $X$-complexes . . 40--58 Michael Puschnigg The analytic $X$-complex . . . . . . . . 59--96 Michael Puschnigg The asymptotic $X$-complex . . . . . . . 97--117 Michael Puschnigg Asymptotic cyclic cohomology of dense subalgebras . . . . . . . . . . . . . . 118--126 Michael Puschnigg Products . . . . . . . . . . . . . . . . 127--157 Michael Puschnigg Exact sequences . . . . . . . . . . . . 158--181 Michael Puschnigg $ K K $-theory and asymptotic cohomology 182--201 Michael Puschnigg Examples . . . . . . . . . . . . . . . . 202--231
Jürgen Richter-Gebert Introduction . . . . . . . . . . . . . . 1--11 Jürgen Richter-Gebert The objects and the tools . . . . . . . 13--40 Jürgen Richter-Gebert The universality theorem . . . . . . . . 41--76 Jürgen Richter-Gebert Applications of university . . . . . . . 77--115 Jürgen Richter-Gebert Three-dimensional polytopes . . . . . . 117--147 Jürgen Richter-Gebert Alternative construction techniques . . 149--172 Jürgen Richter-Gebert Problems . . . . . . . . . . . . . . . . 173--177
Allan Adler and Sundararaman Ramanan Introduction . . . . . . . . . . . . . . 1--7 Allan Adler and Sundararaman Ramanan Standard Heisenberg Groups . . . . . . . 8--17 Allan Adler and Sundararaman Ramanan Heisenberg groups of line bundles on abelian varieties . . . . . . . . . . . 18--30 Allan Adler and Sundararaman Ramanan Theta structures and the addition formula . . . . . . . . . . . . . . . . 31--51 Allan Adler and Sundararaman Ramanan Geometry and arithmetic of the fundamental relations . . . . . . . . . 52--76 Allan Adler and Sundararaman Ramanan Invariant theory, arithmetic and vector bundles . . . . . . . . . . . . . . . . 77--106
Hendrik W. Broer and George B. Huitema and Mikhail B. Sevryuk Front Matter . . . . . . . . . . . . . . i--xi Hendrik W. Broer and George B. Huitema and Mikhail B. Sevryuk Introduction and examples . . . . . . . 1--40 Hendrik W. Broer and George B. Huitema and Mikhail B. Sevryuk The conjugacy theory . . . . . . . . . . 41--75 Hendrik W. Broer and George B. Huitema and Mikhail B. Sevryuk The continuation theory . . . . . . . . 77--82 Hendrik W. Broer and George B. Huitema and Mikhail B. Sevryuk Complicated Whitney-smooth families . . 83--121 Hendrik W. Broer and George B. Huitema and Mikhail B. Sevryuk Conclusions . . . . . . . . . . . . . . 123--139 Hendrik W. Broer and George B. Huitema and Mikhail B. Sevryuk Appendices . . . . . . . . . . . . . . . 141--167 Hendrik W. Broer and George B. Huitema and Mikhail B. Sevryuk Back Matter . . . . . . . . . . . . . . 169--195
Jean-Pierre Demailly $ L^2 $ vanishing theorems for positive line bundles and adjunction theory . . . 1--97 Thomas Peternell Manifolds of semi-positive curvature . . 98--142 Gang Tian Kähler--Einstein metrics on algebraic manifolds . . . . . . . . . . . . . . . 143--185 Andrei Tyurin Six lectures on four manifolds . . . . . 186--246
Danielle Dias and Patrick Le Barz Introduction . . . . . . . . . . . . . . 1--8 Danielle Dias and Patrick Le Barz Double and triple points formula . . . . 10--64 Danielle Dias and Patrick Le Barz Construction of a complete quadruples variety . . . . . . . . . . . . . . . . 66--128
R. L. Dobrushin Perturbation methods of the theory of Gibbsian fields . . . . . . . . . . . . 1--66 Piet Groeneboom Lectures on inverse problems . . . . . . 67--164 Michel Ledoux Isoperimetry and Gaussian analysis . . . 165--294
Shrawan Kumar and Gérard Laumon and Ulrich Stuhler Front Matter . . . . . . . . . . . . . . ?? Shrawan Kumar Infinite Grassmannians and moduli spaces of $G$-bundles . . . . . . . . . . . . . 1--49 G. Laumon Drinfeld shtukas . . . . . . . . . . . . 50--109 A. Blum and U. Stuhler Drinfeld modules and elliptic sheaves 110--188 A. Blum and U. Stuhler Back Matter . . . . . . . . . . . . . . ??
Jörg Wildeshaus Introduction . . . . . . . . . . . . . . 1--21 Jörg Wildeshaus Mixed structures on fundamental groups 23--76 Jörg Wildeshaus The canonical construction of mixed sheaves on mixed Shimura varieties . . . 77--140 Jörg Wildeshaus Polylogarithmic extensions on mixed Shimura varieties. Part I: Construction and basic properties . . . . . . . . . . 141--197 Jörg Wildeshaus Polylogarithmic extensions on mixed Shimura varieties. Part II: The classical polylogarithm . . . . . . . . 199--248 Jörg Wildeshaus Polygogarithmic extensions on mixed Shimura varieties. Part III: The elliptic polygogarithm . . . . . . . . . 249--335
Michael Drmota and Robert F. Tichy Discrepancy of sequences . . . . . . . . 1--203 Michael Drmota and Robert F. Tichy General concepts of uniform distribution 204--367 Michael Drmota and Robert F. Tichy Applications . . . . . . . . . . . . . . 368--432
Stevo Todorcevic Compact sets in function spaces . . . . 1--60 Stevo Todorcevic The semigroup $ \beta \mathbb {N} $ . . 61--78 Stevo Todorcevic Compact and compactly generated groups 79--120 Stevo Todorcevic Hyperspaces . . . . . . . . . . . . . . 121--147
Riccardo Benedetti and Carlo Petronio Motivations, plan and statements . . . . 1--12 Riccardo Benedetti and Carlo Petronio A review on standard spines and $o$-graphs . . . . . . . . . . . . . . . 13--22 Riccardo Benedetti and Carlo Petronio Branched standard spines . . . . . . . . 23--39 Riccardo Benedetti and Carlo Petronio Manifolds with boundary . . . . . . . . 40--63 Riccardo Benedetti and Carlo Petronio Combed closed manifolds . . . . . . . . 64--72 Riccardo Benedetti and Carlo Petronio More on combings, and the closed calculus . . . . . . . . . . . . . . . . 73--84 Riccardo Benedetti and Carlo Petronio Framed and spin manifolds . . . . . . . 85--97 Riccardo Benedetti and Carlo Petronio Branched spines and quantum invariants 98--107 Riccardo Benedetti and Carlo Petronio Problems and perspectives . . . . . . . 108--120 Riccardo Benedetti and Carlo Petronio Homology and cohomology computations . . 121--126
Robert W. Ghrist and Philip J. Holmes and Michael C. Sullivan Introduction . . . . . . . . . . . . . . 1--4 Robert W. Ghrist and Philip J. Holmes and Michael C. Sullivan Prerequisites . . . . . . . . . . . . . 5--32 Robert W. Ghrist and Philip J. Holmes and Michael C. Sullivan Templates . . . . . . . . . . . . . . . 33--68 Robert W. Ghrist and Philip J. Holmes and Michael C. Sullivan Template theory . . . . . . . . . . . . 69--106 Robert W. Ghrist and Philip J. Holmes and Michael C. Sullivan Bifurcations . . . . . . . . . . . . . . 107--142 Robert W. Ghrist and Philip J. Holmes and Michael C. Sullivan Invariants . . . . . . . . . . . . . . . 143--166 Robert W. Ghrist and Philip J. Holmes and Michael C. Sullivan Concluding remarks . . . . . . . . . . . 167--191
Jonathan Warren Branching processes, the Ray--Knight theorem, and sticky Brownian motion . . 1--15 R. Léandre and J. R. Norris Integration by parts and Cameron--Martin formulas for the free path space of a compact Riemannian manifold . . . . . . 16--23 A. S. Üstünel and M. Zakai The change of variables formula on Wiener space . . . . . . . . . . . . . . 24--39 Olivier Mazet Classification des Semi-Groupes de diffusion sur IR associés \`a une famille de polynômes orthogonaux. (French) [] . . 40--53 Shizan Fang and Jacques Franchi A differentiable isomorphism between Wiener space and path group . . . . . . 54--61 Jean Jacod and Víctor Pérez-Abreu On martingales which are finite sums of independent random variables with time dependent coefficients . . . . . . . . . 62--68 Jean-Marc Aza\"\is and Mario Wschebor Oscillation presque sûre de martingales continues. (French) [] . . . . . . . . . 69--76 Fuqing Gao A note on Cramér's theorem . . . . . . . 77--79 Sheng-Wu He and Jia-Gang Wang The hypercontractivity of Ornstein--Uhlenbeck semigroups with drift, revisited . . . . . . . . . . . . 80--84 B. Cadre Une preuve standard du principe d'invariance de Stoll. (French) [] . . . 85--102 Jean-François Le Gall Marches aléatoires auto-évitantes et mesures de polym\`ere. (French) [] . . . 103--112 K. D. Elworthy and X. M. Li and M. Yor On the tails of the supremum and the quadratic variation of strictly local martingales . . . . . . . . . . . . . . 113--125 Leonid I. Galtchouk and Alexandre A. Novikov On Wald's equation. Discrete time case 126--135 Laurent Miclo Remarques sur l'hypercontractivité et l'évolution de l'entropie pour des cha\^\ines de Markov finies. (French) [] 136--167 M\uad\ualina Deaconu and Sophie Wantz Comportement des temps d'atteinte d'une diffusion fortement rentrante. (French) [] . . . . . . . . . . . . . . . . . . . 168--175 M. Émery Closed sets supporting a continuous divergent martingale . . . . . . . . . . 176--189 Davar Khoshnevisan Some polar sets for the Brownian sheet 190--197 Pietro Majer and Maria Elvira Mancino A counter-example concerning a condition of Ogawa integrability . . . . . . . . . 198--206 Yukuang Chiu The multiplicity of stochastic processes 207--215 Nathalie Eisenbaum Théor\`emes limités pour les temps locaux d'un processus stable symétrique. (French) [] . . . . . . . . . . . . . . 216--224
Bruno Biais and Jean Charles Rochet Risk sharing, adverse selection and market structure . . . . . . . . . . . . 1--51 Tomas Björk Interest rate theory . . . . . . . . . . 53--122 Jak\vsa Cvitani\'c Optimal trading under constraints . . . 123--190 N. El Karoui and M. C. Quenez Non-linear pricing theory and backward stochastic differential equations . . . 191--246 Ely\`es Jouini Market imperfections, equilibrium and arbitrage . . . . . . . . . . . . . . . 247--307
Harry Reimann Introduction . . . . . . . . . . . . . . 1--8 Harry Reimann Part I . . . . . . . . . . . . . . . . . 9--65 Harry Reimann Part II . . . . . . . . . . . . . . . . 66--88
Antonio Pumariño and J. Angel Rodríguez Introduction . . . . . . . . . . . . . . 1--10 Antonio Pumariño and J. Angel Rodríguez Saddle-focus connections . . . . . . . . 11--20 Antonio Pumariño and J. Angel Rodríguez The unimodal family . . . . . . . . . . 21--52 Antonio Pumariño and J. Angel Rodríguez Contractive directions . . . . . . . . . 53--72 Antonio Pumariño and J. Angel Rodríguez Critical points of the bidimensional map 73--88 Antonio Pumariño and J. Angel Rodríguez The inductive process . . . . . . . . . 89--118 Antonio Pumariño and J. Angel Rodríguez The binding point . . . . . . . . . . . 119--134 Antonio Pumariño and J. Angel Rodríguez The binding period . . . . . . . . . . . 135--152 Antonio Pumariño and J. Angel Rodríguez The exclusion of parameters . . . . . . 153--190
Vladimir Kozlov and Vladimir Maz'ya Basic equation with constant coefficients . . . . . . . . . . . . . . 1--14 Vladimir Kozlov and Vladimir Maz'ya The operator $ M (\partial_t) $ on a semiaxis and an interval . . . . . . . . 15--24 Vladimir Kozlov and Vladimir Maz'ya The operator $ M (\partial_t) - \omega_0 $ with constant $ \omega_0 $ . . . . . . 25--35 Vladimir Kozlov and Vladimir Maz'ya Green's function for the operator $ M (\partial_t) - \omega (t) $ . . . . . . 37--45 Vladimir Kozlov and Vladimir Maz'ya Uniqueness and solvability properties of the operator $ M(\partial_t - \omega (t)) $ . . . . . . . . . . . . . . . . . 47--80 Vladimir Kozlov and Vladimir Maz'ya Properties of $ M(\partial_t - \omega (t)) $ under various assumptions about $ \omega (t) $ . . . . . . . . . . . . . . 81--110 Vladimir Kozlov and Vladimir Maz'ya Asymptotics of solutions at infinity . . 111--125 Vladimir Kozlov and Vladimir Maz'ya Application to ordinary differential equations with operator coefficients . . 127--136
Martino Bardi and Michael G. Crandall and Lawrence C. Evans and Halil Mete Soner and Panagiotis E. Souganidis Front Matter . . . . . . . . . . . . . . ?? Michael G. Crandall Viscosity solutions: a primer . . . . . 1--43 Martino Bardi Some applications of viscosity solutions to optimal control and differential games . . . . . . . . . . . . . . . . . 44--97 Lawrence C. Evans Regularity for fully nonlinear elliptic equations and motion by mean curvature 98--133 Halil Mete Soner Controlled Markov processes, viscosity solutions and applications to mathematical finance . . . . . . . . . . 134--185 Panagiotis E. Souganidis Front propagation: Theory and applications . . . . . . . . . . . . . . 186--242 Panagiotis E. Souganidis Back Matter . . . . . . . . . . . . . . ??
Aleksy Tralle and John Oprea The starting point: Homotopy properties of Kähler manifolds . . . . . . . . . . . 1--44 Aleksy Tralle and John Oprea Nilmanifolds . . . . . . . . . . . . . . 45--69 Aleksy Tralle and John Oprea Solvmanifolds . . . . . . . . . . . . . 70--119 Aleksy Tralle and John Oprea The examples of McDuff . . . . . . . . . 120--136 Aleksy Tralle and John Oprea Symplectic structures in total spaces of bundles . . . . . . . . . . . . . . . . 137--172 Aleksy Tralle and John Oprea Survey . . . . . . . . . . . . . . . . . 173--199
John W. Rutter Preliminaries . . . . . . . . . . . . . 1--3 John W. Rutter Building blocks . . . . . . . . . . . . 4--6 John W. Rutter Representations: homology and homotopy 7--10 John W. Rutter Surfaces . . . . . . . . . . . . . . . . 11--18 John W. Rutter Generators: surface, modular groups . . 19--27 John W. Rutter Manifolds of dimension three or more . . 28--33 John W. Rutter $ \epsilon^*(X) $ not finitely generated 34--35 John W. Rutter Localization . . . . . . . . . . . . . . 36--39 John W. Rutter $ \epsilon^*(X) $ finitely presented, nilpotent . . . . . . . . . . . . . . . 40--43 John W. Rutter L-R duality . . . . . . . . . . . . . . 44--44 John W. Rutter Cellular/homology complexes: methods . . 45--53 John W. Rutter Cellular, homology complexes: calculations . . . . . . . . . . . . . . 54--62 John W. Rutter Non-$1$-connected Postnikov: methods . . 63--73 John W. Rutter Homotopy systems, chain complexes . . . 74--79 John W. Rutter Non-$1$-connected spaces: calculations 80--93 John W. Rutter Whitehead torsion, simple homotopy . . . 94--97 John W. Rutter Unions and products . . . . . . . . . . 98--107 John W. Rutter Group theoretic properties . . . . . . . 108--112 John W. Rutter Homotopy type, homotopy groups . . . . . 113--120 John W. Rutter Homotopy automorphisms of $H$-spaces . . 121--123
Yulia E. Karpeshina Introduction . . . . . . . . . . . . . . 1--22 Yulia E. Karpeshina Perturbation theory for a polyharmonic operator in the case of $ 2 l > n $ . . . 23--62 Yulia E. Karpeshina Perturbation theory for the polyharmonic operator in the case $ 4 l > n + 1 $ . . 63--97 Yulia E. Karpeshina Perturbation theory for Schrödinger operator with a periodic potential . . . 99--232 Yulia E. Karpeshina The interaction of a free wave with a semi-bounded crystal . . . . . . . . . . 233--338
Martin Väth Introduction . . . . . . . . . . . . . . 1--6 Martin Väth Basic definitions and properties . . . . 7--27 Martin Väth Ideal spaces with additional properties 29--74 Martin Väth Ideal spaces on product measures and calculus . . . . . . . . . . . . . . . . 75--104 Martin Väth Operators and applications . . . . . . . 105--126
Evarist Gine Decoupling and limit theorems for $u$-statistics and $u$-processes . . . . 1--35 Evarist Gine Lectures on some aspects of the bootstrap . . . . . . . . . . . . . . . 37--151 Geoffrey Grimmett Percolation and disordered systems . . . 153--300 Laurent Saloff-Coste Lectures on finite Markov chains . . . . 301--413
Marius van der Put and Michael F. Singer Picard--Vessiot rings . . . . . . . . . 4--27 Marius van der Put and Michael F. Singer Algorithms for difference equations . . 28--34 Marius van der Put and Michael F. Singer The inverse problem for difference equations . . . . . . . . . . . . . . . 35--44 Marius van der Put and Michael F. Singer The ring $S$ of sequences . . . . . . . 45--51 Marius van der Put and Michael F. Singer An excursion in positive characteristic 52--59 Marius van der Put and Michael F. Singer Difference modules over $ \mathcal {P} $ 60--67 Marius van der Put and Michael F. Singer Classification and canonical forms . . . 71--76 Marius van der Put and Michael F. Singer Semi-regular difference equations . . . 77--94 Marius van der Put and Michael F. Singer Mild difference equations . . . . . . . 95--110 Marius van der Put and Michael F. Singer Examples of equations and Galois groups 111--126 Marius van der Put and Michael F. Singer Wild difference equations . . . . . . . 127--148 Marius van der Put and Michael F. Singer $q$-Difference equations . . . . . . . . 149--174
Jesús M. F. Castillo and Manuel González Three-space constructions . . . . . . . 1--44 Jesús M. F. Castillo and Manuel González Methods to obtain $3$ $ {\rm SP}$ ideals 45--80 Jesús M. F. Castillo and Manuel González Classical Banach spaces . . . . . . . . 81--112 Jesús M. F. Castillo and Manuel González Topological Properties of Banach Spaces 113--155 Jesús M. F. Castillo and Manuel González Geometrical Properties . . . . . . . . . 156--195 Jesús M. F. Castillo and Manuel González Homological Properties . . . . . . . . . 196--220 Jesús M. F. Castillo and Manuel González Approximation Properties . . . . . . . . 221--231
Daniel B. Dix Laplace expansions, outer regions . . . 1--74 Daniel B. Dix Expansion in the inner region, matching 75--95 Daniel B. Dix Uniformly valid expansions as $ t \to \infty $ . . . . . . . . . . . . . . . . 96--113 Daniel B. Dix Special results for special cases . . . 114--154 Daniel B. Dix Applications . . . . . . . . . . . . . . 155--193
Uwe Kaiser Link bordism in manifolds . . . . . . . 1--20 Uwe Kaiser Enumeration of link bordism in $3$-manifolds . . . . . . . . . . . . . 21--36 Uwe Kaiser Linking number maps . . . . . . . . . . 37--68 Uwe Kaiser Surface structures for links in $3$-manifolds . . . . . . . . . . . . . 69--84 Uwe Kaiser Link invariants in Betti-trivial $3$-manifolds . . . . . . . . . . . . . 85--98 Uwe Kaiser Link characteristic and band-operations in Betti-trivial $3$-manifolds . . . . . 99--116 Uwe Kaiser $3$-dimensional Betti-trivial submanifolds . . . . . . . . . . . . . . 117--131
John William Neuberger Several gradients . . . . . . . . . . . 1--3 John William Neuberger Comparison of two gradients . . . . . . 5--9 John William Neuberger Continuous steepest descent in Hilbert space: Linear case . . . . . . . . . . . 11--13 John William Neuberger Continuous steepest descent in Hilbert space: Nonlinear case . . . . . . . . . 15--31 John William Neuberger Orthogonal projections, Adjoints and Laplacians . . . . . . . . . . . . . . . 33--42 John William Neuberger Introducing boundary conditions . . . . 43--52 John William Neuberger Newton's method in the context of Sobolev gradients . . . . . . . . . . . 53--58 John William Neuberger Finite difference setting: the inner product case . . . . . . . . . . . . . . 59--68 John William Neuberger Sobolev gradients for weak solutions: Function space case . . . . . . . . . . 69--73 John William Neuberger Sobolev gradients in non-inner product spaces: Introduction . . . . . . . . . . 75--78 John William Neuberger The superconductivity equations of Ginzburg--Landau . . . . . . . . . . . . 79--91 John William Neuberger Minimal surfaces . . . . . . . . . . . . 93--106 John William Neuberger Flow problems and non-inner product Sobolev spaces . . . . . . . . . . . . . 107--114 John William Neuberger Foliations as a guide to boundary conditions . . . . . . . . . . . . . . . 115--123 John William Neuberger Some related iterative methods for differential equations . . . . . . . . . 125--133 John William Neuberger A related analytic iteration method . . 135--138 John William Neuberger Steepest descent for conservation equations . . . . . . . . . . . . . . . 139--140 John William Neuberger A sample computer code with notes . . . 141--143
Serge Bouc Introduction . . . . . . . . . . . . . . 1--3 Serge Bouc Mackey functors . . . . . . . . . . . . 5--39 Serge Bouc Green functors . . . . . . . . . . . . . 41--60 Serge Bouc The category associated to a Green functor . . . . . . . . . . . . . . . . 61--80 Serge Bouc The algebra associated to a Green functor . . . . . . . . . . . . . . . . 81--97 Serge Bouc Morita equivalence and relative projectivity . . . . . . . . . . . . . . 99--121 Serge Bouc Construction of Green functors . . . . . 123--152 Serge Bouc A Morita theory . . . . . . . . . . . . 153--165 Serge Bouc Composition . . . . . . . . . . . . . . 167--182 Serge Bouc Adjoint constructions . . . . . . . . . 183--222 Serge Bouc Adjunction and Green functors . . . . . 223--274 Serge Bouc The simple modules . . . . . . . . . . . 275--304 Serge Bouc Centres . . . . . . . . . . . . . . . . 305--336
Satya Mandal Introduction . . . . . . . . . . . . . . 1--2 Satya Mandal Préliminaires. (French) [Preliminaries] 3--12 Satya Mandal Patching modules and other preliminaries 13--23 Satya Mandal Extended modules over polynomial rings 25--33 Satya Mandal Modules over commutative rings . . . . . 35--62 Satya Mandal The theory of matrices . . . . . . . . . 63--72 Satya Mandal Complete intersections . . . . . . . . . 73--90 Satya Mandal The techniques of Lindel . . . . . . . . 91--110
Frank D. Grosshans Introduction . . . . . . . . . . . . . . 1--4 Frank D. Grosshans Observable subgroups . . . . . . . . . . 5--32 Frank D. Grosshans The transfer principle . . . . . . . . . 33--70 Frank D. Grosshans Invariants of maximal unipotent subgroups . . . . . . . . . . . . . . . 71--105 Frank D. Grosshans Complexity . . . . . . . . . . . . . . . 106--137 Frank D. Grosshans Errata . . . . . . . . . . . . . . . . . e1--e2
Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Introduction . . . . . . . . . . . . . . 1--8 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Elementary properties of width . . . . . 9--11 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken $p$-adically simple groups ($ \tilde p$-groups) . . . . . . . . . . . . . . . 12--20 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Periodicity . . . . . . . . . . . . . . 21--25 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Chevalley groups . . . . . . . . . . . . 26--29 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Some classical groups . . . . . . . . . 30--54 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Some thin groups . . . . . . . . . . . . 55--58 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Algorithms on fields . . . . . . . . . . 59--61 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Fields of small degree . . . . . . . . . 62--67 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Algorithm for finding a filtration and the obliquity . . . . . . . . . . . . . 68--77 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken The theory behind the tables . . . . . . 78--91 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Tables . . . . . . . . . . . . . . . . . 92--105 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Uncountably many just infinite pro- $p$-groups of finite width . . . . . . . 106--107 Gundel Klaas and Charles R. Leedham-Green and Wilhelm Plesken Some open problems . . . . . . . . . . . 108--108
Pilar Cembranos and José Mendoza Introduction . . . . . . . . . . . . . . 1--8 Pilar Cembranos and José Mendoza Preliminaries . . . . . . . . . . . . . 9--40 Pilar Cembranos and José Mendoza Copies of $ c_0 $ and $ \ell_1 $ in $ L_p (\mu, X) $ . . . . . . . . . . . . . 41--63 Pilar Cembranos and José Mendoza $ C(K, X) $ spaces . . . . . . . . . . . 65--74 Pilar Cembranos and José Mendoza $ L_p(\mu, X) $ spaces . . . . . . . . . 75--82 Pilar Cembranos and José Mendoza The space $ L_\infty (\mu, X) $ . . . . 83--104 Pilar Cembranos and José Mendoza Tabulation of results . . . . . . . . . 105--106 Pilar Cembranos and José Mendoza Some related open problems . . . . . . . 107--109
Olga Krupková Introduction . . . . . . . . . . . . . . 1--19 Olga Krupková Basic geometric tools . . . . . . . . . 20--40 Olga Krupková Lagrangean dynamics on fibered manifolds 41--51 Olga Krupková Variational Equations . . . . . . . . . 52--79 Olga Krupková Hamiltonian systems . . . . . . . . . . 80--96 Olga Krupková Regular Lagrangean systems . . . . . . . 97--128 Olga Krupková Singular Lagrangean systems . . . . . . 129--148 Olga Krupková Symmetries of Lagrangean systems . . . . 149--173 Olga Krupková Geometric intergration methods . . . . . 174--207 Olga Krupková Lagrangean systems on $ \pi \colon R \times M $ \frqq$R$ . . . . . . . . . . 208--228
Joseph E. Yukich Introduction . . . . . . . . . . . . . . 1--8 Joseph E. Yukich Subadditivity and superadditivity . . . 9--17 Joseph E. Yukich Subadditive and superadditive Euclidean functionals . . . . . . . . . . . . . . 18--31 Joseph E. Yukich Asymptotics for Euclidean functionals: The uniform case . . . . . . . . . . . . 32--52 Joseph E. Yukich Rates of convergence and heuristics . . 53--63 Joseph E. Yukich Isoperimetry and concentration inequalities . . . . . . . . . . . . . . 64--77 Joseph E. Yukich Umbrella theorems for Euclidean functionals . . . . . . . . . . . . . . 78--96 Joseph E. Yukich Applications and examples . . . . . . . 97--109 Joseph E. Yukich Minimal triangulations . . . . . . . . . 110--125 Joseph E. Yukich Geometric location problems . . . . . . 126--130 Joseph E. Yukich Worst case growth rates . . . . . . . . 131--137
Nikolai Proskurin Part 0 . . . . . . . . . . . . . . . . . 1--62 Nikolai Proskurin Part 1 . . . . . . . . . . . . . . . . . 63--125 Nikolai Proskurin Part 2 . . . . . . . . . . . . . . . . . 126--187
Karl-Goswin Grosse-Erdmann Introduction . . . . . . . . . . . . . . 1--6 Karl-Goswin Grosse-Erdmann The blocking technique . . . . . . . . . 7--22 Karl-Goswin Grosse-Erdmann The sequence spaces $ c (a, p, q) $ and $ d (a, p, q) $ . . . . . . . . . . . . 23--47 Karl-Goswin Grosse-Erdmann Applications to matrix operators and inequalities . . . . . . . . . . . . . . 49--76 Karl-Goswin Grosse-Erdmann Integral analogues . . . . . . . . . . . 77--92
Ke-Zheng Li and Frans Oort Introduction . . . . . . . . . . . . . . 1--10 Ke-Zheng Li and Frans Oort Supersingular abelian varieties . . . . 11--15 Ke-Zheng Li and Frans Oort Some prerequisites about group schemes 16--18 Ke-Zheng Li and Frans Oort Flag type quotients . . . . . . . . . . 19--23 Ke-Zheng Li and Frans Oort Main results on $ S_{g, 1} $ . . . . . . 24--27 Ke-Zheng Li and Frans Oort Prerequisites about Dieudonné modules . . 28--34 Ke-Zheng Li and Frans Oort PFTQs of Dieudonné modules over $W$ . . . 35--38 Ke-Zheng Li and Frans Oort Moduli of rigid PFTQs of Dieudonné modules . . . . . . . . . . . . . . . . 39--50 Ke-Zheng Li and Frans Oort Some class numbers . . . . . . . . . . . 51--54 Ke-Zheng Li and Frans Oort Examples on $ S_{g, 1} $ . . . . . . . . 55--68 Ke-Zheng Li and Frans Oort Main results on $ S_{g, d} $ . . . . . . 69--72 Ke-Zheng Li and Frans Oort Proofs of the propositions on FTQs . . . 73--83 Ke-Zheng Li and Frans Oort Examples on $ S_{g, d} $ $ (d > 1) $ . . 84--86 Ke-Zheng Li and Frans Oort A scheme-theoretic definition of supersingularity . . . . . . . . . . . . 87--95
G. J. Wirsching Introduction . . . . . . . . . . . . . . 1--9 G. J. Wirsching Some ideas around $ 3 n + 1 $ iterations 10--30 G. J. Wirsching Analysis of the Collatz graph . . . . . 31--75 G. J. Wirsching $3$-adic averages of counting functions 76--95 G. J. Wirsching An asymptotically homogeneous Markov chain . . . . . . . . . . . . . . . . . 96--122 G. J. Wirsching Mixing and predecessor density . . . . . 123--140
Hans-Dieter Alber Introduction . . . . . . . . . . . . . . 1--5 Hans-Dieter Alber Initial-boundary value problems for the inelastic behavior of metals . . . . . . 7--22 Hans-Dieter Alber Constitutive equations of monotone type and generalized standard materials . . . 23--44 Hans-Dieter Alber Existence of solutions for constitutive equations of monotone type . . . . . . . 45--56 Hans-Dieter Alber Transformation of interior variables . . 57--73 Hans-Dieter Alber Classification conditions . . . . . . . 75--97 Hans-Dieter Alber Transformation of rate independent constitutive equations . . . . . . . . . 99--116 Hans-Dieter Alber Application of the theory to engineering models . . . . . . . . . . . . . . . . . 117--136 Hans-Dieter Alber Open problems and related results . . . 137--142
Andreas Pomp Pseudohomogeneous distributions . . . . 1--27 Andreas Pomp Levi functions for elliptic systems of partial differential equations . . . . . 29--45 Andreas Pomp Systems of integral equations, generated by Levi functions . . . . . . . . . . . 47--68 Andreas Pomp The differential equations of the DV model . . . . . . . . . . . . . . . . . 69--88 Andreas Pomp Levi functions for the shell equations 89--108 Andreas Pomp The system of integral equations and its numerical solution . . . . . . . . . . . 109--135 Andreas Pomp An example: Katenoid shell under torsion 137--153
Carlos Berenstein Randon transforms, wavelets, and applications . . . . . . . . . . . . . . 1--33 Peter Ebenfelt Holomorphic mappings between real analytic submanifolds in complex space 35--69 Simon Gindikin Real integral geometry and complex analysis . . . . . . . . . . . . . . . . 70--98 Sigurdur Helgason Radon transforms and wave equations . . 99--121 Alexander Tumanov Analytic discs and the extendibility of CR functions . . . . . . . . . . . . . . 123--141
Alexander Zimmermann Introduction . . . . . . . . . . . . . . 1--4 Steffen König Basic definitions and some examples . . 5--32 Steffen König Rickard's fundamental theorem . . . . . 33--50 Alexander Zimmermann Some modular and local representation theory . . . . . . . . . . . . . . . . . 51--80 Alexander Zimmermann Onesided tilting complexes for group rings . . . . . . . . . . . . . . . . . 81--104 Alexander Zimmermann Tilting with additional structure: twosided tilting complexes . . . . . . . 105--149 Alexander Zimmermann Historical remarks . . . . . . . . . . . 151--154 Bernhard Keller On the construction of triangle equivalences . . . . . . . . . . . . . . 155--176 Jeremy Rickard Triangulated categories in the modular representation theory of finite groups 177--198 Raphaël Rouquier The derived category of blocks with cyclic defect groups . . . . . . . . . . 199--220 Markus Linckelmann On stable equivalences of Morita type 221--232
C. Dellacherie and A. Iwanik Sous-mesures symétriques sur un ensemble fini. (French) [] . . . . . . . . . . . 1--5 Mireille Capitaine Sur une inégalité de Sobolev logarithmique pour une diffusion unidimensionnelle. (French) [] . . . . . . . . . . . . . . 6--13 Éric Fontenas Sur les minorations des constantes de Sobolev et de Sobolev logarithmiques pour les opérateurs de Jacobi et de Laguerre. (French) [] . . . . . . . . . 14--29 P. Mathieu Quand l'inégalité log-Sobolev implique l'inégalité de trou spectral. (French) [] 30--35 Laurent Miclo Trous spectraux \`a basse température: un contre-exemple \`a un comportement asymptotique escompté. (French) [] . . . 36--55 C. Stricker and J. A. Yan Some remarks on the optional decomposition theorem . . . . . . . . . 56--66 Tahir Choulli and Christophe Stricker Séparation d'une sur-et d'une sousmartingale par une martingale. (French) [] . . . . . . . . . . . . . . 67--72 Peter Grandits and Leszek Krawczyk Closedness of some spaces of stochastic integrals . . . . . . . . . . . . . . . 73--85 Matthias K. Heck Homogeneous diffusions on the Sierpi\'nski gasket . . . . . . . . . . 86--107 Y. Git Almost sure path properties of Branching Diffusion Processes . . . . . . . . . . 108--127 S. Amghibech Criteria of regularity at the end of a tree . . . . . . . . . . . . . . . . . . 128--136 R. Mikulevicius and B. L. Rozovskii Normalized stochastic integrals in topological vector spaces . . . . . . . 137--165 Khaled Bahlali and Brahim Mezerdi and Youssef Ouknine Pathwise uniqueness and approximation of solutions of stochastic differential equations . . . . . . . . . . . . . . . 166--187 Marc Arnaudon and Anton Thalmaier Stability of stochastic differential equations in manifolds . . . . . . . . . 188--214 B. Jourdain Propagation trajectorielle du chaos pour les lois de conservation scalaire. (French) [] . . . . . . . . . . . . . . 215--230 R. A. Doney Some calculations for perturbed Brownian motion . . . . . . . . . . . . . . . . . 231--236 R. A. Doney and J. Warren and M. Yor Perturbed Bessel processes . . . . . . . 237--249 David G. Hobson The maximum maximum of a martingale . . 250--263 M. T. Barlow and M. Émery and F. B. Knight and S. Song and M. Yor Autour d'un théor\`eme de Tsirelson sur des filtrations Browniennes et non Browniennes. (French) [] . . . . . . . . 264--305 M. Émery and M. Yor Sur un théor\`eme de Tsirelson relatif \`a des mouvements browniens corrélés et \`a la nullité de certains temps locaux. (French) [] . . . . . . . . . . . . . . 306--312
Folkmar Bornemann Introduction . . . . . . . . . . . . . . 1--16 Folkmar Bornemann Homogenization of natural mechanical systems with a strong constraining potential . . . . . . . . . . . . . . . 17--72 Folkmar Bornemann Applications . . . . . . . . . . . . . . 73--88 Folkmar Bornemann Adiabatic results in quantum theory and quantum-classical coupling . . . . . . . 89--114
Sigurd Assing and Wolfgang M. Schmidt Basic concepts and preparatory results 1--13 Sigurd Assing and Wolfgang M. Schmidt Classification of the points of the state space . . . . . . . . . . . . . . 15--25 Sigurd Assing and Wolfgang M. Schmidt Weakly additive functionals and time change of strong Markov processes . . . 27--32 Sigurd Assing and Wolfgang M. Schmidt Semimartingale decomposition of continuous strong Markov semimartingales 33--52 Sigurd Assing and Wolfgang M. Schmidt Occupation time formula . . . . . . . . 53--77 Sigurd Assing and Wolfgang M. Schmidt Construction of continuous strong Markov processes . . . . . . . . . . . . . . . 79--102 Sigurd Assing and Wolfgang M. Schmidt Continuous strong Markov semimartingales as solutions of stochastic differential equations . . . . . . . . . . . . . . . 103--118
William Fulton and Piotr Pragacz Introduction to degeneracy loci and Schubert polynomials . . . . . . . . . . 1--13 William Fulton and Piotr Pragacz Modern formulation; Grassmannians, flag varieties, Schubert varieties . . . . . 14--25 William Fulton and Piotr Pragacz Symmetric polynomials useful in geometry 26--39 William Fulton and Piotr Pragacz Polynomials supported on degeneracy loci 40--52 William Fulton and Piotr Pragacz The Euler characteristic of degeneracy loci . . . . . . . . . . . . . . . . . . 53--64 William Fulton and Piotr Pragacz Flag bundles and determinantal formulas for the other classical groups . . . . . 65--78 William Fulton and Piotr Pragacz $ \tilde P{- } $ and $ \tilde Q{-} $ polynomial formulas for other classical groups . . . . . . . . . . . . . . . . . 79--91 William Fulton and Piotr Pragacz The classes of Brill--Noether loci in Prym varieties . . . . . . . . . . . . . 92--96 William Fulton and Piotr Pragacz Applications and open problems . . . . . 97--103
Martin T. Barlow Diffusions on fractals . . . . . . . . . 1--121 David Nualart Analysis on Wiener space and anticipating stochastic calculus . . . . 123--220
Roman Bezrukavnikov and Michael Finkelberg and Vadim Schechtman Introduction . . . . . . . . . . . . . . 1--4 Roman Bezrukavnikov and Michael Finkelberg and Vadim Schechtman Acknowledgement . . . . . . . . . . . . 5--5 Roman Bezrukavnikov and Michael Finkelberg and Vadim Schechtman Overview . . . . . . . . . . . . . . . . 6--49 Roman Bezrukavnikov and Michael Finkelberg and Vadim Schechtman Intersection cohomology of real arrangements . . . . . . . . . . . . . . 50--70 Roman Bezrukavnikov and Michael Finkelberg and Vadim Schechtman Configuration spaces and quantum groups 71--121 Roman Bezrukavnikov and Michael Finkelberg and Vadim Schechtman Tensor categories arising from configuration spaces . . . . . . . . . . 122--172 Roman Bezrukavnikov and Michael Finkelberg and Vadim Schechtman Localization on $ \mathbb {P}^1 $ . . . 173--196 Roman Bezrukavnikov and Michael Finkelberg and Vadim Schechtman Modular structure on the category $ \mathcal {F} \mathcal {S} $ . . . . . . 197--251
Timothy M. W. Eyre Introduction . . . . . . . . . . . . . . 1--6 Timothy M. W. Eyre Quantum stochastic calculus . . . . . . 7--21 Timothy M. W. Eyre $ Z_2 $-graded structures . . . . . . . 23--31 Timothy M. W. Eyre Representations of Lie superalgebras in $ Z_2 $-graded quantum stochastic calculus . . . . . . . . . . . . . . . . 33--50 Timothy M. W. Eyre The ungraded higher order Itô product formula . . . . . . . . . . . . . . . . 51--57 Timothy M. W. Eyre The Itô superalgebra . . . . . . . . . . 59--75 Timothy M. W. Eyre Some results in $ Z_2 $-graded quantum stochastic calculus . . . . . . . . . . 77--99 Timothy M. W. Eyre Chaotic expansions . . . . . . . . . . . 101--112 Timothy M. W. Eyre Extensions . . . . . . . . . . . . . . . 113--132
Stephen Simons Introduction . . . . . . . . . . . . . . 1--11 Stephen Simons Functional analytic preliminaries . . . 13--28 Stephen Simons Multifunctions . . . . . . . . . . . . . 29--41 Stephen Simons A digression into convex analysis . . . 43--51 Stephen Simons General monotone multifunctions . . . . 53--73 Stephen Simons The sum problem for reflexive spaces . . 75--95 Stephen Simons Special maximal monotone multifunctions 97--109 Stephen Simons Subdifferentials . . . . . . . . . . . . 111--139 Stephen Simons Discontinuous positive linear operators 141--151 Stephen Simons The sum problem for general Banach spaces . . . . . . . . . . . . . . . . . 153--161 Stephen Simons Open problems . . . . . . . . . . . . . 163--164
Andrea Braides Introduction . . . . . . . . . . . . . . 1--6 Andrea Braides Functions of bounded variation . . . . . 7--26 Andrea Braides Special functions of bounded variation 27--38 Andrea Braides Examples of approximation . . . . . . . 39--86 Andrea Braides A general approach to approximation . . 87--102 Andrea Braides Non-local approximation . . . . . . . . 103--130
Darald J. Hartfiel Introduction . . . . . . . . . . . . . . 1--2 Darald J. Hartfiel Stochastic matrices and their variants 3--25 Darald J. Hartfiel Introduction to Markov set-chains . . . 27--57 Darald J. Hartfiel Convergence of Markov set-chains . . . . 59--89 Darald J. Hartfiel Behavior in Markov set-chains . . . . . 91--113
Elisabeth Bouscaren Introduction to model theory . . . . . . 1--18 Martin Ziegler Introduction to stability theory and Morley rank . . . . . . . . . . . . . . 19--44 Daniel Lascar Omega-stable groups . . . . . . . . . . 45--59 Anand Pillay Model theory of algebraically closed fields . . . . . . . . . . . . . . . . . 61--84 Marc Hindry Introduction to abelian varieties and the Mordell--Lang conjecture . . . . . . 85--100 Anand Pillay The model-theoretic content of Lang's conjecture . . . . . . . . . . . . . . . 101--106 David Marker Zariski geometries . . . . . . . . . . . 107--128 Carol Wood Differentially closed fields . . . . . . 129--141 Françoise Delon Separably closed fields . . . . . . . . 143--176 Elisabeth Bouscaren Proof of the Mordell--Lang conjecture for function fields . . . . . . . . . . 177--196 Ehud Hrushovski Proof of Manin's theorem by reduction to positive characteristic . . . . . . . . 197--205 Ehud Hrushovski Back Matter . . . . . . . . . . . . . . 207--216
Bernardo Cockburn and Chi-Wang Shu and Claes Johnson and Eitan Tadmor Front Matter . . . . . . . . . . . . . . ?? Eitan Tadmor Approximate solutions of nonlinear conservation laws . . . . . . . . . . . 1--149 Bernardo Cockburn An introduction to the Discontinuous Galerkin method for convection-dominated problems . . . . . . . . . . . . . . . . 151--268 Claes Johnson Adaptive finite element methods for conservation laws . . . . . . . . . . . 269--323 Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws . . . . . . 325--432 Chi-Wang Shu Back Matter . . . . . . . . . . . . . . ??
Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Some group theory . . . . . . . . . . . 1--8 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Groups acting on sets . . . . . . . . . 9--18 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Transitivity . . . . . . . . . . . . . . 19--30 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Primitivity . . . . . . . . . . . . . . 31--38 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Suborbits and orbitals . . . . . . . . . 39--48 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann More about symmetric groups . . . . . . 49--56 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Linear groups . . . . . . . . . . . . . 57--66 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Wreath products . . . . . . . . . . . . 67--76 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Rational numbers . . . . . . . . . . . . 77--86 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Jordan groups . . . . . . . . . . . . . 87--97 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Examples of Jordan groups . . . . . . . 99--113 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Relations related to betweenness . . . . 115--129 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Classification theorems . . . . . . . . 131--142 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Homogeneous structures . . . . . . . . . 143--158 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann The Hrushovski construction . . . . . . 159--170 Meenaxi Bhattacharjee and Dugald Macpherson and Rögnvaldur G. Möller and Peter M. Neumann Applications and open questions . . . . 171--180
Atsushi Inoue Introduction . . . . . . . . . . . . . . 1--5 Atsushi Inoue Fundamentals of $ O^* $-algebras . . . . 7--40 Atsushi Inoue Standard systems and modular systems . . 41--110 Atsushi Inoue Standard weights on $ O^* $-algebras . . 111--168 Atsushi Inoue Physical applications . . . . . . . . . 169--223
Wojbor A. Woyczy\'nski Shock waves and the large scale structure (LSS) of the universe . . . . 1--11 Wojbor A. Woyczy\'nski Hydrodynamic limits, nonlinear diffusions, and propagation of chaos . . 13--24 Wojbor A. Woyczy\'nski Hopf--Cole formula and its asymptotic analysis . . . . . . . . . . . . . . . . 25--42 Wojbor A. Woyczy\'nski Statistical description, parabolic approximation . . . . . . . . . . . . . 43--95 Wojbor A. Woyczy\'nski Hyperbolic approximation and inviscid limit . . . . . . . . . . . . . . . . . 97--133 Wojbor A. Woyczy\'nski Forced Burgers turbulence . . . . . . . 135--201 Wojbor A. Woyczy\'nski Passive tracer transport in Burgers' and related flows . . . . . . . . . . . . . 203--270 Wojbor A. Woyczy\'nski Fractal Burgers--KPZ models . . . . . . 271--298
Ti-Jun Xiao and Jin Liang Front Matter . . . . . . . . . . . . . . N2--XII Ti-Jun Xiao and Jin Liang Laplace transforms and operator families in locally convex spaces . . . . . . . . 1--44 Ti-Jun Xiao and Jin Liang Wellposedness and solvability . . . . . 45--83 Ti-Jun Xiao and Jin Liang Generalized wellposedness . . . . . . . 85--140 Ti-Jun Xiao and Jin Liang Analyticity and parabolicity . . . . . . 141--176 Ti-Jun Xiao and Jin Liang Exponential growth bound and exponential stability . . . . . . . . . . . . . . . 177--197 Ti-Jun Xiao and Jin Liang Differentiability and norm continuity 199--238 Ti-Jun Xiao and Jin Liang Almost periodicity . . . . . . . . . . . 239--261 Ti-Jun Xiao and Jin Liang Back Matter . . . . . . . . . . . . . . 263--309
David B. Mumford I. Varieties . . . . . . . . . . . . . . 1--63 David B. Mumford II. Preschemes . . . . . . . . . . . . . 65--136 David B. Mumford III. Local Properties of Schemes . . . . 137--223 David B. Mumford Appendix: Curves and their Jacobians . . 225--291 David B. Mumford References: The Red Book of Varieties and Schemes . . . . . . . . . . . . . . 293--293 David B. Mumford Guide to the Literature and References: Curves and their Jacobians . . . . . . . 294--300 Enrico Arbarello Supplementary Bibliography on the Schottky Problem . . . . . . . . . . . . 301--304
R. M. Dudley and R. Norvai\vsa A survey on differentiability of six operators in relation to probability and statistics . . . . . . . . . . . . . . . 1--72 R. M. Dudley and R. Norvai\vsa Product integrals, Young integrals and $p$-variation . . . . . . . . . . . . . 73--208 R. M. Dudley and R. Norvai\vsa Differentiability of the composition and quantile operators for regulated and A. E. continuous functions . . . . . . . . 209--240 R. M. Dudley and R. Norvai\vsa and Jinghua Qian Bibliographies on $p$-variation and $ \varphi $-variation . . . . . . . . . . 241--272
Hirotaka Tamanoi Introduction and summary of results . . 1--21 Hirotaka Tamanoi Elliptic genera . . . . . . . . . . . . 22--48 Hirotaka Tamanoi Vertex operator super algebras . . . . . 49--92 Hirotaka Tamanoi $G$-invariant vertex operator super subalgebras . . . . . . . . . . . . . . 93--221 Hirotaka Tamanoi Geometric structure in vector spaces and reduction of structure groups on manifolds . . . . . . . . . . . . . . . 222--302 Hirotaka Tamanoi Infinite dimensional symmetries in elliptic genera for Kähler manifolds . . 303--378
Igor Nikolaev and Evgeny Zhuzhoma Definitions and examples . . . . . . . . 1--21 Igor Nikolaev and Evgeny Zhuzhoma Poincaré--Bendixson's theory . . . . . . 23--39 Igor Nikolaev and Evgeny Zhuzhoma Decomposition of flows . . . . . . . . . 41--62 Igor Nikolaev and Evgeny Zhuzhoma Local theory . . . . . . . . . . . . . . 63--71 Igor Nikolaev and Evgeny Zhuzhoma Space of flows and vector fields . . . . 73--93 Igor Nikolaev and Evgeny Zhuzhoma Ergodic theory . . . . . . . . . . . . . 95--114 Igor Nikolaev and Evgeny Zhuzhoma Invariants of surface flows . . . . . . 115--174 Igor Nikolaev and Evgeny Zhuzhoma $ C^* $-algebras of surface flows . . . 175--199 Igor Nikolaev and Evgeny Zhuzhoma Semi-local theory . . . . . . . . . . . 201--208 Igor Nikolaev and Evgeny Zhuzhoma Anosov--Weil problem . . . . . . . . . . 209--237 Igor Nikolaev and Evgeny Zhuzhoma Non-compact surfaces . . . . . . . . . . 239--255 Igor Nikolaev and Evgeny Zhuzhoma Triptych . . . . . . . . . . . . . . . . 257--268
Sergei Yu. Pilyugin Shadowing near an invariant set . . . . 1--101 Sergei Yu. Pilyugin Topologically stable, structurally stable, and generic systems . . . . . . 103--172 Sergei Yu. Pilyugin Systems with special structure . . . . . 173--217 Sergei Yu. Pilyugin Numerical applications of shadowing . . 219--257
Rados\law Pytlak Introduction . . . . . . . . . . . . . . 1--12 Rados\law Pytlak Estimates on solutions to differential equations and their approximations . . . 13--26 Rados\law Pytlak First order method . . . . . . . . . . . 27--53 Rados\law Pytlak Implementation . . . . . . . . . . . . . 55--79 Rados\law Pytlak Second order method . . . . . . . . . . 81--128 Rados\law Pytlak Runge--Kutta based procedure for optimal control of differential--algebraic equations . . . . . . . . . . . . . . . 129--168
Kang Zuo Introduction . . . . . . . . . . . . . . 1--9 Kang Zuo Preliminaries . . . . . . . . . . . . . 10--24 Kang Zuo Harmonic metrics on flat vector bundles 25--51 Kang Zuo Non-abelian Hodge theory, factorization theorems for non rigid or $p$-adic unbounded representations . . . . . . . 52--103 Kang Zuo Shafarevich maps for representations of fundamental groups, Kodaira dimension and Chern hyperbolicity of Shafarevich varieties . . . . . . . . . . . . . . . 104--124
Michel Bena\"\im Dynamics of stochastic approximation algorithms . . . . . . . . . . . . . . . 1--68 Olivier Catoni Simulated annealing algorithms and Markov chains with rare transitions . . 69--119 Michel Ledoux Concentration of measure and logarithmic Sobolev inequalities . . . . . . . . . . 120--216 Bernard de Meyer Une simplification de l'argument de Tsirelson sur le caract\`ere non-brownien des processus de Walsh. (French) [] . . . . . . . . . . . . . . 217--220 W. Schachermayer On certain probabilities equivalent to Wiener measure, d'apr\`es Dubins, Feldman, Smorodinsky and Tsirelson . . . 221--239 S. Beghdadi-Sakrani and M. Émery On certain probabilities equivalent to Coin-Tossing, d'Apr\`es Schachermayer 240--256 J. Warren On the joining of sticky Brownian motion 257--266 M. Émery and W. Schachermayer Brownian filtrations are not stable under equivalent time-changes . . . . . 267--276 Shinzo Watanabe The existence of a multiple spider martingale in the natural filtration of a certain diffusion in the plane . . . . 277--290 M. Émery and W. Schachermayer A remark on Tsirelson's stochastic differential equation . . . . . . . . . 291--303 M. Arnaudon Appendice \`a l'exposé précédent: La filtration naturelle du mouvement brownien indexé par $ \mathbb {R} $ dans une variété compacte. (French) [] . . . . 304--314 Jan Kallsen A stochastic differential equation with a unique (up to indistinguishability) but not strong solution . . . . . . . . 315--326 Koichiro Takaoka Some remarks on the uniform integrability of continuous martingales 327--333 Maurizio Pratelli An alternative proof of a theorem of Aldous concerning convergence in distribution for martingales . . . . . . 334--338 Micha\l Morayne and Krzysztof Tabisz A short proof of decomposition of strongly reduced martingales . . . . . . 339--341 Peter Grandits Some remarks on $ L^\infty $, $ H^\infty $ and BMO . . . . . . . . . . . . . . . 342--348 W. Brannath and W. Schachermayer A bipolar theorem for $ L_+ {}^0 \left (\Omega, \mathcal {F}, \mathbb {P} \right) $ . . . . . . . . . . . . . . . 349--354 Aziz Es-Sahib and Heinich Henri Barycentre canonique pour un espace métrique \`a courbure négative. (French) [] . . . . . . . . . . . . . . . . . . . 355--370 Nacereddine Belili Dualité du probl\`eme des marges et ses applications. (French) [] . . . . . . . 371--387 Jim Pitman The distribution of local times of a Brownian bridge . . . . . . . . . . . . 388--394
Max Koecher Domains of positivity . . . . . . . . . 1--33 Max Koecher Omega domains . . . . . . . . . . . . . 35--51 Max Koecher Jordan algebras . . . . . . . . . . . . 53--72 Max Koecher Real and complex Jordan algebras . . . . 73--92 Max Koecher Complex Jordan algebras . . . . . . . . 93--108 Max Koecher Jordan algebras and omega domains . . . 109--126 Max Koecher Half-spaces . . . . . . . . . . . . . . 127--155
Werner Ricker Vector measures and Banach spaces . . . 1--24 Werner Ricker Abstract Boolean algebras and Stone spaces . . . . . . . . . . . . . . . . . 25--40 Werner Ricker Boolean algebras of projections and uniformly closed operator algebras . . . 41--56 Werner Ricker Ranges of spectral measures and Boolean algebras of projections . . . . . . . . 57--66 Werner Ricker Integral representation of the strongly closed algebra generated by a Boolean algebra of projections . . . . . . . . . 67--90 Werner Ricker Bade functionals: an application to scalar-type spectral operators . . . . . 91--104 Werner Ricker The reflexivity theorem and bicommutant algebras . . . . . . . . . . . . . . . . 105--119
Niels Schwartz and James J. Madden Introduction . . . . . . . . . . . . . . 1--19 Niels Schwartz and James J. Madden Preordered and partially ordered rings 21--33 Niels Schwartz and James J. Madden Reflective subcategories . . . . . . . . 35--42 Niels Schwartz and James J. Madden Totally ordered and real closed fields 43--44 Niels Schwartz and James J. Madden Real spectra of preordered rings . . . . 45--49 Niels Schwartz and James J. Madden Epimorphisms of reduced porings . . . . 51--53 Niels Schwartz and James J. Madden Functions and representable porings . . 55--61 Niels Schwartz and James J. Madden Semi-algebraic functions . . . . . . . . 63--77 Niels Schwartz and James J. Madden Comparing reflectors . . . . . . . . . . 79--92 Niels Schwartz and James J. Madden Constructing reflectors . . . . . . . . 93--105 Niels Schwartz and James J. Madden $H$-closed epireflectors . . . . . . . . 107--123 Niels Schwartz and James J. Madden Quotient-closed reflectors . . . . . . . 125--132 Niels Schwartz and James J. Madden The real closure reflector . . . . . . . 133--160 Niels Schwartz and James J. Madden Arities of reflectors and approximations by $H$-closed reflectors . . . . . . . . 161--166 Niels Schwartz and James J. Madden Epimorphic extensions of reduced porings 167--181 Niels Schwartz and James J. Madden Essential monoreflectors . . . . . . . . 183--188 Niels Schwartz and James J. Madden Reflections of totally ordered fields 189--199 Niels Schwartz and James J. Madden von Neumann regular $f$-rings . . . . . 201--208 Niels Schwartz and James J. Madden Totally ordered domains . . . . . . . . 209--215 Niels Schwartz and James J. Madden Reduced $f$-rings . . . . . . . . . . . 217--227
Fabrice Bethuel and Gerhard Huisken and Stefan Müller and Klaus Steffen Front Matter . . . . . . . . . . . . . . ?? F. Bethuel Variational methods for Ginzburg--Landau equations . . . . . . . . . . . . . . . 1--43 Gerhard Huisken and Alexander Polden Geometric evolution equations for hypersurfaces . . . . . . . . . . . . . 45--84 Stefan Müller Variational models for microstructure and phase transitions . . . . . . . . . 85--210 Klaus Steffen Parametric surfaces of prescribed mean curvature . . . . . . . . . . . . . . . 211--265 Klaus Steffen Back Matter . . . . . . . . . . . . . . ??
Odo Diekmann and Richard Durrett and Karl Peter Hadeler and Philip K. Maini and Hal Smith Front Matter . . . . . . . . . . . . . . ?? Odo Diekmann Modeling and analysing physiologically structured populations . . . . . . . . . 1--37 Rick Durrett Stochastic spatial models . . . . . . . 39--94 K. P. Hadeler Reaction transport systems in biological modelling . . . . . . . . . . . . . . . 95--150 Philip K. Maini Mathematical models in morphogenesis . . 151--189 H. L. Smith Dynamics of competition . . . . . . . . 191--240 H. L. Smith Back Matter . . . . . . . . . . . . . . ??
N. V. Krylov On Kolmogorov's equations for finite dimensional diffusions . . . . . . . . . 1--63 Michael Röckner $ L^p $-analysis of finite and infinite dimensional diffusion operators . . . . 65--116 J. Zabczyk Parabolic equations on Hilbert spaces 117--213
John H. Coates and Kenneth A. Ribet and Ralph Greenberg and Karl Rubin Front Matter . . . . . . . . . . . . . . ?? John Coates Fragments of the $ {\rm GL}_2 $ Iwasawa theory of elliptic curves without complex multiplication . . . . . . . . . 1--50 Ralph Greenberg Iwasawa theory for elliptic curves . . . 51--144 Kenneth A. Ribet Torsion points on $ J_0 (N) $ and Galois representations . . . . . . . . . . . . 145--166 Karl Rubin Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer . . . . . . . 167--234 Karl Rubin Back Matter . . . . . . . . . . . . . . ??
Jean Bertoin Subordinators: Examples and Applications 1--91 Fabio Martinelli Lectures on Glauber Dynamics for Discrete Spin Models . . . . . . . . . . 93--191 Yuval Peres Probability on Trees: an Introductory Climb . . . . . . . . . . . . . . . . . 193--280
Andreas Eberle Introduction . . . . . . . . . . . . . . 1--8 Andreas Eberle Motivation and basic definitions: Uniqueness problems in various contexts 9--40 Andreas Eberle $ L^p $ uniqueness in finite dimensions 41--87 Andreas Eberle Markov uniqueness . . . . . . . . . . . 89--167 Andreas Eberle Probabilistic aspects of $ L^p $ and Markov uniqueness . . . . . . . . . . . 169--184 Andreas Eberle First steps in infinite dimensions . . . 185--253
Kenneth R. Meyer Introduction . . . . . . . . . . . . . . 1--8 Kenneth R. Meyer Equations of celestial mechanics . . . . 9--18 Kenneth R. Meyer Hamiltonian systems . . . . . . . . . . 19--37 Kenneth R. Meyer Central configurations . . . . . . . . . 39--49 Kenneth R. Meyer Symmetries, integrals, and reduction . . 51--70 Kenneth R. Meyer Theory of periodic solutions . . . . . . 71--86 Kenneth R. Meyer Satellite orbits . . . . . . . . . . . . 87--90 Kenneth R. Meyer The restricted problem . . . . . . . . . 91--103 Kenneth R. Meyer Lunar orbits . . . . . . . . . . . . . . 105--110 Kenneth R. Meyer Comet orbits . . . . . . . . . . . . . . 111--118 Kenneth R. Meyer Hill's lunar equations . . . . . . . . . 119--127 Kenneth R. Meyer The elliptic problem . . . . . . . . . . 129--137
K. D. Elworthy and J. Le Jan and Xue-Mei Li Introduction . . . . . . . . . . . . . . 3--6 K. D. Elworthy and J. Le Jan and Xue-Mei Li Construction of connections . . . . . . 7--29 K. D. Elworthy and J. Le Jan and Xue-Mei Li The infinitesimal generators and associated operators . . . . . . . . . . 30--56 K. D. Elworthy and J. Le Jan and Xue-Mei Li Decomposition of noise and filtering . . 57--75 K. D. Elworthy and J. Le Jan and Xue-Mei Li Application: Analysis on spaces of paths 76--86 K. D. Elworthy and J. Le Jan and Xue-Mei Li Stability of stochastic dynamical systems . . . . . . . . . . . . . . . . 87--94 K. D. Elworthy and J. Le Jan and Xue-Mei Li Appendices . . . . . . . . . . . . . . . 95--110
Anthony Iarrobino and Vassil Kanev Forms and catalecticant matrices . . . . 3--56 Anthony Iarrobino and Vassil Kanev Sums of powers of linear forms, and Gorenstein algebras . . . . . . . . . . 57--72 Anthony Iarrobino and Vassil Kanev Tangent spaces to catalecticant schemes 73--90 Anthony Iarrobino and Vassil Kanev The locus $ {\rm PS}(s, j; r) $ of sums of powers, and determinantal loci of catalecticant matrices . . . . . . . . . 91--127 Anthony Iarrobino and Vassil Kanev Forms and zero-dimensional schemes I: Basic results, and the case $ r = 3 $ 131--205 Anthony Iarrobino and Vassil Kanev Forms and zero-dimensional schemes, II: Annihilating schemes and reducible $ {\rm Gor}(T) $ . . . . . . . . . . . . . 207--236 Anthony Iarrobino and Vassil Kanev Connectedness and components of the determinantal locus $ \mathbb {P} V_s (u, v; r) $ . . . . . . . . . . . . . . 237--247 Anthony Iarrobino and Vassil Kanev Closures of the variety $ {\rm Gor}(T) $, and the parameter space $ G(T) $ of graded algebras . . . . . . . . . . . . 249--253 Anthony Iarrobino and Vassil Kanev Questions and problems . . . . . . . . . 255--264
Randall McCutcheon Introduction . . . . . . . . . . . . . . 1--4 Randall McCutcheon Ramsey theory and topological dynamics 5--39 Randall McCutcheon Infinitary Ramsey theory . . . . . . . . 40--77 Randall McCutcheon Density Ramsey theory . . . . . . . . . 78--110 Randall McCutcheon Three ergodic Roth theorems . . . . . . 111--135 Randall McCutcheon Two Szemerédi theorems . . . . . . . . . 136--152
Jean-Pierre Croisille and Gilles Lebeau Introduction . . . . . . . . . . . . . . 1--2 Jean-Pierre Croisille and Gilles Lebeau Notation and results . . . . . . . . . . 3--26 Jean-Pierre Croisille and Gilles Lebeau The spectral function . . . . . . . . . 27--56 Jean-Pierre Croisille and Gilles Lebeau Proofs of the results . . . . . . . . . 57--78 Jean-Pierre Croisille and Gilles Lebeau Numerical algorithm . . . . . . . . . . 79--95 Jean-Pierre Croisille and Gilles Lebeau Numerical results . . . . . . . . . . . 97--125