Last update:
Fri Oct 4 06:45:39 MDT 2024
Stephen E. Fienberg When did Bayesian inference become ``Bayesian''? . . . . . . . . . . . . . 1--40 Alan E. Gelfand and John A. Silander, Jr. and Shanshan Wu and Andrew Latimer and Paul O. Lewis and Anthony G. Rebelo and Mark Holder Explaining species distribution patterns through hierarchical modeling . . . . . 41--92 Jennifer A. Hoeting Some perspectives on modeling species distributions (comment on article by Gelfand et al.) . . . . . . . . . . . . 93--97 Jay M. Ver Hoef Comment on article by Gelfand et al. . . 99--101 Alan E. Gelfand and John A. Silander, Jr. and Shanshan Wu and Andrew Latimer and Paul O. Lewis and Anthony G. Rebelo and Mark Holder Rejoinder . . . . . . . . . . . . . . . 103--104 Leanna L. House and Merlise A. Clyde and Yuh-Chin T. Huang Bayesian Identification of Differential Gene Expression Induced by Metals in Human Bronchial Epithelial Cells . . . . 105--120 David M. Blei and Michael I. Jordan Variational inference for Dirichlet process mixtures . . . . . . . . . . . . 121--143 Chris C. Holmes and Leonhard Held Bayesian auxiliary variable models for binary and multinomial regression . . . 145--168 J. A. A. Andrade and A. O'Hagan Bayesian robustness modeling using regularly varying distributions . . . . 169--188 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
David A. van Dyk and Alanna Connors and David N. Esch and Peter Freeman and Hosung Kang and Margarita Karovska and Vinay Kashyap and Aneta Siemiginowska and Andreas Zezas Deconvolution in High-Energy Astrophysics: Science, Instrumentation, and Methods . . . . . . . . . . . . . . 189--235 Ji Meng Loh and Andrew Gelman Comment on article by van Dyk et al. . . 237--240 David A. van Dyk and Hosung Kang Rejoinder . . . . . . . . . . . . . . . 241--248 Herbert K. H. Lee and Bruno Sansó and Weining Zhou and David M. Higdon Inferring Particle Distribution in a Proton Accelerator Experiment . . . . . 249--264 Caitlin E. Buck and Delil Gómez Portugal Aguilar and Cliff D. Litton and Anthony O'Hagan Bayesian nonparametric estimation of the radiocarbon calibration curve . . . . . 265--288 Edoardo M. Airoldi and Annelise G. Anderson and Stephen E. Fienberg and Kiron K. Skinner Who wrote Ronald Reagan's radio addresses? . . . . . . . . . . . . . . . 289--319 Peter D. Hoff Model-based subspace clustering . . . . 321--344 Suhrid Balakrishnan and David Madigan A one-pass sequential Monte Carlo method for Bayesian analysis of massive datasets . . . . . . . . . . . . . . . . 345--361 Joseph B. Kadane and Galit Shmueli and Thomas P. Minka and Sharad Borle and Peter Boatwright Conjugate Analysis of the Conway--Maxwell--Poisson Distribution 363--374 Christopher J. Paciorek Misinformation in the conjugate prior for the linear model with implications for free-knot spline modelling . . . . . 375--383 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
James Berger The Case for Objective Bayesian Analysis 385--402 Michael Goldstein Subjective Bayesian Analysis: Principles and Practice . . . . . . . . . . . . . . 403--420 J. Andrés Christen Stop using `subjective' to refer to Bayesian analyses (comment on articles by Berger and by Goldstein) . . . . . . 421--422 David Draper Coherence and calibration: comments on subjectivity and ``objectivity'' in Bayesian analysis (comment on articles by Berger and by Goldstein) . . . . . . 423--428 Stephen E. Fienberg Does it make sense to be an ``objective Bayesian''? (comment on articles by Berger and by Goldstein) . . . . . . . . 429--432 Joseph B. Kadane Is ``objective Bayesian analysis'' objective, Bayesian, or wise? (comment on articles by Berger and by Goldstein) 433--436 Robert E. Kass Kinds of Bayesians (comment on articles by Berger and by Goldstein) . . . . . . 437--440 Frank Lad Objective Bayesian statistics \ldots. Do you buy it? Should we sell it? (comment on articles by Berger and by Goldstein) 441--444 Anthony O'Hagan Science, subjectivity and software (comment on articles by Berger and by Goldstein) . . . . . . . . . . . . . . . 445--450 Larry Wasserman Frequentist Bayes is objective (comment on articles by Berger and by Goldstein) 451--456 James Berger Rejoinder . . . . . . . . . . . . . . . 457--464 Michael Goldstein Subjectivity and objectivity in Bayesian statistics: rejoinder to the discussion 465--472 William J. Browne and David Draper A comparison of Bayesian and likelihood-based methods for fitting multilevel models . . . . . . . . . . . 473--514 Andrew Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) . . . . . . . . . . . . . . . . 515--534 Robert E. Kass and Ranjini Natarajan A default conjugate prior for variance components in generalized linear mixed models (comment on article by Browne and Draper) . . . . . . . . . . . . . . . . 535--542 Paul C. Lambert (Comment on Article by Browne and Draper) . . . . . . . . . . . . . . . . 543--546 William J. Browne and David Draper Rejoinder . . . . . . . . . . . . . . . 547--550 Ming-Hui Chen and Joseph G. Ibrahim The Relationship Between the Power Prior and Hierarchical Models . . . . . . . . 551--574 Timothy E. Hanson Modeling Censored Lifetime Data Using a Mixture of Gammas Baseline . . . . . . . 575--594 Margaret B. Short and Bradley P. Carlin Multivariate Spatiotemporal CDFs with Random Effects and Measurement Error . . 595--624 Bo Wang and D. M. Titterington Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model . . . . . . . . . . . . . . . . . 625--650 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
G. Celeux and F. Forbes and C. P. Robert and D. M. Titterington Deviance Information Criteria for Missing Data Models . . . . . . . . . . 651--673 Bradley P. Carlin Comment on article by Celeux et al. . . 675--676 Ming-Hui Chen Comments on article by Celeux et al. . . 677--680 Martyn Plummer Comment on article by Celeux et al. . . 681--686 Xiao-Li Meng and Florin Vaida Comment on article by Celeux et al. . . 687--698 Angelika van der Linde Comment on article by Celeux et al. . . 699--700 G. Celeux and F. Forbes and C. P. Robert and D. M. Titterington Rejoinder . . . . . . . . . . . . . . . 701--705 Paola Sebastiani and Hui Xie and Marco F. Ramoni Bayesian Analysis of Comparative Microarray Experiments by Model Averaging . . . . . . . . . . . . . . . 707--732 Fabio Rigat and Mathisca de Gunst and Jaap van Pelt Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks . . . 733--764 Brian Williams and Dave Higdon and Jim Gattiker and Leslie Moore and Michael McKay and Sallie Keller-McNulty Combining Experimental Data and Computer Simulations, With an Application to Flyer Plate Experiments . . . . . . . . 765--792 Matthew J. Beal and Zoubin Ghahramani Variational Bayesian Learning of Directed Graphical Models with Hidden Variables . . . . . . . . . . . . . . . 793--831 John Skilling Nested Sampling for General Bayesian Computation . . . . . . . . . . . . . . 833--859 Jorge L. Bazán and Marcia D. Branco and Heleno Bolfarine A Skew Item Response Model . . . . . . . 861--892 Michael Evans and Hadas Moshonov Checking for Prior-Data Conflict . . . . 893--914 Rongheng Lin and Thomas A. Louis and Susan M. Paddock and Greg Ridgeway Loss Function Based Ranking in Two-Stage, Hierarchical Models . . . . . 915--946 Marco A. R. Ferreira and Mike West and Herbert K. H. Lee and David M. Higdon Multi-Scale and Hidden Resolution Time Series Models . . . . . . . . . . . . . 947--967 Dale J. Poirier The Growth of Bayesian Methods in Statistics and Economics Since 1970 . . 969--979 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Francesca Dominici and Scott L. Zeger and Giovanni Parmigiani and Joanne Katz and Parul Christian Does the effect of micronutrient supplementation on neonatal survival vary with respect to the percentiles of the birth weight distribution? . . . . . 1--30 Samantha R. Cook and Elizabeth A. Stuart Comment on article by Dominici et al. 31--35 David Ruppert and Raymond J. Carroll Comment on article by Dominici et al. 37--42 Francesca Dominici and Scott L. Zeger and Giovanni Parmigiani and Joanne Katz and Parul Christian Rejoinder . . . . . . . . . . . . . . . 43--44 José M. Bernardo and Sergio Pérez Comparing Normal Means: New Methods for an Old Problem . . . . . . . . . . . . . 45--58 Juan Antonio Cano and Mathieu Kessler and Diego Salmerón Integral priors for the one way random effects model . . . . . . . . . . . . . 59--67 Carlos M. Carvalho and Mike West Dynamic Matrix-Variate Graphical Models 69--97 Robert Denham and Kerrie Mengersen Geographically Assisted Elicitation of Expert Opinion for Regression Models . . 99--135 Dipak K. Dey and Junfeng Liu A Quantitative Study of Quantile Based Direct Prior Elicitation from Expert Opinion . . . . . . . . . . . . . . . . 137--166 Josep Ginebra On the Measure of the Information in a Statistical Experiment . . . . . . . . . 167--211 George Kokolakis and George Kouvaras On the Multimodality of Random Probability Measures . . . . . . . . . . 213--219 Babak Shahbaba and Radford M. Neal Improving Classification When a Class Hierarchy is Available Using a Hierarchy-Based Prior . . . . . . . . . 221--237 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Kert Viele Nonparametric Estimation of Kullback--Leibler Information Illustrated by Evaluating Goodness of Fit . . . . . . . . . . . . . . . . . . 239--280 Haijun Ma and Bradley P. Carlin Bayesian Multivariate Areal Wombling for Multiple Disease Boundary Analysis . . . 281--302 Carlos Almeida and Michel Mouchart Bayesian encompassing specification test under not completely known partial observability . . . . . . . . . . . . . 303--318 Angelika van der Linde Local Influence on Posterior Distributions under Multiplicative Modes of Perturbation . . . . . . . . . . . . 319--332 R. G. Cowell and S. L. Lauritzen and J. Mortera A gamma model for DNA mixture analyses 333--348 Josemar Rodrigues and Heleno Bolfarine Bayesian inference for an extended simple regression measurement error model using skewed priors . . . . . . . 349--364 Russell B. Millar and Wayne S. Stewart Assessment of Locally Influential Observations in Bayesian Models . . . . 365--383 S. Bhattacharya and J. Haslett Importance Re-sampling MCMC for Cross-Validation in Inverse Problems . . 385--407 E. C. Marshall and D. J. Spiegelhalter Identifying outliers in Bayesian hierarchical models: a simulation-based approach . . . . . . . . . . . . . . . . 409--444 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Sonia Jain and Radford M. Neal Splitting and Merging Components of a Nonconjugate Dirichlet Process Mixture Model . . . . . . . . . . . . . . . . . 445--472 David B. Dahl Comment on article by Jain and Neal . . 473--477 C. P. Robert Comment on article by Jain and Neal . . 479--482 Steven N. MacEachern Comment on article by Jain and Neal . . 483--494 Sonia Jain and Radford M. Neal Rejoinder . . . . . . . . . . . . . . . 495--500 Eric P. Xing and Kyung-Ah Sohn Hidden Markov Dirichlet Process: Modeling Genetic Inference in Open Ancestral Space . . . . . . . . . . . . 501--527 Yi He and James S. Hodges and Bradley P. Carlin Re-considering the variance parameterization in multiple precision models . . . . . . . . . . . . . . . . . 529--556 Ana Maria Madrigal Cluster Allocation Design Networks . . . 557--589 Vanja Duki\'c and James Dignam Bayesian Hierarchical Multiresolution Hazard Model for the Study of Time-Dependent Failure Patterns in Early Stage Breast Cancer . . . . . . . . . . 591--609 Song Zhang and Ya-Chen Tina Shih and Peter Müller A Spatially-adjusted Bayesian Additive Regression Tree Model to Merge Two Datasets . . . . . . . . . . . . . . . . 611--633 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Marcus Hutter Exact Bayesian Regression of Piecewise Constant Functions . . . . . . . . . . . 635--664 Margaret B. Short and David M. Higdon and Philipp P. Kronberg Estimation of Faraday Rotation Measures of the Near Galactic Sky Using Gaussian Process Models . . . . . . . . . . . . . 665--680 Pierre Druilhet and Jean-Michel Marin Invariant HPD credible sets and MAP estimators . . . . . . . . . . . . . . . 681--691 John Paul Gosling and Jeremy E. Oakley and Anthony O'Hagan Nonparametric elicitation for heavy-tailed prior distributions . . . . 693--718 Valen E. Johnson Bayesian Model Assessment Using Pivotal Quantities . . . . . . . . . . . . . . . 719--733 Guofen Yan and J. Sedransk Bayesian Diagnostic Techniques for Detecting Hierarchical Structure . . . . 735--760 Jesper Mòller and Kerrie Mengersen Ergodic averages for monotone functions using upper and lower dominating processes . . . . . . . . . . . . . . . 761--781 Sourabh Bhattacharya A Simulation Approach to Bayesian Emulation of Complex Dynamic Computer Models . . . . . . . . . . . . . . . . . 783--815 Mario Peruggia Bayesian Model Diagnostics Based on Artificial Autoregressive Errors . . . . 817--841 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Bruno Sansó and Chris E. Forest and Daniel Zantedeschi Inferring Climate System Properties Using a Computer Model . . . . . . . . . 1--37 Dave Higdon and James Gattiker Comment on article by Sansó et al. [MR2383247] . . . . . . . . . . . . . . 39--44 Jonathan Rougier Comment on article by Sansó et al. [MR2383247] . . . . . . . . . . . . . . 45--56 Bruno Sansó and Chris E. Forest and Daniel Zantedeschi Rejoinder . . . . . . . . . . . . . . . 57--61 Ivan Jeliazkov and Dale J. Poirier Dynamic and structural features of intifada violence: a Markov process approach . . . . . . . . . . . . . . . . 63--77 Carlos A. de B. Pereira and Julio Michael Stern and Sergio Wechsler Can a significance test be genuinely Bayesian? . . . . . . . . . . . . . . . 79--100 Peter McCullagh and Jie Yang How many clusters? . . . . . . . . . . . 101--120 Dan J. Spitzner An asymptotic viewpoint on high-dimensional Bayesian testing . . . 121--160 John Aldrich R. A. Fisher on Bayes and Bayes' theorem 161--170 Longhai Li and Jianguo Zhang and Radford M. Neal A method for avoiding bias from feature selection with application to naive Bayes classification models . . . . . . 171--196 Sonali Das and Ming-Hui Chen and Sungduk Kim and Nicholas Warren A Bayesian Structural Equations Model for Multilevel Data with Missing Responses and Missing Covariates . . . . 197--224 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
P. G. Blackwell and C. E. Buck Estimating radiocarbon calibration curves . . . . . . . . . . . . . . . . . 225--248 John Haslett and Andrew Parnell Comment on article by Blackwell and Buck 249--254 Andrew R. Millard Comment on article by Blackwell and Buck 255--261 P. G. Blackwell and C. E. Buck Rejoinder . . . . . . . . . . . . . . . 263--268 Cyr E. M'Lan and Lawrence Joseph and David B. Wolfson Bayesian Sample Size Determination for Binomial Proportions . . . . . . . . . . 269--296 José T. A. S. Ferreira and Miguel A. Juárez and Mark F. J. Steel Directional log-spline distributions . . 297--316 Fernando A. Quintana and Peter Müller and Gary L. Rosner and Mark Munsell Semi-parametric Bayesian Inference for Multi-Season Baseball Data . . . . . . . 317--338 Abel Rodriguez and Enrique ter Horst Bayesian dynamic density estimation . . 339--365 Jessica Tressou Bayesian nonparametrics for heavy tailed distribution. Application to food risk assessment . . . . . . . . . . . . . . . 367--391 Ivilina Popova and Elmira Popova and Edward I. George Bayesian Forecasting of Prepayment Rates for Individual Pools of Mortgages . . . 393--426 Christian P. Robert and Jean-Michel Marin On some difficulties with a posterior probability approximation technique . . 427--441 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Bradley P. Carlin Editor in Chief's note . . . . . . . . . 443--444 Andrew Gelman Objections to Bayesian statistics . . . 445--449 José M. Bernardo Comment on article by Gelman . . . . . . 451--453 Joseph B. Kadane Comment on article by Gelman . . . . . . 455--457 Stephen Senn Comment on article by Gelman . . . . . . 459--461 Larry Wasserman Comment on article by Gelman . . . . . . 463--465 Andrew Gelman Rejoinder . . . . . . . . . . . . . . . 467--477 Sam K. Hui and Yanliu Huang and Edward I. George Model-based Analysis of Concept Maps . . 479--512 Reinaldo B. Arellano-Valle and Luis M. Castro and Marc G. Genton and Héctor W. Gómez Bayesian inference for shape mixtures of skewed distributions, with application to regression analysis . . . . . . . . . 513--539 Thomas J. Jiang and James M. Dickey Bayesian methods for categorical data under informative censoring . . . . . . 541--553 Simo Särkkä and Tommi Sottinen Application of Girsanov Theorem to Particle Filtering of Discretely Observed Continuous-Time Non-Linear Systems . . . . . . . . . . . . . . . . 555--584 Ming-Hui Chen and Lan Huang and Joseph G. Ibrahim and Sungduk Kim Bayesian variable selection and computation for generalized linear models with conjugate priors . . . . . . 585--613 Peter M. Hooper Exact distribution theory for belief net responses . . . . . . . . . . . . . . . 615--624 Jarrett J. Barber and Steven D. Prager Combining multiple maps of line features to infer true position . . . . . . . . . 625--658 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Tobias Rydén EM versus Markov chain Monte Carlo for estimation of hidden Markov models: a computational perspective . . . . . . . 659--688 Sylvia Frühwirth-Schnatter Comment on article by Rydén . . . . . . . 689--697 Padhraic Smyth and Sergey Kirshner Comment on article by Rydén . . . . . . . 699--705 Tobias Rydén Rejoinder . . . . . . . . . . . . . . . 707--715 V. E. Rapley and A. H. Welsh Model-based inferences from adaptive cluster sampling . . . . . . . . . . . . 717--736 Damian Clancy and Philip D. O'Neill Bayesian estimation of the basic reproduction number in stochastic epidemic models . . . . . . . . . . . . 737--757 Hedibert Freitas Lopes and Esther Salazar and Dani Gamerman Spatial Dynamic Factor Analysis . . . . 759--792 Longhai Li and Radford M. Neal Compressing parameters in Bayesian high-order models with application to logistic sequence models . . . . . . . . 793--821 Alejandro Villagran and Gabriel Huerta and Charles S. Jackson and Mrinal K. Sen Computational Methods for Parameter Estimation in Climate Models . . . . . . 823--850 Vilda Purutçuo\uglu and Ernst Wit Bayesian inference for the MAPK/ERK pathway by considering the dependency of the kinetic parameters . . . . . . . . . 851--886 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Peter F. Craigmile and Catherine A. Calder and Hongfei Li and Rajib Paul and Noel Cressie Hierarchical Model Building, Fitting, and Checking: A Behind-the-Scenes Look at a Bayesian Analysis of Arsenic Exposure Pathways . . . . . . . . . . . 1--35 Christopher David Barr and Francesca Dominici Comment on article by Craigmile et al. 37--39 David B. Dunson Comment on article by Craigmile et al. 41--43 Alexandra M. Schmidt Comment on article by Craigmile et al. 45--53 Peter F. Craigmile and Catherine A. Calder and Hongfei Li and Rajib Paul and Noel Cressie Rejoinder . . . . . . . . . . . . . . . 55--62 Markus Hahn and Jörn Sassy Parameter estimation in continuous time Markov switching models: a semi-continuous Markov chain Monte Carlo approach . . . . . . . . . . . . . . . . 63--84 R. B. O'Hara and M. J. Sillanpää A review of Bayesian variable selection methods: what, how and which . . . . . . 85--117 F. Liu and M. J. Bayarri and J. O. Berger Modularization in Bayesian Analysis, with Emphasis on Analysis of Computer Models . . . . . . . . . . . . . . . . . 119--150 Frank Tuyl and Richard Gerlach and Kerrie Mengersen Posterior predictive arguments in favor of the Bayes--Laplace prior as the consensus prior for binomial and multinomial parameters . . . . . . . . . 151--158 Scott Holan and Tucker McElroy and Sounak Chakraborty A Bayesian Approach to Estimating the Long Memory Parameter . . . . . . . . . 159--190 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Guosheng Yin Bayesian generalized method of moments 191--207 Ming-Hui Chen and Sungduk Kim Comments on article by Yin . . . . . . . 209--212 Ciprian M. Crainiceanu Comments on article by Yin . . . . . . . 213--215 Guosheng Yin Rejoinder . . . . . . . . . . . . . . . 217--222 E. Gómez-Déniz Some Bayesian credibility premiums obtained by using posterior regret $ \Gamma $-minimax methodology . . . . . . 223--242 David B. Dahl Modal clustering in a class of product partition models . . . . . . . . . . . . 243--264 Isobel Claire Gormley and Thomas Brendan Murphy A grade of membership model for rank data . . . . . . . . . . . . . . . . . . 265--295 Chunlin Ji and Daniel Merl and Thomas B. Kepler and Mike West Spatial mixture modelling for unobserved point processes: examples in immunofluorescence histology . . . . . . 297--315 Aude Grelaud and Christian P. Robert and Jean-Michel Marin and François Rodolphe and Jean-François Taly ABC likelihood-free methods for model choice in Gibbs random fields . . . . . 317--335 James S. Clark and Michelle H. Hersh Inference in incidence, infection, and impact: Co-infection of multiple hosts by multiple pathogens . . . . . . . . . 337--365 Arno Fritsch and Katja Ickstadt Improved criteria for clustering based on the posterior similarity matrix . . . 367--391 Fei Liu and Mike West A dynamic modelling strategy for Bayesian computer model emulation . . . 393--411 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Stefano Monni and Mahlet G. Tadesse A stochastic partitioning method to associate high-dimensional responses and covariates . . . . . . . . . . . . . . . 413--436 Hugh Chipman and Edward George and Robert McCulloch Comment on article by Monni and Tadesse 437--438 Chris Fraley Comment on article by Monni and Tadesse 439--447 Hongzhe Li Comment on article by Monni and Tadesse 449--452 Hal Stern Comment on article by Monni and Tadesse 453--456 Stefano Monni and Mahlet G. Tadesse Rejoinder . . . . . . . . . . . . . . . 457--464 Chris P. Jewell and Theodore Kypraios and Peter Neal and Gareth O. Roberts Bayesian analysis for emerging infectious diseases . . . . . . . . . . 465--496 Fernando A. Quintana and Mark F. J. Steel and José T. A. S. Ferreira Flexible Univariate Continuous Distributions . . . . . . . . . . . . . 497--521 Julie Horrocks and Marianne J. van Den Heuvel Prediction of pregnancy: a joint model for longitudinal and binary data . . . . 523--538 Silvia Liverani and Paul E. Anderson and Kieron D. Edwards and Andrew J. Millar and Jim Q. Smith Efficient Utility-based Clustering over High Dimensional Partition Spaces . . . 539--571 David S. Leslie and Robert Kohn and Denzil G. Fiebig Nonparametric estimation of the distribution function in contingent valuation models . . . . . . . . . . . . 573--597 Maurice J. Dupré and Frank J. Tipler New axioms for rigorous Bayesian probability . . . . . . . . . . . . . . 599--606 Melissa A. Bingham and Stephen B. Vardeman and Daniel J. Nordman Bayes one-sample and one-way random effects analyses for $3$-D orientations with application to materials science 607--629 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Shane T. Jensen and Blakeley B. McShane and Abraham J. Wyner Hierarchical Bayesian modeling of hitting performance in baseball . . . . 631--652 Jim Albert and Phil Birnbaum Comment on article by Jensen et al. . . 653--660 Mark E. Glickman Comment on article by Jensen et al. . . 661--664 Fernando A. Quintana and Peter Müller Comment on article by Jensen et al. . . 665--668 Shane T. Jensen and Blakeley B. McShane and Abraham J. Wyner Rejoinder . . . . . . . . . . . . . . . 669--674 Minjung Kyung and Sujit K. Ghosh Bayesian Inference for Directional Conditionally Autoregressive Models . . 675--706 Sinae Kim and David B. Dahl and Marina Vannucci Spiked Dirichlet Process Prior for Bayesian Multiple Hypothesis Testing in Random Effects Models . . . . . . . . . 707--732 Jason A. Duan and Alan E. Gelfand and C. F. Sirmans Modeling space-time data using stochastic differential equations . . . 733--758 Ronald Christensen Inconsistent Bayesian estimation . . . . 759--762 Hongmei Zhang and Hal Stern Sample Size Calculation for Finding Unseen Species . . . . . . . . . . . . . 763--792 Matthew A. Taddy and Athanasios Kottas Markov Switching Dirichlet Process Mixture Regression . . . . . . . . . . . 793--816 Jairo A. Fúquene and John D. Cook and Luis R. Pericchi A Case for Robust Bayesian Priors with Applications to Clinical Trials . . . . 817--846 Bradley P. Carlin Editor-in-chief's note . . . . . . . . . 847--850 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Charles R. Hogg and Joseph B. Kadane and Jong Soo Lee and Sara A. Majetich Error analysis for small angle neutron scattering datasets using Bayesian inference . . . . . . . . . . . . . . . 1--33 Nick Hengartner Comment on article by Hogg et al. . . . 35--37 John Skilling and Devinder Sivia Comment on article by Hogg et al. . . . 39--40 Charles R. Hogg and Joseph B. Kadane and Jong Soo Lee and Sara A. Majetich Rejoinder . . . . . . . . . . . . . . . 41--43 J. E. Griffin Default priors for density estimation with mixture models . . . . . . . . . . 45--64 Tomohiro Ando and Arnold Zellner Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct Monte Carlo and importance sampling techniques . . . . . 65--95 Avishek Chakraborty and Alan E. Gelfand Analyzing spatial point patterns subject to measurement error . . . . . . . . . . 97--122 Cari G. Kaufman and Stephan R. Sain Bayesian functional ANOVA modeling using Gaussian process prior distributions . . 123--149 Qing Li and Nan Lin The Bayesian elastic net . . . . . . . . 151--170 Jim E. Griffin and Philip J. Brown Inference with normal-gamma prior distributions in regression problems . . 171--188 Xiaoxi Zhang and Timothy D. Johnson and Roderick J. A. Little and Yue Cao A Bayesian Image Analysis of Radiation Induced Changes in Tumor Vascular Permeability . . . . . . . . . . . . . . 189--212 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Christian P. Robert The search for certainty: a critical assessment . . . . . . . . . . . . . . . 213--222 Larry Wasserman Comment on Article by Robert . . . . . . 223--228 Andrew Gelman Comment on Article by Robert . . . . . . 229--232 Krzysztof Burdzy Comment on Article by Robert . . . . . . 233--236 Robert B. Gramacy and Ester Pantaleo Shrinkage regression for multivariate inference with missing data, and an application to portfolio balancing . . . 237--262 J. Andrés Christen and Colin Fox A general purpose sampling algorithm for continuous distributions (the $t$-walk) 263--281 Bertrand Clarke Desiderata for a predictive theory of statistics . . . . . . . . . . . . . . . 283--318 Surya T. Tokdar and Yu M. Zhu and Jayanta K. Ghosh Bayesian Density Regression with Logistic Gaussian Process and Subspace Projection . . . . . . . . . . . . . . . 319--344 Christoph Pamminger and Sylvia Frühwirth-Schnatter Model-based Clustering of Categorical Time Series . . . . . . . . . . . . . . 345--368 Minjung Kyung and Jeff Gill and Malay Ghosh and George Casella Penalized Regression, Standard Errors, and Bayesian Lassos . . . . . . . . . . 369--411 Jing Cao and Song Zhang Measuring statistical significance for full Bayesian methods in microarray analyses . . . . . . . . . . . . . . . . 413--427 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Ioanna Manolopoulou and Cliburn Chan and Mike West Selection Sampling from Large Data Sets for Targeted Inference in Mixture Modeling . . . . . . . . . . . . . . . . 429--449 Fabio Rigat Comment on article by Manolopoulou et al. . . . . . . . . . . . . . . . . . . 451--455 Nick Whiteley Comment on article by Manolopoulou et al. . . . . . . . . . . . . . . . . . . 457--460 Ioanna Manolopoulou and Cliburn Chan and Mike West Rejoinder . . . . . . . . . . . . . . . 461--463 Gareth W. Peters and Balakrishnan Kannan and Ben Lasscock and Chris Mellen Model Selection and Adaptive Markov chain Monte Carlo for Bayesian Cointegrated VAR Models . . . . . . . . 465--491 Anandamayee Majumdar and Debashis Paul and Jason Kaye Sensitivity analysis and model selection for a generalized convolution model for spatial processes . . . . . . . . . . . 493--518 Jules J. S. de Tibeiro and Duncan J. Murdoch Correspondence Analysis with Incomplete Paired Data using Bayesian Imputation 519--532 Qing Li and Ruibin Xi and Nan Lin Bayesian regularized quantile regression 533--556 Margaret Short and Dave Higdon and Laura Guadagnini and Alberto Guadagnini and Daniel M. Tartakovsky Predicting Vertical Connectivity Within an Aquifer System . . . . . . . . . . . 557--581 Leonard Bottolo and Sylvia Richardson Evolutionary stochastic search for Bayesian model exploration . . . . . . . 583--618 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Ian Vernon and Michael Goldstein and Richard G. Bower Galaxy Formation: a Bayesian Uncertainty Analysis . . . . . . . . . . . . . . . . 619--669 David Poole Comment on article by Vernon et al. . . 671--675 Pritam Ranjan Comment on article by Vernon et al. . . 677--681 Earl Lawrence and David M. Higdon Comment on Article by Vernon et al. . . 683--689 David A. van Dyk Comment on article by Vernon et al. . . 691--695 Ian Vernon and Michael Goldstein and Richard G. Bower Rejoinder . . . . . . . . . . . . . . . 697--708 Carlos M. Carvalho and Hedibert F. Lopes and Nicholas G. Polson and Matt A. Taddy Particle learning for general mixtures 709--740 Ruby C. Weng A Bayesian Edgeworth expansion by Stein's identity . . . . . . . . . . . . 741--763 Kathryn Barger and John Bunge Objective Bayesian estimation for the number of species . . . . . . . . . . . 765--785 S. A. Kharroubi and T. J. Sweeting Posterior simulation via the signed root log-likelihood ratio . . . . . . . . . . 787--815 XuanLong Nguyen Inference of global clusters from locally distributed data . . . . . . . . 817--845 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Nicholas G. Polson and Steven L. Scott Data augmentation for support vector machines . . . . . . . . . . . . . . . . 1--23 Bani K. Mallick and Sounak Chakraborty and Malay Ghosh Comment on article by Polson and Scott 25--29 Babak Shahbaba and Yaming Yu and David A. van Dyk Comment on article by Polson and Scott 31--35 Chris Hans Comment on article by Polson and Scott 37--41 Nicholas G. Polson and Steven L. Scott Rejoinder: ``Data augmentation for support vector machines'' . . . . . . . 43--47 Xavier Didelot and Richard G. Everitt and Adam M. Johansen and Daniel J. Lawson Likelihood-free estimation of model evidence . . . . . . . . . . . . . . . . 49--76 Angelika van der Linde Reduced rank regression models with latent variables in Bayesian functional data analysis . . . . . . . . . . . . . 77--126 Amélie Crépet and Jessica Tressou Bayesian nonparametric model for clustering individual co-exposure to pesticides found in the French diet . . 127--144 Abel Rodríguez and David B. Dunson Nonparametric Bayesian models through probit stick-breaking processes . . . . 145--177 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Peter D. Hoff Separable covariance arrays via the Tucker product, with applications to multivariate relational data . . . . . . 179--196 Genevera I. Allen Comment on article by Hoff . . . . . . . 197--201 Hedibert Freitas Lopes Comment on article by Hoff . . . . . . . 203--204 Peter D. Hoff Rejoinder: ``Comment on article by Hoff'' . . . . . . . . . . . . . . . . . 205--207 Meli Baragatti Bayesian variable selection for probit mixed models applied to gene selection 209--229 Osnat Stramer and Matthew Bognar Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach . . . . . . . . 231--258 Ma\lgorzata Roos and Leonhard Held Sensitivity analysis in Bayesian generalized linear mixed models for binary data . . . . . . . . . . . . . . 259--278 Guy Freeman and Jim Q. Smith Dynamic staged trees for discrete multivariate time series: forecasting, model selection and causal analysis . . 279--305 James G. Scott Bayesian estimation of intensity surfaces on the sphere via needlet shrinkage and selection . . . . . . . . 307--327 Christopher Yau and Chris Holmes Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination . . . . 329--351 Ralf van der Lans Bayesian estimation of the multinomial logit model: a comment on Holmes and Held, ``Bayesian auxiliary variable models for binary and multinomial regression'' . . . . . . . . . . . . . . 353--355 Chris Holmes and Leonhard Held Response to van der Lans . . . . . . . . 357--358 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Sara Wade and Silvia Mongelluzzo and Sonia Petrone An enriched conjugate prior for Bayesian nonparametric inference . . . . . . . . 359--385 Daniel Sabanés Bové and Leonhard Held Hyper-$g$ Priors for Generalized Linear Models . . . . . . . . . . . . . . . . . 387--410 Laura Ventura and Walter Racugno Recent advances on Bayesian inference for $ P(X < Y) $ . . . . . . . . . . . . 411--428 Stefano Cabras and María Eugenia Castellanos and Alicia Quirós Goodness-of-fit of conditional regression models for multiple imputation . . . . . . . . . . . . . . . 429--455 Maarten Blaauw and J. Andrés Christen Flexible paleoclimate age-depth models using an autoregressive gamma process 457--474 Eric B. Ford and Althea V. Moorhead and Dimitri Veras A Bayesian surrogate model for rapid time series analysis and application to exoplanet observations . . . . . . . . . 475--499 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Jason Wyse and Nial Friel and Håvard Rue Approximate simulation-free Bayesian inference for multiple changepoint models with dependence within segments 501--528 Paul Fearnhead Comment on Article by Wyse et al. . . . 529--532 Gary Koop Comment on Article by Wyse et al. . . . 533--540 Jason Wyse and Nial Friel and Håvard Rue Rejoinder: ``Comment on Article by Wyse et al.'' . . . . . . . . . . . . . . . . 541--546 Surya T. Tokdar and Iris Grossmann and Joseph B. Kadane and Anne-Sophie Charest and Mitchell J. Small Impact of Beliefs About Atlantic Tropical Cyclone Detection on Conclusions About Trends in Tropical Cyclone Numbers . . . . . . . . . . . . 547--572 Cinzia Viroli Model based clustering for three-way data structures . . . . . . . . . . . . 573--602 Dan J. Spitzner Neutral-data comparisons for Bayesian testing . . . . . . . . . . . . . . . . 603--638 Hao Wang and Craig Reeson and Carlos M. Carvalho Dynamic Financial Index Models: Modeling Conditional Dependencies via Graphs . . 639--664 Matthew S. Shotwell and Elizabeth H. Slate Bayesian Outlier Detection with Dirichlet Process Mixtures . . . . . . . 665--690 João V. D. Monteiro and Renato M. Assunção and Rosangela H. Loschi Product partition models with correlated parameters . . . . . . . . . . . . . . . 691--726 David Leonard Estimating a bivariate linear relationship . . . . . . . . . . . . . . 727--754 Gareth W. Peters and Balakrishnan Kannan and Ben Lasscock and Chris Mellen and Simon Godsill Bayesian Cointegrated Vector Autoregression Models Incorporating alpha-stable Noise for Inter-day Price Movements Via Approximate Bayesian Computation . . . . . . . . . . . . . . 755--792 Minjung Kyung A Computational Bayesian Method for Estimating the Number of Knots In Regression Splines . . . . . . . . . . . 793--828 Luke Bornn and François Caron Bayesian clustering in decomposable graphs . . . . . . . . . . . . . . . . . 829--846 Matthew P. Wand and John T. Ormerod and Simone A. Padoan and Rudolf Frührwirth Mean Field Variational Bayes for Elaborate Distributions . . . . . . . . 847--900 Eleni-Ioanna Delatola and Jim E. Griffin Bayesian Nonparametric Modelling of the Return Distribution with Stochastic Volatility . . . . . . . . . . . . . . . 901--926 Anonymous Supplemental file . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Alessio Sancetta Universality of Bayesian Predictions . . 1--36 Bertrand Clarke Comment on Article by Sancetta . . . . . 37--44 Feng Liang Comment on Article by Sancetta . . . . . 45--46 Alessio Sancetta Rejoinder . . . . . . . . . . . . . . . 47--50 Surya T. Tokdar and Joseph B. Kadane Simultaneous Linear Quantile Regression: A Semiparametric Bayesian Approach . . . 51--72 Peter Carbonetto and Matthew Stephens Scalable Variational Inference for Bayesian Variable Selection in Regression, and Its Accuracy in Genetic Association Studies . . . . . . . . . . 73--108 Alexina Mason and Sylvia Richardson and Nicky Best Two-Pronged Strategy for Using DIC to Compare Selection Models with Non-Ignorable Missing Responses . . . . 109--146 Timothy E. Hanson and Alejandro Jara and Luping Zhao A Bayesian Semiparametric Temporally-Stratified Proportional Hazards Model with Spatial Frailties . . 147--188 Yangxin Huang and Getachew A. Dagne Simultaneous Bayesian Inference for Skew-Normal Semiparametric Nonlinear Mixed-Effects Models with Covariate Measurement Errors . . . . . . . . . . . 189--210 Camila C. S. Caiado and Richard W. Hobbs and Michael Goldstein Bayesian Strategies to Assess Uncertainty in Velocity Models . . . . . 211--234 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Kristian Lum and Alan E. Gelfand Spatial Quantile Multiple Regression Using the Asymmetric Laplace Process . . 235--258 Rajarshi Guhaniyogi and Sudipto Banerjee Comment on Article by Lum and Gelfand 259--262 Nan Lin and Chao Chang Comment on Article by Lum and Gelfand 263--270 Marco A. R. Ferreira Comment on Article by Lum and Gelfand 271--272 Kristian Lum and Alan E. Gelfand Rejoinder . . . . . . . . . . . . . . . 273--276 Andrés F. Barrientos and Alejandro Jara and Fernando A. Quintana On the Support of MacEachern's Dependent Dirichlet Processes and Extensions . . . 277--310 Vincent Rivoirard and Judith Rousseau Posterior Concentration Rates for Infinite Dimensional Exponential Families . . . . . . . . . . . . . . . . 311--334 Matthew A. Taddy and Athanasios Kottas Mixture Modeling for Marked Poisson Processes . . . . . . . . . . . . . . . 335--362 Serena Arima and Gauri S. Datta and Brunero Liseo Objective Bayesian Analysis of a Measurement Error Small Area Model . . . 363--384 Roberto Casarin and Luciana Dalla Valle and Fabrizio Leisen Bayesian Model Selection for Beta Autoregressive Processes . . . . . . . . 385--410 M. J. Rufo and J. Martín and C. J. Pérez Log-Linear Pool to Combine Prior Distributions: A Suggestion for a Calibration-Based Approach . . . . . . . 411--438 Tamara Broderick and Michael I. Jordan and Jim Pitman Beta Processes, Stick-Breaking, and Power Laws . . . . . . . . . . . . . . . 439--476 Gilles Celeux and Mohammed El Anbari and Jean-Michel Marin and Christian P. Robert Regularization in Regression: Comparing Bayesian and Frequentist Methods in a Poorly Informative Situation . . . . . . 477--502 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Isabelle Albert and Sophie Donnet and Chantal Guihenneuc-Jouyaux and Samantha Low-Choy and Kerrie Mengersen and Judith Rousseau Combining Expert Opinions in Prior Elicitation . . . . . . . . . . . . . . 503--532 Simon French Comment on Article by Albert et al. . . 533--536 John Paul Gosling Comment on Article by Albert et al. . . 537--540 Isabelle Albert and Sophie Donnet and Chantal Guihenneuc-Jouyaux and Samantha Low-Choy and Kerrie Mengersen and Judith Rousseau Rejoinder . . . . . . . . . . . . . . . 541--546 Kim Kenobi and Ian L. Dryden Bayesian Matching of Unlabeled Point Sets Using Procrustes and Configuration Models . . . . . . . . . . . . . . . . . 547--566 Robert B. Gramacy and Nicholas G. Polson Simulation-based Regularized Logistic Regression . . . . . . . . . . . . . . . 567--590 Satoshi Morita and Peter F. Thall and Peter Müller Prior Effective Sample Size in Conditionally Independent Hierarchical Models . . . . . . . . . . . . . . . . . 591--614 Irene Vrbik and Rob Deardon and Zeny Feng and Abbie Gardner and John Braun Using Individual-Level Models for Infectious Disease Spread to Model Spatio-Temporal Combustion Dynamics . . 615--638 Brian P. Hobbs and Daniel J. Sargent and Bradley P. Carlin Commensurate Priors for Incorporating Historical Information in Clinical Trials Using General and Generalized Linear Models . . . . . . . . . . . . . 639--674 Sabyasachi Mukhopadhyay and Sourabh Bhattacharya Perfect Simulation for Mixtures with Known and Unknown Number of Components 675--714 Antti Solonen and Pirkka Ollinaho and Marko Laine and Heikki Haario and Johanna Tamminen and Heikki Järvinen Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection . . . . . . . 715--736 Martin D. Weinberg Computing the Bayes Factor from a Markov Chain Monte Carlo Simulation of the Posterior Distribution . . . . . . . . . 737--770 Anonymous Supplemental file . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Sungduk Kim and Rajeshwari Sundaram and Germaine M. Buck Louis and Cecilia Pyper Flexible Bayesian Human Fecundity Models 771--800 Bruno Scarpa Comment on Article by Kim et al. . . . . 801--804 Joseph B. Stanford Comment on Article by Kim et al. . . . . 805--808 Sungduk Kim and Rajeshwari Sundaram and Germaine M. Buck Louis and Cecilia Pyper Rejoinder . . . . . . . . . . . . . . . 809--812 Mingtao Ding and Lihan He and David Dunson and Lawrence Carin Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process . . . . . . . . . . . . 813--840 Cristian L. Bayes and Jorge L. Bazán and Catalina García A New Robust Regression Model for Proportions . . . . . . . . . . . . . . 841--866 Hao Wang Bayesian Graphical Lasso Models and Efficient Posterior Computation . . . . 867--886 Nicholas G. Polson and James G. Scott On the Half-Cauchy Prior for a Global Scale Parameter . . . . . . . . . . . . 887--902 Pierre Druilhet and Denys Pommeret Invariant Conjugate Analysis for Exponential Families . . . . . . . . . . 903--916 Joungyoun Kim and Nicola M. Anthony and Bret R. Larget A Bayesian Method for Estimating Evolutionary History . . . . . . . . . . 917--974 Enrico Fabrizi and Carlo Trivisano Bayesian Estimation of Log-Normal Means with Finite Quadratic Expected Loss . . 975--996 John Paisley and Chong Wang and David M. Blei The Discrete Infinite Logistic Normal Distribution . . . . . . . . . . . . . . 997--1034 Lin Huo and Ying Yuan and Guosheng Yin Bayesian Dose Finding for Combined Drugs with Discrete and Continuous Doses . . . 1035--1052 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Daniel Schmidl and Claudia Czado and Sabine Hug and Fabian J. Theis A Vine-copula Based Adaptive MCMC Sampler for Efficient Inference of Dynamical Systems . . . . . . . . . . . 1--22 Dawn B. Woodard Comment on Article by Schmidl et al. . . 23--26 Mark Girolami and Antonietta Mira Comment on Article by Schmidl et al. . . 27--32 Daniel Schmidl and Claudia Czado and Sabine Hug and Fabian J. Theis Rejoinder . . . . . . . . . . . . . . . 33--42 Francisco J. Rubio and Mark F. J. Steel Bayesian Inference for $ P(X < Y) $ Using Asymmetric Dependent Distributions . . . 43--62 Maria Anna Di Lucca and Alessandra Guglielmi and Peter Müller and Fernando A. Quintana A Simple Class of Bayesian Nonparametric Autoregression Models . . . . . . . . . 63--88 Charles Geyer and Glen Meeden Asymptotics for Constrained Dirichlet Distributions . . . . . . . . . . . . . 89--110 Jyotishka Datta and Jayanta K. Ghosh Asymptotic Properties of Bayes Risk for the Horseshoe Prior . . . . . . . . . . 111--132 Kiona Ogle and Jarrett Barber and Karla Sartor Feedback and Modularization in a Bayesian Meta--analysis of Tree Traits Affecting Forest Dynamics . . . . . . . 133--168 John Paul Gosling and Andy Hart and Helen Owen and Michael Davies and Jin Li and Cameron MacKay A Bayes Linear Approach to Weight-of-Evidence Risk Assessment for Skin Allergy . . . . . . . . . . . . . . 169--186 Alain Desgagné Full Robustness in Bayesian Modelling of a Scale Parameter . . . . . . . . . . . 187--220 Morris L. Eaton and Robb J. Muirhead and Adina I. Soaita On the Limiting Behavior of the ``Probability of Claiming Superiority'' in a Bayesian Context . . . . . . . . . 221--232 Eric Wang and Esther Salazar and David Dunson and Lawrence Carin Spatio-Temporal Modeling of Legislation and Votes . . . . . . . . . . . . . . . 233--268 Anonymous Supplemental file . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Peter Müller and Riten Mitra Bayesian Nonparametric Inference -- Why and How . . . . . . . . . . . . . . . . 269--302 Bradley P. Carlin and Thomas A. Murray Comment on Article by Müller and Mitra 303--310 Peter D. Hoff Comment on Article by Müller and Mitra 311--318 Anthony O'Hagan Comment on Article by Müller and Mitra 319--322 Murray Aitken and Julia Polak and Julyan Arbel and Bernardo Nipoti and Bertrand S. Clarke and Gregory E. Holt and Andrew Gelman and Miroslav Kárný and Michalis Kolossiatis and Athanasios Kottas and Maria DeYoreo and Valerie Poynor and Susan M. Paddock and Terrance D. Savitsky and G. Parmigiani and L. Trippa and François Perron and Christian P. Robert and Judith Rousseau and James G. Scott and Surya T. Tokdar Contributed Discussion on Article by Müller and Mitra . . . . . . . . . . . . 323--356 Peter Müller and Riten Mitra Rejoinder . . . . . . . . . . . . . . . 357--360 Juan Antonio Cano and Diego Salmerón Integral Priors and Constrained Imaginary Training Samples for Nested and Non-nested Bayesian Model Comparison 361--380 Cristiano C. Santos and Rosangela H. Loschi and Reinaldo B. Arellano-Valle Parameter Interpretation in Skewed Logistic Regression with Random Intercept . . . . . . . . . . . . . . . 381--410 Paul Fearnhead and Benjamin M. Taylor An Adaptive Sequential Monte Carlo Sampler . . . . . . . . . . . . . . . . 411--438 Alan Huang and M. P. Wand Simple Marginally Noninformative Prior Distributions for Covariance Matrices 439--452 Lane F. Burgette and Jerome P. Reiter Multiple-Shrinkage Multinomial Probit Models with Applications to Simulating Geographies in Public Use Data . . . . . 453--478 Karthik Sriram and R. V. Ramamoorthi and Pulak Ghosh Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density 479--504 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Marco Scutari On the Prior and Posterior Distributions Used in Graphical Modelling . . . . . . 505--532 Adrian Dobra Comment on Article by Scutari . . . . . 533--538 Christine B. Peterson and Francesco C. Stingo Comment on Article by Scutari . . . . . 539--542 Hao Wang Comment on Article by Scutari . . . . . 543--548 Marco Scutari Rejoinder . . . . . . . . . . . . . . . 549--552 Luai Al Labadi and Mahmoud Zarepour On Asymptotic Properties and Almost Sure Approximation of the Normalized Inverse-Gaussian Process . . . . . . . . 553--568 Zeynep Baskurt and Michael Evans Hypothesis Assessment and Inequalities for Bayes Factors and Relative Belief Ratios . . . . . . . . . . . . . . . . . 569--590 John R. Bryant and Patrick J. Graham Bayesian Demographic Accounts: Subnational Population Estimation Using Multiple Data Sources . . . . . . . . . 591--622 Vanda Inácio de Carvalho and Alejandro Jara and Timothy E. Hanson and Miguel de Carvalho Bayesian Nonparametric ROC Regression Modeling . . . . . . . . . . . . . . . . 623--646 Jennifer Lynn Clarke and Bertrand Clarke and Chi-Wai Yu Prediction in $ \mathcal {M}$-complete Problems with Limited Sample Size . . . 647--690 Jim E. Griffin and Philip J. Brown Some Priors for Sparse Regression Modelling . . . . . . . . . . . . . . . 691--702 Suyu Liu and Jing Ning A Bayesian Dose-finding Design for Drug Combination Trials with Delayed Toxicities . . . . . . . . . . . . . . . 703--722 A. Jara and L. E. Nieto-Barajas and F. Quintana A Time Series Model for Responses on the Unit Interval . . . . . . . . . . . . . 723--740 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Valen E. Johnson On Numerical Aspects of Bayesian Model Selection in High and Ultrahigh-dimensional Settings . . . . . 741--758 Yanxun Xu and Juhee Lee and Yuan Yuan and Riten Mitra and Shoudan Liang and Peter Müller and Yuan Ji Nonparametric Bayesian Bi-Clustering for Next Generation Sequencing Count Data 759--780 Pierpaolo De Blasi and Stephen G. Walker Bayesian Estimation of the Discrepancy with Misspecified Parametric Models . . 781--800 Tamara Broderick and Jim Pitman and Michael I. Jordan Feature Allocations, Probability Functions, and Paintboxes . . . . . . . 801--836 Tim Salimans and David A. Knowles Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression . . . . . . . . . . . . . . . 837--882 Qingzhao Yu and Steven N. MacEachern and Mario Peruggia Clustered Bayesian Model Averaging . . . 883--908 Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Francisco J. Rubio and Mark F. J. Steel Inference in Two-Piece Location-Scale Models with Jeffreys Priors . . . . . . 1--22 José M. Bernardo Comment on Article by Rubio and Steel 23--24 James G. Scott Comment on Article by Rubio and Steel 25--28 Robert E. Weiss and Marc A. Suchard Comment on Article by Rubio and Steel 29--38 Xinyi Xu Comment on Article by Rubio and Steel 39--44 Francisco J. Rubio and Mark F. J. Steel Rejoinder . . . . . . . . . . . . . . . 45--52 Lorna M. Barclay and Jane L. Hutton and Jim Q. Smith Chain Event Graphs for Informed Missingness . . . . . . . . . . . . . . 53--76 David A. Wooff Bayes Linear Sufficiency in Non-exchangeable Multivariate Multiple Regressions . . . . . . . . . . . . . . 77--96 Theodore Papamarkou and Antonietta Mira and Mark Girolami Zero Variance Differential Geometric Markov Chain Monte Carlo Algorithms . . 97--128 Erlis Ruli and Nicola Sartori and Laura Ventura Marginal Posterior Simulation via Higher-order Tail Area Approximations 129--146 Luis E. Nieto-Barajas and Alberto Contreras-Cristán A Bayesian Nonparametric Approach for Time Series Clustering . . . . . . . . . 147--170 Friederike Greb and Tatyana Krivobokova and Axel Munk and Stephan von Cramon-Taubadel Regularized Bayesian Estimation of Generalized Threshold Regression Models 171--196 Cristiano Villa and Stephen G. Walker Objective Prior for the Number of Degrees of Freedom of a t Distribution 197--220 Veronika Rockova and Emmanuel Lesaffre Incorporating Grouping Information in Bayesian Variable Selection with Applications in Genomics . . . . . . . . 221--258 Anonymous Supplementary material . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Zhihua Zhang and Dakan Wang and Guang Dai and Michael I. Jordan Matrix-Variate Dirichlet Process Priors with Applications . . . . . . . . . . . 259--286 Nammam A. Azadi and Paul Fearnhead and Gareth Ridall and Joleen H. Blok Bayesian Sequential Experimental Design for Binary Response Data with Application to Electromyographic Experiments . . . . . . . . . . . . . . 287--306 Juhee Lee and Steven N. MacEachern and Yiling Lu and Gordon B. Mills Local-Mass Preserving Prior Distributions for Nonparametric Bayesian Models . . . . . . . . . . . . . . . . . 307--330 Ruitao Liu and Arijit Chakrabarti and Tapas Samanta and Jayanta K. Ghosh and Malay Ghosh On Divergence Measures Leading to Jeffreys and Other Reference Priors . . 331--370 Xin-Yuan Song and Jing-Heng Cai and Xiang-Nan Feng and Xue-Jun Jiang Bayesian Analysis of the Functional-Coefficient Autoregressive Heteroscedastic Model . . . . . . . . . 371--396 Yu Ryan Yue and Daniel Simpson and Finn Lindgren and Håvard Rue Bayesian Adaptive Smoothing Splines Using Stochastic Differential Equations 397--424 Jaakko Riihimäki and Aki Vehtari Laplace Approximation for Logistic Gaussian Process Density Estimation and Regression . . . . . . . . . . . . . . . 425--448 Fei Liu and Sounak Chakraborty and Fan Li and Yan Liu and Aurelie C. Lozano Bayesian Regularization via Graph Laplacian . . . . . . . . . . . . . . . 449--474 Catia Scricciolo Adaptive Bayesian Density Estimation in $ L^p $-metrics with Pitman--Yor or Normalized Inverse-Gaussian Process Kernel Mixtures . . . . . . . . . . . . 475--520 Anonymous Supplementary material . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Whole issue . . . . . . . . . . . . . . ??
Michael Finegold and Mathias Drton Robust Bayesian Graphical Modeling Using Dirichlet $t$-Distributions . . . . . . 521--550 François Caron and Luke Bornn Comment on Article by Finegold and Drton 551--556 Babak Shahbaba Comment on Article by Finegold and Drton 557--560 Anonymous Contributed Discussion on Article by Finegold and Drton . . . . . . . . . . . 561--590 Michael Finegold and Mathias Drton Rejoinder . . . . . . . . . . . . . . . 591--596 Timothy E. Hanson and Adam J. Branscum and Wesley O. Johnson Informative $g$-Priors for Logistic Regression . . . . . . . . . . . . . . . 597--612 George Casella and Elías Moreno and F. Javier Girón Cluster Analysis, Model Selection, and Prior Distributions on Models . . . . . 613--658 A. Marie Fitch and M. Beatrix Jones and Hél\`ene Massam The Performance of Covariance Selection Methods That Consider Decomposable Models Only . . . . . . . . . . . . . . 659--684 Joseph B. Kadane and Steven N. MacEachern Toward Rational Social Decisions: A Review and Some Results . . . . . . . . 685--698 Kuo-Jung Lee and Galin L. Jones and Brian S. Caffo and Susan S. Bassett Spatial Bayesian Variable Selection Models on Functional Magnetic Resonance Imaging Time-Series Data . . . . . . . . 699--732 Meng Li and Subhashis Ghosal Bayesian Multiscale Smoothing of Gaussian Noised Images . . . . . . . . . 733--758
Jesse Windle and Carlos M. Carvalho A Tractable State-Space Model for Symmetric Positive-Definite Matrices . . 759--792 Roberto Casarin Comment on Article by Windle and Carvalho . . . . . . . . . . . . . . . . 793--804 Catherine Scipione Forbes Comment on Article by Windle and Carvalho . . . . . . . . . . . . . . . . 805--808 Enrique ter Horst and German Molina Comment on Article by Windle and Carvalho . . . . . . . . . . . . . . . . 809--818 Jesse Windle and Carlos M. Carvalho Rejoinder . . . . . . . . . . . . . . . 819--822 Asael Fabian Martínez and Ramsés H. Mena On a Nonparametric Change Point Detection Model in Markovian Regimes . . 823--858 Eduard Belitser and Paulo Serra Adaptive Priors Based on Splines with Random Knots . . . . . . . . . . . . . . 859--882 Henrik Nyman and Johan Pensar and Timo Koski and Jukka Corander Stratified Graphical Models --- Context-Specific Independence in Graphical Models . . . . . . . . . . . . 883--908 David Shalloway The Evidentiary Credible Region . . . . 909--922 Arkady Shemyakin Hellinger Distance and Non-informative Priors . . . . . . . . . . . . . . . . . 923--938 Isabelle Smith and André Ferrari Equivalence between the Posterior Distribution of the Likelihood Ratio and a $p$-value in an Invariant Frame . . . 939--962 Linda S. L. Tan and David J. Nott A Stochastic Variational Framework for Fitting and Diagnosing Generalized Linear Mixed Models . . . . . . . . . . 963--1004
Trevelyan J. McKinley and Michelle Morters and James L. N. Wood Bayesian Model Choice in Cumulative Link Ordinal Regression Models . . . . . . . 1--30 Fumiyasu Komaki Asymptotic Properties of Bayesian Predictive Densities When the Distributions of Data and Target Variables are Different . . . . . . . . 31--51 Harold Bae and Thomas Perls and Martin Steinberg and Paola Sebastiani Bayesian Polynomial Regression Models to Fit Multiple Genetic Models for Quantitative Traits . . . . . . . . . . 53--74 Dimitris Fouskakis and Ioannis Ntzoufras and David Draper Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models . . . . . . . . . . . . . . . . . 75--107 A. Mohammadi and E. C. Wit Bayesian Structure Learning in Sparse Gaussian Graphical Models . . . . . . . 109--138 Cyr Emile M'lan and Ming-Hui Chen Objective Bayesian Inference for Bilateral Data . . . . . . . . . . . . . 139--170 Fernando V. Bonassi and Mike West Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation . . . . . . . . . . . . . . 171--187 James O. Berger and Jose M. Bernardo and Dongchu Sun Overall Objective Priors . . . . . . . . 189--221 Siva Sivaganesan Comment on Article by Berger, Bernardo, and Sun . . . . . . . . . . . . . . . . 223--226 Manuel Mendoza and Eduardo Gutiérrez-Peña Comment on Article by Berger, Bernardo, and Sun . . . . . . . . . . . . . . . . 227--231 Judith Rousseau Comment on Article by Berger, Bernardo, and Sun . . . . . . . . . . . . . . . . 233--236 Gauri Sankar Datta and Brunero Liseo Comment on Article by Berger, Bernardo, and Sun . . . . . . . . . . . . . . . . 237--241 James O. Berger and Jose M. Bernardo and Dongchu Sun Rejoinder . . . . . . . . . . . . . . . 243--246
Zhihua Zhang and Jin Li Compound Poisson Processes, Latent Shrinkage Priors and Bayesian Nonconvex Penalization . . . . . . . . . . . . . . 247--274 Stanley I. M. Ko and Terence T. L. Chong and Pulak Ghosh Dirichlet Process Hidden Markov Multiple Change-point Model . . . . . . . . . . . 275--296 Chris C. Holmes and François Caron and Jim E. Griffin and David A. Stephens Two-sample Bayesian Nonparametric Hypothesis Testing . . . . . . . . . . . 297--320 Ma\lgorzata Roos and Thiago G. Martins and Leonhard Held and Håvard Rue Sensitivity Analysis for Bayesian Hierarchical Models . . . . . . . . . . 321--349 Hao Wang Scaling It Up: Stochastic Search Structure Learning in Graphical Models 351--377 Garritt L. Page and Fernando A. Quintana Predictions Based on the Clustering of Heterogeneous Functions via Shape and Subject-Specific Covariates . . . . . . 379--410 Stefano Cabras and Maria Eugenia Castellanos Nueda and Erlis Ruli Approximate Bayesian Computation by Modelling Summary Statistics in a Quasi-likelihood Framework . . . . . . . 411--439 Lilia Costa and Jim Smith and Thomas Nichols and James Cussens and Eugene P. Duff and Tamar R. Makin Searching Multiregression Dynamic Models of Resting-State fMRI Networks Using Integer Programming . . . . . . . . . . 441--478 A. Philip Dawid and Monica Musio Bayesian Model Selection Based on Proper Scoring Rules . . . . . . . . . . . . . 479--499 Matthias Katzfuss and Anirban Bhattacharya Comment on Article by Dawid and Musio 501--504 Christopher M. Hans and Mario Peruggia Comment on Article by Dawid and Musio 505--509 C. Grazian and I. Masiani and C. P. Robert Comment on Article by Dawid and Musio 511--515 A. Philip Dawid and Monica Musio Rejoinder . . . . . . . . . . . . . . . 517--521
Sergio Venturini and Francesca Dominici and Giovanni Parmigiani Generalized Quantile Treatment Effect: A Flexible Bayesian Approach Using Quantile Ratio Smoothing . . . . . . . . 523--552 Mauro Bernardi and Ghislaine Gayraud and Lea Petrella Bayesian Tail Risk Interdependence Using Quantile Regression . . . . . . . . . . 553--603 Yajuan Si and Natesh S. Pillai and Andrew Gelman Bayesian Nonparametric Weighted Sampling Inference . . . . . . . . . . . . . . . 605--625 Douglas K. Sparks and Kshitij Khare and Malay Ghosh Necessary and Sufficient Conditions for High-Dimensional Posterior Consistency under $g$-Priors . . . . . . . . . . . . 627--664 Maxim Panov and Vladimir Spokoiny Finite Sample Bernstein--von Mises Theorem for Semiparametric Problems . . 665--710 Gustavo da Silva Ferreira and Dani Gamerman Optimal Design in Geostatistics under Preferential Sampling . . . . . . . . . 711--735 Michael Chipeta and Peter J. Diggle Comment on Article by Ferreira and Gamerman . . . . . . . . . . . . . . . . 737--739 Noel Cressie and Raymond L. Chambers Comment on Article by Ferreira and Gamerman . . . . . . . . . . . . . . . . 741--748 James V. Zidek Comment on Article by Ferreira and Gamerman . . . . . . . . . . . . . . . . 749--752 Gustavo da Silva Ferreira and Dani Gamerman Rejoinder . . . . . . . . . . . . . . . 753--758
R. V. Ramamoorthi and Karthik Sriram and Ryan Martin On Posterior Concentration in Misspecified Models . . . . . . . . . . 759--789 Roberto Casarin and Fabrizio Leisen and German Molina and Enrique ter Horst A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities . . . . . 791--819 Maria DeYoreo and Athanasios Kottas A Fully Nonparametric Modeling Approach to Binary Regression . . . . . . . . . . 821--847 Rebecca C. Steorts Entity Resolution with Empirically Motivated Priors . . . . . . . . . . . . 849--875 Daniel Williamson and Michael Goldstein Posterior Belief Assessment: Extracting Meaningful Subjective Judgements from Bayesian Analyses with Complex Statistical Models . . . . . . . . . . . 877--908
Mohammad Arshad Rahman Bayesian Quantile Regression for Ordinal Models . . . . . . . . . . . . . . . . . 1--24 O. Bodnar and A. Link and C. Elster Objective Bayesian Inference for a Generalized Marginal Random Effects Model . . . . . . . . . . . . . . . . . 25--45 Daniel J. Graham and Emma J. McCoy and David A. Stephens Approximate Bayesian Inference for Doubly Robust Estimation . . . . . . . . 47--69 Adam Justin Suarez and Subhashis Ghosal Bayesian Clustering of Functional Data Using Local Features . . . . . . . . . . 71--98 Riten Mitra and Peter Müller and Yuan Ji Bayesian Graphical Models for Differential Pathways . . . . . . . . . 99--124 Lutz Gruber and Mike West GPU-Accelerated Bayesian Learning and Forecasting in Simultaneous Graphical Dynamic Linear Models . . . . . . . . . 125--149 Sophie Donnet and Judith Rousseau Bayesian Inference for Partially Observed Multiplicative Intensity Processes . . . . . . . . . . . . . . . 151--190 Brian P. Weaver and Brian J. Williams and Christine M. Anderson-Cook and David M. Higdon Computational Enhancements to Bayesian Design of Experiments Using Gaussian Processes . . . . . . . . . . . . . . . 191--213 Nial Friel and Antonietta Mira and Chris. J. Oates Exploiting Multi-Core Architectures for Reduced-Variance Estimation with Intractable Likelihoods . . . . . . . . 215--245 Jie Xiong and Väinö Jääskinen and Jukka Corander Recursive Learning for Sparse Markov Models . . . . . . . . . . . . . . . . . 247--263 Garritt L. Page and Fernando A. Quintana Spatial Product Partition Models . . . . 265--298 Robert B. Gramacy and Herbert K. H. Lee Comment on Article by Page and Quintana 299--302 Brian J. Reich and Montserrat Fuentes Comment on Article by Page and Quintana 303--305 Carlo Gaetan and Simone A. Padoan and Igor Prünster Comment on Article by Page and Quintana 307--314 Garrit L. Page and Fernando A. Quintana Rejoinder . . . . . . . . . . . . . . . 315--323
Christopher C. Drovandi and Anthony N. Pettitt and Roy A. McCutchan Exact and Approximate Bayesian Inference for Low Integer-Valued Time Series Models with Intractable Likelihoods . . 325--352 Hongmei Zhang and Xianzheng Huang and Jianjun Gan and Wilfried Karmaus and Tara Sabo-Attwood A Two-Component $G$-Prior for Variable Selection . . . . . . . . . . . . . . . 353--380 Thomas A. Murray and Brian P. Hobbs and Daniel J. Sargent and Bradley P. Carlin Flexible Bayesian Survival Modeling with Semiparametric Time-Dependent and Shape-Restricted Covariate Effects . . . 381--402 Joseph B. Kadane Sums of Possibly Associated Bernoulli Variables: The Conway--Maxwell-Binomial Distribution . . . . . . . . . . . . . . 403--420 Hwan-sik Choi Expert Information and Nonparametric Bayesian Inference of Rare Events . . . 421--445 Wen Cheng and Ian L. Dryden and Xianzheng Huang Bayesian Registration of Functions and Curves . . . . . . . . . . . . . . . . . 447--475 Mengjie Chen and Chao Gao and Hongyu Zhao Posterior Contraction Rates of the Phylogenetic Indian Buffet Processes . . 477--497 Tracy A. Schifeling and Jerome P. Reiter Incorporating Marginal Prior Information in Latent Class Models . . . . . . . . . 499--518 Kelly C. M. Gonçalves and Fernando A. S. Moura A Mixture Model for Rare and Clustered Populations Under Adaptive Cluster Sampling . . . . . . . . . . . . . . . . 519--544 Sarah E. Michalak and Carl N. Morris Posterior Propriety for Hierarchical Models with Log-Likelihoods That Have Norm Bounds . . . . . . . . . . . . . . 545--571 Jeong Eun Lee and Christian P. Robert Importance Sampling Schemes for Evidence Approximation in Mixture Models . . . . 573--597 Zhuqing Liu and Veronica J. Berrocal and Andreas J. Bartsch and Timothy D. Johnson Pre-surgical fMRI Data Analysis Using a Spatially Adaptive Conditionally Autoregressive Model . . . . . . . . . . 599--625
Peter D. Hoff Equivariant and Scale-Free Tucker Decomposition Models . . . . . . . . . . 627--648 Jingjing Yang and Hongxiao Zhu and Taeryon Choi and Dennis D. Cox Smoothing and Mean-Covariance Estimation of Functional Data with a Bayesian Hierarchical Model . . . . . . . . . . . 649--670 Alen Alexanderian and Philip J. Gloor and Omar Ghattas On Bayesian $A$- and $D$-Optimal Experimental Designs in Infinite Dimensions . . . . . . . . . . . . . . . 671--695 S. Favaro and A. Lijoi and C. Nava and B. Nipoti and I. Prünster and Y. W. Teh On the Stick-Breaking Representation for Homogeneous NRMIs . . . . . . . . . . . 697--724 A. Philip Dawid and Monica Musio and Stephen E. Fienberg From Statistical Evidence to Evidence of Causality . . . . . . . . . . . . . . . 725--752 Prasenjit Ghosh and Xueying Tang and Malay Ghosh and Arijit Chakrabarti Asymptotic Properties of Bayes Risk of a General Class of Shrinkage Priors in Multiple Hypothesis Testing Under Sparsity . . . . . . . . . . . . . . . . 753--796 Tony Pourmohamad and Herbert K. H. Lee Multivariate Stochastic Process Models for Correlated Responses of Mixed Type 797--820 Ruibin Xi and Yunxiao Li and Yiming Hu Bayesian Quantile Regression Based on the Empirical Likelihood with Spike and Slab Priors . . . . . . . . . . . . . . 821--855 Caitríona M. Ryan and Christopher C. Drovandi and Anthony N. Pettitt Optimal Bayesian Experimental Design for Models with Intractable Likelihoods Using Indirect Inference Applied to Biological Process Models . . . . . . . 857--883 Matthew T. Pratola Efficient Metropolis--Hastings Proposal Mechanisms for Bayesian Regression Tree Models . . . . . . . . . . . . . . . . . 885--911 Robert B. Gramacy Comment on Article by Pratola . . . . . 913--919 Christopher M. Hans Comment on Article by Pratola . . . . . 921--927 Oksana A. Chkrebtii and Scotland Leman and Andrew Hoegh and Reihaneh Entezari and Radu V. Craiu and Jeffrey S. Rosenthal and Abdolreza Mohammadi and Maurits Kaptein and Luca Martino and Rafael B. Stern and Francisco Louzada Contributed Discussion on Article by Pratola . . . . . . . . . . . . . . . . 929--943 Matthew T. Pratola Rejoinder . . . . . . . . . . . . . . . 945--955 Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ??
Chin-I. Cheng and Paul L. Speckman Bayes Factors for Smoothing Spline ANOVA 957--975 Wen-Hsi Yang and Scott H. Holan and Christopher K. Wikle Bayesian Lattice Filters for Time-Varying Autoregression and Time-Frequency Analysis . . . . . . . . 977--1003 N. T. Underhill and J. Q. Smith Context-Dependent Score Based Bayesian Information Criteria . . . . . . . . . . 1005--1033 Samantha Leorato and Maura Mezzetti Spatial Panel Data Model with Error Dependence: A Bayesian Separable Covariance Approach . . . . . . . . . . 1035--1069 Nadja Klein and Thomas Kneib Scale-Dependent Priors for Variance Parameters in Structured Additive Distributional Regression . . . . . . . 1071--1106 J. Pablo Arias-Nicolás and Fabrizio Ruggeri and Alfonso Suárez-Llorens New Classes of Priors Based on Stochastic Orders and Distortion Functions . . . . . . . . . . . . . . . 1107--1136 Seonghyun Jeong and Taeyoung Park Bayesian Semiparametric Inference on Functional Relationships in Linear Mixed Models . . . . . . . . . . . . . . . . . 1137--1163 Rodrigo A. Collazo and Jim Q. Smith A New Family of Non-Local Priors for Chain Event Graph Model Selection . . . 1165--1201 Tingting Zhao and Ziyu Wang and Alexander Cumberworth and Joerg Gsponer and Nando de Freitas and Alexandre Bouchard-Côté Bayesian Analysis of Continuous Time Markov Chains with Application to Phylogenetic Modelling . . . . . . . . . 1203--1237 Oksana A. Chkrebtii and David A. Campbell and Ben Calderhead and Mark A. Girolami Bayesian Solution Uncertainty Quantification for Differential Equations . . . . . . . . . . . . . . . 1239--1267 Martin Lysy Comment on Article by Chkrebtii, Campbell, Calderhead, and Girolami . . . 1269--1273 Sarat C. Dass Comment on Article by Chkrebtii, Campbell, Calderhead, and Girolami . . . 1275--1277 Bani K. Mallick and Keren Yang and Nilabja Guha and Yalchin Efendiev Comment on Article by Chkrebtii, Campbell, Calderhead, and Girolami . . . 1279--1284 François-Xavier Briol and Jon Cockayne and Onur Teymur and William Weimin Yoo and Jon Cockayne and Michael Schober and Philipp Hennig Contributed Discussion on Article by Chkrebtii, Campbell, Calderhead, and Girolami . . . . . . . . . . . . . . . . 1285--1293 Oksana A. Chkrebtii and David A. Campbell and Ben Calderhead and Mark A. Girolami Rejoinder . . . . . . . . . . . . . . . 1295--1299 Anonymous Editorial Board . . . . . . . . . . . . ?? Anonymous Table of Contents . . . . . . . . . . . ??
Thomas J. Leininger and Alan E. Gelfand Bayesian Inference and Model Assessment for Spatial Point Patterns Using Posterior Predictive Samples . . . . . . 1--30 Haolun Shi and Guosheng Yin Bayesian Two-Stage Design for Phase II Clinical Trials with Switching Hypothesis Tests . . . . . . . . . . . . 31--51 Sophie Donnet and Vincent Rivoirard and Judith Rousseau and Catia Scricciolo Posterior Concentration Rates for Counting Processes with Aalen Multiplicative Intensities . . . . . . . 53--87 Bo Jiang and Chao Ye and Jun S. Liu Bayesian Nonparametric Tests via Sliced Inverse Modeling . . . . . . . . . . . . 89--112 Daniel Hernandez-Stumpfhauser and F. Jay Breidt and Mark J. van der Woerd The General Projected Normal Distribution of Arbitrary Dimension: Modeling and Bayesian Inference . . . . 113--133 Jim Griffin and Phil Brown Hierarchical Shrinkage Priors for Regression Models . . . . . . . . . . . 135--159 Genya Kobayashi Bayesian Endogenous Tobit Quantile Regression . . . . . . . . . . . . . . . 161--191 Lawrence Bardwell and Paul Fearnhead Bayesian Detection of Abnormal Segments in Multiple Time Series . . . . . . . . 193--218 Paulo Serra and Tatyana Krivobokova Adaptive Empirical Bayesian Smoothing Splines . . . . . . . . . . . . . . . . 219--238 Miguel A. Martinez-Beneito and Paloma Botella-Rocamora and Sudipto Banerjee Towards a Multidimensional Approach to Bayesian Disease Mapping . . . . . . . . 239--259 Anna Pajor Estimating the Marginal Likelihood Using the Arithmetic Mean Identity . . . . . . 261--287 Dennis Prangle Adapting the ABC Distance Function . . . 289--309
Adam J. Suarez and Subhashis Ghosal Bayesian Estimation of Principal Components for Functional Data . . . . . 311--333 Bin Zhu and David B. Dunson Bayesian Functional Data Modeling for Heterogeneous Volatility . . . . . . . . 335--350 Daniel K. Sewell and Yuguo Chen Latent Space Approaches to Community Detection in Dynamic Networks . . . . . 351--377 Seongil Jo and Jaeyong Lee and Peter Müller and Fernando A. Quintana and Lorenzo Trippa Dependent Species Sampling Models for Spatial Density Estimation . . . . . . . 379--406 Fabrizio Ruggeri and Zaid Sawlan and Marco Scavino and Raul Tempone A Hierarchical Bayesian Setting for an Inverse Problem in Linear Parabolic PDEs with Noisy Boundary Conditions . . . . . 407--433 Gavin A. Whitaker and Andrew Golightly and Richard J. Boys and Chris Sherlock Bayesian Inference for Diffusion-Driven Mixed-Effects Models . . . . . . . . . . 435--463 Daniel Turek and Perry de Valpine and Christopher J. Paciorek and Clifford Anderson-Bergman Automated Parameter Blocking for Efficient Markov Chain Monte Carlo Sampling . . . . . . . . . . . . . . . . 465--490 Osvaldo Anacleto and Catriona Queen Dynamic Chain Graph Models for Time Series Network Data . . . . . . . . . . 491--509 Min Wang Mixtures of $g$-Priors for Analysis of Variance Models with a Diverging Number of Parameters . . . . . . . . . . . . . 511--532 Hyungsuk Tak and Carl N. Morris Data-Dependent Posterior Propriety of a Bayesian Beta-Binomial-Logit Model . . . 533--555 Cecilia Earls and Giles Hooker Variational Bayes for Functional Data Registration, Smoothing, and Prediction 557--582 Sudipto Banerjee High-Dimensional Bayesian Geostatistics 583--614
María-Eglée Pérez and Luis Raúl Pericchi and Isabel Cristina Ramírez The Scaled Beta2 Distribution as a Robust Prior for Scales . . . . . . . . 615--637 Yanxun Xu and Peter F. Thall and Peter Müller and Mehran J. Reza A Decision-Theoretic Comparison of Treatments to Resolve Air Leaks After Lung Surgery Based on Nonparametric Modeling . . . . . . . . . . . . . . . . 639--652 Jeffrey D. Hart and Taeryon Choi Nonparametric Goodness of Fit via Cross-Validation Bayes Factors . . . . . 653--677 Maria DeYoreo and Jerome P. Reiter and D. Sunshine Hillygus Bayesian Mixture Models with Focused Clustering for Mixed Ordinal and Nominal Data . . . . . . . . . . . . . . . . . . 679--703 Luai Al Labadi and Michael Evans Optimal Robustness Results for Relative Belief Inferences and the Relationship to Prior-Data Conflict . . . . . . . . . 705--728 Silvia Polettini A Generalised Semiparametric Bayesian Fay--Herriot Model for Small Area Estimation Shrinking Both Means and Variances . . . . . . . . . . . . . . . 729--752 Vivekananda Roy and Sounak Chakraborty Selection of Tuning Parameters, Solution Paths and Standard Errors for Bayesian Lassos . . . . . . . . . . . . . . . . . 753--778 Li Ma Adaptive Shrinkage in Pólya Tree Type Models . . . . . . . . . . . . . . . . . 779--805 Tri Le and Bertrand Clarke A Bayes Interpretation of Stacking for $M$-Complete and $M$-Open Settings . . . 807--829 Zach Shahn and David Madigan Latent Class Mixture Models of Treatment Effect Heterogeneity . . . . . . . . . . 831--854 Daniel Taylor-Rodríguez and Andrew J. Womack and Claudio Fuentes and Nikolay Bliznyuk Intrinsic Bayesian Analysis for Occupancy Models . . . . . . . . . . . . 855--877 Nalan Bastürk and Lennart Hoogerheide and Herman K. van Dijk Bayesian Analysis of Boundary and Near-Boundary Evidence in Econometric Models with Reduced Rank . . . . . . . . 879--917
Sarah Filippi and Chris C. Holmes A Bayesian Nonparametric Approach to Testing for Dependence Between Random Variables . . . . . . . . . . . . . . . 919--938 Daniel Taylor-Rodríguez and Kimberly Kaufeld and Erin M. Schliep and James S. Clark and Alan E. Gelfand Joint Species Distribution Modeling: Dimension Reduction Using Dirichlet Processes . . . . . . . . . . . . . . . 939--967 David Puelz and P. Richard Hahn and Carlos M. Carvalho Variable Selection in Seemingly Unrelated Regressions with Random Predictors . . . . . . . . . . . . . . . 969--989 Clara Grazian and Brunero Liseo Approximate Bayesian Inference in Semiparametric Copula Models . . . . . . 991--1016 Yulai Cong and Bo Chen and Mingyuan Zhou Fast Simulation of Hyperplane-Truncated Multivariate Normal Distributions . . . 1017--1037 B. Liquet and K. Mengersen and A. N. Pettitt and M. Sutton Bayesian Variable Selection Regression of Multivariate Responses for Group Data 1039--1067 Peter Grünwald and Thijs van Ommen Inconsistency of Bayesian Inference for Misspecified Linear Models, and a Proposal for Repairing It . . . . . . . 1069--1103 Anindya Bhadra and Jyotishka Datta and Nicholas G. Polson and Brandon Willard The Horseshoe+ Estimator of Ultra-Sparse Signals . . . . . . . . . . . . . . . . 1105--1131 Prasenjit Ghosh and Arijit Chakrabarti Asymptotic Optimality of One-Group Shrinkage Priors in Sparse High-dimensional Problems . . . . . . . 1133--1161 P. Ramírez-Cobo and R. E. Lillo and M. P. Wiper Bayesian Analysis of the Stationary MAP$_2$ . . . . . . . . . . . . . . . . 1163--1194 Johan Pensar and Henrik Nyman and Juha Niiranen and Jukka Corander Marginal Pseudo-Likelihood Learning of Discrete Markov Network Structures . . . 1195--1215 Karthik Sriram and R. V. Ramamoorthi Correction to: ``Posterior Consistency of Bayesian Quantile Regression Based on the Misspecified Asymmetric Laplace Density'' . . . . . . . . . . . . . . . 1217--1219 Stéphanie van der Pas and Botond Szabó and Aad van der Vaart Uncertainty Quantification for the Horseshoe (with Discussion) . . . . . . 1221--1274 Nicholas G. Polson and Vadim Sokolov Deep Learning: A Bayesian Perspective 1275--1304
Maria A. Terres and Montserrat Fuentes and Dean Hesterberg and Matthew Polizzotto Bayesian Spectral Modeling for Multivariate Spatial Distributions of Elemental Concentrations in Soil . . . . 1--28 Daniele Durante and David B. Dunson Bayesian Inference and Testing of Group Differences in Brain Networks . . . . . 29--58 David J. Nott and Christopher C. Drovandi and Kerrie Mengersen and Michael Evans Approximation of Bayesian Predictive . . 59--83 Sindhu Ghanta and Jennifer G. Dy and Donglin Niu and Michael I. Jordan Latent Marked Poisson Process with Applications to Object Segmentation . . 85--113 Ruby Chiu-Hsing Weng and D. Stephen Coad Real-Time Bayesian Parameter Estimation for Item Response Models . . . . . . . . 115--137 Christopher C. Drovandi and Minh-Ngoc Tran Improving the Efficiency of Fully Bayesian Optimal Design of Experiments Using Randomised Quasi-Monte Carlo . . . 139--162 P. Richard Hahn and Carlos M. Carvalho and David Puelz and Jingyu He Regularization and Confounding in Linear Regression for Treatment Effect Estimation . . . . . . . . . . . . . . . 163--182 Jingchen Hu and Jerome P. Reiter and Quanli Wang Dirichlet Process Mixture Models for Modeling and Generating Synthetic Versions of Nested Categorical Data . . 183--200 James Johndrow and Anirban Bhattacharya Optimal Gaussian Approximations to the Posterior for Log-Linear Models with Diaconis--Ylvisaker Priors . . . . . . . 201--223 James R. Faulkner and Vladimir N. Minin Locally Adaptive Smoothing with Markov Random Fields and Shrinkage Priors . . . 225--252 Jonathan R. Bradley and Scott H. Holan and Christopher K. Wikle Computationally Efficient Multivariate Spatio-Temporal Models for High-Dimensional Count-Valued Data (with Discussion) . . . . . . . . . . . . . . 253--310
Yu-Bo Wang and Ming-Hui Chen and Lynn Kuo and Paul O. Lewis A New Monte Carlo Method for Estimating Marginal Likelihoods . . . . . . . . . . 311--333 Daniel A. Henderson and Liam J. Kirrane A Comparison of Truncated and Time-Weighted Plackett--Luce Models for Probabilistic Forecasting of Formula One Results . . . . . . . . . . . . . . . . 335--358 Joyee Ghosh and Yingbo Li and Robin Mitra On the Use of Cauchy Prior Distributions for Bayesian Logistic Regression . . . . 359--383 Tevfik Aktekin and Nick Polson and Refik Soyer Sequential Bayesian Analysis of Multivariate Count Data . . . . . . . . 385--409 Lili Zhao and Weisheng Wu and Dai Feng and Hui Jiang and XuanLong Nguyen Bayesian Analysis of RNA-Seq Data Using a Family of Negative Binomial Models . . 411--436 Panayiota Touloupou and Naif Alzahrani and Peter Neal and Simon E. F. Spencer and Trevelyan J. McKinley Efficient Model Comparison Techniques for Models Requiring Large Scale Data Augmentation . . . . . . . . . . . . . . 437--459 Jean-Bernard Salomond Testing Un-Separated Hypotheses by Estimating a Distance . . . . . . . . . 461--484 Cheng Zhang and Babak Shahbaba and Hongkai Zhao Variational Hamiltonian Monte Carlo via Score Matching . . . . . . . . . . . . . 485--506 Christopher Nemeth and Chris Sherlock Merging MCMC Subposteriors through Gaussian-Process Approximations . . . . 507--530 Hamid Zareifard and Majid Jafari Khaledi and Firoozeh Rivaz and Mohammad Q. Vahidi-Asl Modeling Skewed Spatial Data Using a Convolution of Gaussian and Log-Gaussian Processes . . . . . . . . . . . . . . . 531--557 Sara Wade and Zoubin Ghahramani Bayesian Cluster Analysis: Point Estimation and Credible Balls (with Discussion) . . . . . . . . . . . . . . 559--626 Guido Consonni and Dimitris Fouskakis and Brunero Liseo and Ioannis Ntzoufras Prior Distributions for Objective Bayesian Analysis . . . . . . . . . . . 627--679
Laura Forastiere and Fabrizia Mealli and Luke Miratrix Posterior Predictive $p$-Values with Fisher Randomization Tests in Noncompliance Settings: Test Statistics vs Discrepancy Measures . . . . . . . . 681--701 Zacharie Naulet and Éric Barat Some Aspects of Symmetric Gamma Process Mixtures . . . . . . . . . . . . . . . . 703--720 Dimitris Fouskakis and Ioannis Ntzoufras and Konstantinos Perrakis Power-Expected-Posterior Priors for Generalized Linear Models . . . . . . . 721--748 Kevin James Wilson Specification of Informative Prior Distributions for Multinomial Models Using Vine Copulas . . . . . . . . . . . 749--766 S. L. van der Pas and A. W. van der Vaart Bayesian Community Detection . . . . . . 767--796 Alexander Y. Shestopaloff and Radford M. Neal Sampling Latent States for High-Dimensional Non-Linear State Space Models with the Embedded HMM Method . . 797--822 Yan Zhang and Howard D. Bondell Variable Selection via Penalized Credible Regions with Dirichlet--Laplace Global-Local Shrinkage Priors . . . . . 823--844 Sonia Migliorati and Agnese Maria Di Brisco and Andrea Ongaro A New Regression Model for Bounded Responses . . . . . . . . . . . . . . . 845--872 Edward Higson and Will Handley and Mike Hobson and Anthony Lasenby Sampling Errors in Nested Sampling Parameter Estimation . . . . . . . . . . 873--896 Jim Griffin and Fabrizio Leisen Modelling and Computation Using NCoRM Mixtures for Density Regression . . . . 897--916 Yuling Yao and Aki Vehtari and Daniel Simpson and Andrew Gelman Using Stacking to Average Bayesian Predictive Distributions (with Discussion) . . . . . . . . . . . . . . 917--1007 Joseph B. Kadane and Galit Shmueli and Thomas P. Minka and Sharad Borle and Peter Boatwright Note of correction: ``Conjugate Analysis of the Conway--Maxwell--Poisson Distribution'' . . . . . . . . . . . . . 1009--1009
Hang Qian Big Data Bayesian Linear Regression and Variable Selection by Normal-Inverse-Gamma Summation . . . . . 1011--1035 Yuttapong Thawornwattana and Daniel Dalquen and Ziheng Yang Designing Simple and Efficient Markov Chain Monte Carlo Proposal Kernels . . . 1037--1063 Mingyuan Zhou Nonparametric Bayesian Negative Binomial Factor Analysis . . . . . . . . . . . . 1065--1093 Yang Ni and Yuan Ji and Peter Müller Reciprocal Graphical Models for Integrative Gene Regulatory Network Analysis . . . . . . . . . . . . . . . . 1095--1110 Lutz F. Gruber and Claudia Czado Bayesian Model Selection of Regular Vine Copulas . . . . . . . . . . . . . . . . 1111--1135 Biao Yang and Jonathan R. Stroud and Gabriel Huerta Sequential Monte Carlo Smoothing with Parameter Estimation . . . . . . . . . . 1137--1161 Chong Wang and David M. Blei A General Method for Robust Bayesian Modeling . . . . . . . . . . . . . . . . 1163--1191 Joris Mulder and Luis Raúl Pericchi The Matrix-$F$ Prior for Estimating and Testing Covariance Matrices . . . . . . 1193--1214 Kyoungjae Lee and Jaeyong Lee Optimal Bayesian Minimax Rates for Unconstrained Large Covariance Matrices 1215--1233 Federico Castelletti and Guido Consonni and Marco L. Della Vedova and Stefano Peluso Learning Markov Equivalence Classes of Directed Acyclic Graphs: An Objective Bayes Approach . . . . . . . . . . . . . 1235--1260 Martin Bezener and John Hughes and Galin Jones Bayesian Spatiotemporal Modeling Using Hierarchical Spatial Priors, with Applications to Functional Magnetic Resonance Imaging (with Discussion) . . 1261--1313
Bo Ning and Subhashis Ghosal and Jewell Thomas Bayesian Method for Causal Inference in Spatially-Correlated Multivariate Time Series . . . . . . . . . . . . . . . . . 1--28 Emilian R. Vankov and Michele Guindani and Katherine B. Ensor Filtering and Estimation for a Class of Stochastic Volatility Models with Intractable Likelihoods . . . . . . . . 29--52 Chris Glynn and Surya T. Tokdar and Brian Howard and David L. Banks Bayesian Analysis of Dynamic Linear Topic Models . . . . . . . . . . . . . . 53--80 Robert J. B. Goudie and Anne M. Presanis and David Lunn and Daniela De Angelis and Lorenz Wernisch Joining and Splitting Models with Markov Melding . . . . . . . . . . . . . . . . 81--109 Paul-Marie Grollemund and Christophe Abraham and Me\"\ili Baragatti and Pierre Pudlo Bayesian Functional Linear Regression with Sparse Step Functions . . . . . . . 111--135 Kaoru Irie and Mike West Bayesian Emulation for Multi-Step Optimization in Decision Problems . . . 137--160 Jacopo Soriano and Li Ma Mixture Modeling on Related Samples by $ \psi $-Stick Breaking and Kernel Perturbation . . . . . . . . . . . . . . 161--180 Matthew J. Keefe and Marco A. R. Ferreira and Christopher T. Franck Objective Bayesian Analysis for Gaussian Hierarchical Models with Intrinsic Conditional Autoregressive Priors . . . 181--209 Brenda N. Vo and Christopher C. Drovandi and Anthony N. Pettitt Bayesian Parametric Bootstrap for Models with Intractable Likelihoods . . . . . . 211--234 Wenxin Jiang and Cheng Li On Bayesian Oracle Properties . . . . . 235--260 Dave Osthus and James Gattiker and Reid Priedhorsky and Sara Y. Del Valle Dynamic Bayesian Influenza Forecasting in the United States with Hierarchical Discrepancy (with Discussion) . . . . . 261--312
Lloyd T. Elliott and Maria De Iorio and Stefano Favaro and Kaustubh Adhikari and Yee Whye Teh Modeling Population Structure Under Hierarchical Dirichlet Processes . . . . 313--339 Daniela Pauger and Helga Wagner Bayesian Effect Fusion for Categorical Predictors . . . . . . . . . . . . . . . 341--369 M. W. McLean and M. P. Wand Variational Message Passing for Elaborate Response Regression Models . . 371--398 Haolun Shi and Guosheng Yin Control of Type I Error Rates in Bayesian Sequential Designs . . . . . . 399--425 Luis Gutiérrez and Eduardo Gutiérrez-Peña and Ramsés H. Mena A Bayesian Approach to Statistical Shape Analysis via the Projected Normal Distribution . . . . . . . . . . . . . . 427--447 Suprateek Kundu and Bani K. Mallick and Veera Baladandayuthapani Efficient Bayesian Regularization for Graphical Model Selection . . . . . . . 449--476 Lukasz Rajkowski Analysis of the Maximal a Posteriori Partition in the Gaussian Dirichlet Process Mixture Model . . . . . . . . . 477--494 Benjamin Letham and Brian Karrer and Guilherme Ottoni and Eytan Bakshy Constrained Bayesian Optimization with Noisy Experiments . . . . . . . . . . . 495--519 Joris Mulder and Jean-Paul Fox Bayes Factor Testing of Multiple Intraclass Correlations . . . . . . . . 521--552 Alberto Cassese and Weixuan Zhu and Michele Guindani and Marina Vannucci A Bayesian Nonparametric Spiked Process Prior for Dynamic Model Selection . . . 553--572 Quan Zhou and Yongtao Guan Fast Model-Fitting of Bayesian Variable Selection Regression Using the Iterative Complex Factorization Algorithm . . . . 573--594 Marko Järvenpää and Michael U. Gutmann and Arijus Pleska and Aki Vehtari and Pekka Marttinen Efficient Acquisition Rules for Model-Based Approximate Bayesian Computation . . . . . . . . . . . . . . 595--622 Marcos Oliveira Prates and Renato Martins Assunção and Erica Castilho Rodrigues Alleviating Spatial Confounding for Areal Data Problems by Displacing the Geographical Centroids . . . . . . . . . 623--647 Luis Gutiérrez and Andrés F. Barrientos and Jorge González and Daniel Taylor-Rodríguez A Bayesian Nonparametric Multiple Testing Procedure for Comparing Several Treatments Against a Control . . . . . . 649--675
Yushu Shi and Michael Martens and Anjishnu Banerjee and Purushottam Laud Low Information Omnibus (LIO) Priors for Dirichlet Process Mixture Models . . . . 677--702 Sohan Seth and Iain Murray and Christopher K. I. Williams Model Criticism in Latent Space . . . . 703--725 Stefano Peluso and Siddhartha Chib and Antonietta Mira Semiparametric Multivariate and Multiple Change-Point Modeling . . . . . . . . . 727--751 L. F. South and A. N. Pettitt and C. C. Drovandi Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals . . . . . . . . . . . . . . . 753--776 Ioannis Ntzoufras and Claudia Tarantola and Monia Lupparelli Probability Based Independence Sampler for Bayesian Quantitative Learning in Graphical Log--Linear Marginal Models 777--803 Joseph Antonelli and Giovanni Parmigiani and Francesca Dominici High-Dimensional Confounding Adjustment Using Continuous Spike and Slab Priors 805--828 Brian Neelon Bayesian Zero-Inflated Negative Binomial Regression Based on Pólya--Gamma Mixtures 829--855 Mengyang Gu Jointly Robust Prior for Gaussian Stochastic Process in Emulation, Calibration and Variable Selection . . . 857--885 Lizhen Lin and Niu Mu and Pokman Cheung and David Dunson Extrinsic Gaussian Processes for Regression and Classification on Manifolds . . . . . . . . . . . . . . . 887--906 Muteb Alharthi and Theodore Kypraios and Philip D. O'Neill Bayes Factors for Partially Observed Stochastic Epidemic Models . . . . . . . 907--936 Jon Cockayne and Chris J. Oates and Ilse C. F. Ipsen and Mark Girolami A Bayesian Conjugate Gradient Method (with Discussion) . . . . . . . . . . . 937--1012
Miguel de Carvalho and Garritt L. Page and Bradley J. Barney On the Geometry of Bayesian Inference 1013--1036 Claudia Kirch and Matthew C. Edwards and Alexander Meier and Renate Meyer Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis . . . . 1037--1073 Amir Bashir and Carlos M. Carvalho and P. Richard Hahn and M. Beatrix Jones Post-Processing Posteriors Over Precision Matrices to Produce Sparse Graph Estimates . . . . . . . . . . . . 1075--1090 Gemma E. Moran and Veronika Rocková and Edward I. George Variance Prior Forms for High-Dimensional Bayesian Variable Selection . . . . . . . . . . . . . . . 1091--1119 Guillaume Kon Kam King and Antonio Canale and Matteo Ruggiero Bayesian Functional Forecasting with Locally-Autoregressive Dependent Processes . . . . . . . . . . . . . . . 1121--1141 Nadja Klein and Michael Stanley Smith Implicit Copulas from Bayesian Regularized Regression Smoothers . . . . 1143--1171 Lutz F. Gruber and Erica F. Stuber and Lyndsie S. Wszola and Joseph J. Fontaine Estimating the Use of Public Lands: Integrated Modeling of Open Populations with Convolution Likelihood Ecological Abundance Regression . . . . . . . . . . 1173--1199 Julyan Arbel and Pierpaolo De Blasi and Igor Prünster Stochastic Approximations to the Pitman--Yor Process . . . . . . . . . . 1201--1219 Abhirup Datta and Sudipto Banerjee and James S. Hodges and Leiwen Gao Spatial Disease Mapping Using Directed Acyclic Graph Auto-Regressive (DAGAR) Models . . . . . . . . . . . . . . . . . 1221--1244 Jeong Eun Lee and Geoff K. Nicholls and Robin J. Ryder Calibration Procedures for Approximate Bayesian Credible Sets . . . . . . . . . 1245--1269 Andrea Cremaschi and Raffaele Argiento and Katherine Shoemaker and Christine Peterson and Marina Vannucci Hierarchical Normalized Completely Random Measures for Robust Graphical Modeling . . . . . . . . . . . . . . . . 1271--1301 Federico Camerlenghi and David B. Dunson and Antonio Lijoi and Igor Prünster and Abel Rodríguez Latent Nested Nonparametric Priors (with Discussion) . . . . . . . . . . . . . . 1303--1356
Matthew Moores and Geoff Nicholls and Anthony Pettitt and Kerrie Mengersen Scalable Bayesian Inference for the Inverse Temperature of a Hidden Potts Model . . . . . . . . . . . . . . . . . 1--27 Nicolas Garcia Trillos and Daniel Sanz-Alonso The Bayesian Update: Variational Formulations and Gradient Flows . . . . 29--56 Matthew R. Williams and Terrance D. Savitsky Bayesian Estimation Under Informative Sampling with Unattenuated Dependence 57--77 Qingpo Cai and Jian Kang and Tianwei Yu Bayesian Network Marker Selection via the Thresholded Graph Laplacian Gaussian Prior . . . . . . . . . . . . . . . . . 79--102 Antony Overstall and James McGree Bayesian Design of Experiments for Intractable Likelihood Models Using Coupled Auxiliary Models and Multivariate Emulation . . . . . . . . . 103--131 Jong Hee Park and Yunkyu Sohn Detecting Structural Changes in Longitudinal Network Data . . . . . . . 133--157 Fangzheng Xie and Yanxun Xu Adaptive Bayesian Nonparametric Regression Using a Kernel Mixture of Polynomials with Application to Partial Linear Models . . . . . . . . . . . . . 159--186 Ilaria Bianchini and Alessandra Guglielmi and Fernando A. Quintana Determinantal Point Process Mixtures Via Spectral Density Approach . . . . . . . 187--214 Abhishek Bishoyi and Xiaojing Wang and Dipak K. Dey Learning Semiparametric Regression with Missing Covariates Using Gaussian Process Models . . . . . . . . . . . . . 215--239 Xuan Cao and Kshitij Khare and Malay Ghosh High-Dimensional Posterior Consistency for Hierarchical Non-Local Priors in Regression . . . . . . . . . . . . . . . 241--262 Aliaksandr Hubin and Geir Storvik and Florian Frommlet A Novel Algorithmic Approach to Bayesian Logic Regression (with Discussion) . . . 263--333
Kelly C. M. Gonçalves and Hélio S. Migon and Leonardo S. Bastos Dynamic Quantile Linear Models: A Bayesian Approach . . . . . . . . . . . 335--362 Andrés F. Barrientos and Víctor Peña Bayesian Bootstraps for Massive Data . . 363--388 Philippe Gagnon and Alain Desgagné and Myl\`ene Bédard A New Bayesian Approach to Robustness Against Outliers in Linear Regression 389--414 Jarno Vanhatalo and Marcelo Hartmann and Lari Veneranta Additive Multivariate Gaussian Processes for Joint Species Distribution Modeling with Heterogeneous Data . . . . . . . . 415--447 Jami J. Mulgrave and Subhashis Ghosal Bayesian Inference in Nonparanormal Graphical Models . . . . . . . . . . . . 449--475 Rajarshi Guhaniyogi and Abel Rodriguez Joint Modeling of Longitudinal Relational Data and Exogenous Variables 477--503 Maxim Rabinovich and Aaditya Ramdas and Michael I. Jordan and Martin J. Wainwright Function-Specific Mixing Times and Concentration Away from Equilibrium . . 505--532 Cristiano Villa and Jeong Eun Lee A Loss-Based Prior for Variable Selection in Linear Regression Methods 533--558 Kurtis Shuler and Marilou Sison-Mangus and Juhee Lee Bayesian Sparse Multivariate Regression with Asymmetric Nonlocal Priors for Microbiome Data Analysis . . . . . . . . 559--578 Zhi-Qiang Wang and Nian-Sheng Tang Bayesian Quantile Regression with Mixed Discrete and Nonignorable Missing Covariates . . . . . . . . . . . . . . . 579--604 Bohai Zhang and Noel Cressie Bayesian Inference of Spatio-Temporal Changes of Arctic Sea Ice . . . . . . . 605--631 Andrea Tancredi and Rebecca Steorts and Brunero Liseo A Unified Framework for De-Duplication and Population Size Estimation (with Discussion) . . . . . . . . . . . . . . 633--682
Creighton Heaukulani and Daniel M. Roy Gibbs-type Indian Buffet Processes . . . 683--710 Weihong Huang and Yan Liu and Yuguo Chen Mixed Membership Stochastic Blockmodels for Heterogeneous Networks . . . . . . . 711--736 Kyoungjae Lee and Lizhen Lin Bayesian Bandwidth Test and Selection for High-dimensional Banded Precision Matrices . . . . . . . . . . . . . . . . 737--758 Kumaresh Dhara and Stuart Lipsitz and Debdeep Pati and Debajyoti Sinha A New Bayesian Single Index Model with or without Covariates Missing at Random 759--780 Zehang Richard Li and Tyler H. McComick and Samuel J. Clark Using Bayesian Latent Gaussian Graphical Models to Infer Symptom Associations in Verbal Autopsies . . . . . . . . . . . . 781--807 Federico Bassetti and Roberto Casarin and Luca Rossini Hierarchical Species Sampling Models . . 809--838 Trevelyan J. McKinley and Peter Neal and Simon E. F. Spencer and Andrew J. K. Conlan and Laurence Tiley Efficient Bayesian Model Choice for Partially Observed Processes: With Application to an Experimental Transmission Study of an Infectious Disease . . . . . . . . . . . . . . . . 839--870 Subhadip Pal and Subhajit Sengupta and Riten Mitra and Arunava Banerjee Conjugate Priors and Posterior Inference for the Matrix Langevin Distribution on the Stiefel Manifold . . . . . . . . . . 871--908 Xinming Yang and Naveen N. Narisetty Consistent Group Selection with Bayesian High Dimensional Modeling . . . . . . . 909--935 Keefe Murphy and Cinzia Viroli and Isobel Claire Gormley Infinite Mixtures of Infinite Factor Analysers . . . . . . . . . . . . . . . 937--963 P. Richard Hahn and Jared S. Murray and Carlos M. Carvalho Bayesian Regression Tree Models for Causal Inference: Regularization, Confounding, and Heterogeneous Effects (with Discussion) . . . . . . . . . . . 965--1056
Junyang Wang and Jon Cockayne and Chris. J. Oates A Role for Symmetry in the Bayesian Solution of Differential Equations . . . 1057--1085 Akihiko Nishimura and David Dunson Recycling Intermediate Steps to Improve Hamiltonian Monte Carlo . . . . . . . . 1087--1108 Geir-Arne Fuglstad and Ingeborg Gullikstad Hem and Alexander Knight and Håvard Rue and Andrea Riebler Intuitive Joint Priors for Variance Parameters . . . . . . . . . . . . . . . 1109--1137 Camille M. Moore and Nichole E. Carlson and Samantha MaWhinney and Sarah Kreidler A Dirichlet Process Mixture Model for Non-Ignorable Dropout . . . . . . . . . 1139--1167 Ali Foroughi pour and Lori A. Dalton Theory of Optimal Bayesian Feature Filtering . . . . . . . . . . . . . . . 1169--1197 Shiwei Lan and Andrew Holbrook and Gabriel A. Elias and Norbert J. Fortin and Hernando Ombao and Babak Shahbaba Flexible Bayesian Dynamic Modeling of Correlation and Covariance Matrices . . 1199--1228 Arkaprava Roy and Subhashis Ghosal and Kingshuk Roy Choudhury High Dimensional Single-Index Bayesian Modeling of Brain Atrophy . . . . . . . 1229--1249 Tommi Perälä and Jarno Vanhatalo and Anna Chrysafi Calibrating Expert Assessments Using Hierarchical Gaussian Process Models . . 1251--1280 V\'ìctor Peña and James O. Berger Restricted Type II Maximum Likelihood Priors on Regression Coefficients . . . 1281--1297 David R. Bickel An Explanatory Rationale for Priors Sharpened Into Occam's Razors . . . . . 1299--1321 Dao Nguyen and Perry de Valpine and Yves Atchade and Daniel Turek and Nicholas Michaud and Christopher Paciorek Nested Adaptation of MCMC Algorithms . . 1323--1343 Fabrizio Leisen and Cristiano Villa and Stephen G. Walker On a Class of Objective Priors from Scoring Rules (with Discussion) . . . . 1345--1423
F. O. Bunnin and J. Q. Smith A Bayesian Hierarchical Model for Criminal Investigations . . . . . . . . 1--30 Fabrizio Ruggeri and Marta Sánchez-Sánchez and Miguel Ángel Sordo and Alfonso Suárez-Llorens On a New Class of Multivariate Prior Distributions: Theory and Application in Reliability . . . . . . . . . . . . . . 31--60 Laura C. Dawkins and Daniel B. Williamson and Kerrie L. Mengersen and Lidia Morawska and Rohan Jayaratne and Gavin Shaddick Where Is the Clean Air? A Bayesian Decision Framework for Personalised Cyclist Route Selection Using R-INLA . . 61--91 Amir Nikooienejad and Valen E. Johnson On the Existence of Uniformly Most Powerful Bayesian Tests With Application to Non-Central Chi-Squared Tests . . . . 93--109 Sean Chang and James O. Berger Comparison of Bayesian and Frequentist Multiplicity Correction for Testing Mutually Exclusive Hypotheses Under Data Dependence . . . . . . . . . . . . . . . 111--128 Daojiang He and Dongchu Sun and Lei He Objective Bayesian Analysis for the Student-$t$ Linear Regression . . . . . 129--145 Marko Järvenpää and Michael U. Gutmann and Aki Vehtari and Pekka Marttinen Parallel Gaussian Process Surrogate Bayesian Inference with Noisy Likelihood Evaluations . . . . . . . . . . . . . . 147--178 Ruitao Lin and Peter F. Thall and Ying Yuan A Phase I-II Basket Trial Design to Optimize Dose-Schedule Regimes Based on Delayed Outcomes . . . . . . . . . . . . 179--202 David J. Nott and Max Seah and Luai Al-Labadi and Michael Evans and Hui Khoon Ng and Berthold-Georg Englert Using Prior Expansions for Prior-Data Conflict Checking . . . . . . . . . . . 203--231 Veronika Rockova and Kenichiro McAlinn Dynamic Variable Selection with Spike-and-Slab Process Priors . . . . . 233--269 María Eugenia Castellanos A Model Selection Approach for Variable Selection with Censored Data . . . . . . 271--300 Sally Paganin and Amy H. Herring and Andrew F. Olshan and David B. Dunson Centered Partition Processes: Informative Priors for Clustering (with Discussion) . . . . . . . . . . . . . . 301--370
Filippo Ascolani and Antonio Lijoi and Matteo Ruggiero Predictive inference with Fleming--Viot-driven dependent Dirichlet processes . . . . . . . . . . . . . . . 371--395 Umberto Simola and Jessi Cisewski-Kehe and Michael U. Gutmann and Jukka Corander Adaptive Approximate Bayesian Computation Tolerance Selection . . . . 397--423 Andreas Heinecke and Lifeng Ye and Maria De Iorio and Timothy Ebbels Bayesian Deconvolution and Quantification of Metabolites from $J$-Resolved NMR Spectroscopy . . . . . 425--458 Daniel R. Kowal Dynamic Regression Models for Time-Ordered Functional Data . . . . . . 459--487 Samantha Leorato and Maura Mezzetti A Bayesian Factor Model for Spatial Panel Data with a Separable Covariance Approach . . . . . . . . . . . . . . . . 489--519 Lu Shaochuan Bayesian Multiple Changepoint Detection for Stochastic Models in Continuous Time 521--544 Nadja Klein and Manuel Carlan and Thomas Kneib and Stefan Lang and Helga Wagner Bayesian Effect Selection in Structured Additive Distributional Regression Models . . . . . . . . . . . . . . . . . 545--573 Imke Botha and Robert Kohn and Christopher Drovandi Particle Methods for Stochastic Differential Equation Mixed Effects Models . . . . . . . . . . . . . . . . . 575--609 Birgir Hrafnkelsson and Stefan Siegert and Raphaël Huser and Haakon Bakka and Árni V. Jóhannesson Max-and-Smooth: a Two-Step Approach for Approximate Bayesian Inference in Latent Gaussian Models . . . . . . . . . . . . 611--638 Arya A. Pourzanjani and Richard M. Jiang and Brian Mitchell and Paul J. Atzberger and Linda R. Petzold Bayesian Inference over the Stiefel Manifold via the Givens Representation 639--666 Aki Vehtari and Andrew Gelman and Daniel Simpson and Bob Carpenter and Paul-Christian Bürkner Rank-Normalization, Folding, and Localization: an Improved . . . . . . . 667--718
Yuxiang Gao and Lauren Kennedy and Daniel Simpson and Andrew Gelman Improving Multilevel Regression and Poststratification with Structured Priors . . . . . . . . . . . . . . . . . 719--744 Alexander Buchholz and Nicolas Chopin and Pierre E. Jacob Adaptive Tuning of Hamiltonian Monte Carlo Within Sequential Monte Carlo . . 745--771 Steven Kleinegesse and Christopher Drovandi and Michael U. Gutmann Sequential Bayesian Experimental Design for Implicit Models via Mutual Information . . . . . . . . . . . . . . 773--802 Audrey Béliveau and Paul Gustafson A Theoretical Investigation of How Evidence Flows in Bayesian Network Meta-Analysis of Disconnected Networks 803--823 Thomas A. Murray and Peter F. Thall and Frederique Schortgen and Pierre Asfar and Sarah Zohar and Sandrine Katsahian Robust Adaptive Incorporation of Historical Control Data in a Randomized Trial of External Cooling to Treat Septic Shock . . . . . . . . . . . . . . 825--844 Emilio Porcu and Pier Giovanni Bissiri and Felipe Tagle and Rubén Soza and Fernando A. Quintana Nonparametric Bayesian Modeling and Estimation of Spatial Correlation Functions for Global Data . . . . . . . 845--873 Teng Wu and Naveen N. Narisetty Bayesian Multiple Quantile Regression for Linear Models Using a Score Likelihood . . . . . . . . . . . . . . . 875--903 Alan Benson and Nial Friel Bayesian Inference, Model Selection and Likelihood Estimation using Fast Rejection Sampling: The Conway--Maxwell--Poisson Distribution 905--931 Tim van Erven and Botond Szabó Fast Exact Bayesian Inference for Sparse Signals in the Normal Sequence Model . . 933--960 Allard Hendriksen and Rianne de Heide and Peter Grünwald Optional Stopping with Bayes Factors: a Categorization and Extension of Folklore Results, with an Application to Invariant Situations . . . . . . . . . . 961--989 Lane F. Burgette and David Puelz and P. Richard Hahn A Symmetric Prior for Multinomial Probit Models . . . . . . . . . . . . . . . . . 991--1008 Miguel González and Carmen Minuesa and Inés del Puerto and Anand N. Vidyashankar Robust Estimation in Controlled Branching Processes: Bayesian Estimators via Disparities . . . . . . . . . . . . 1009--1037 Riddhi Pratim Ghosh and Bani Mallick and Mohsen Pourahmadi Bayesian Estimation of Correlation Matrices of Longitudinal Data . . . . . 1039--1058
Isaac Lavine and Michael Lindon and Mike West Adaptive Variable Selection for Sequential Prediction in Multivariate Dynamic Models . . . . . . . . . . . . . 1059--1083 Maria M. Barbieri and James O. Berger and Edward I. George and Veronika Rocková The Median Probability Model and Correlated Variables . . . . . . . . . . 1085--1112 Federico Castelletti and Guido Consonni Bayesian Causal Inference in Probit Graphical Models . . . . . . . . . . . . 1113--1137 Edward George and Gourab Mukherjee and Keisuke Yano Optimal Shrinkage Estimation of Predictive Densities Under $ \alpha $-Divergences . . . . . . . . . . . . . 1139--1155 Sayar Karmakar and Arkaprava Roy Bayesian Modelling of Time-Varying Conditional Heteroscedasticity . . . . . 1157--1185 Mario Beraha and Alessandra Guglielmi and Fernando A. Quintana The Semi-Hierarchical Dirichlet Process and Its Application to Clustering Homogeneous Distributions . . . . . . . 1187--1219 Rajarshi Guhaniyogi and Daniel Spencer Bayesian Tensor Response Regression with an Application to Brain Activation Studies . . . . . . . . . . . . . . . . 1221--1249 Per Sidén and Finn Lindgren and David Bolin and Anders Eklund and Mattias Villani Spatial $3$D Matérn Priors for Fast Whole-Brain fMRI Analysis . . . . . . . 1251--1278 Sylvia Frühwirth-Schnatter and Gertraud Malsiner-Walli and Bettina Grün Generalized Mixtures of Finite Mixtures and Telescoping Sampling . . . . . . . . 1279--1307 Giacomo Zanella and Gareth Roberts Multilevel Linear Models, Gibbs Samplers and Multigrid Decompositions (with Discussion) . . . . . . . . . . . . . . 1309--1391 John R. Lewis and Steven N. MacEachern and Yoonkyung Lee Bayesian Restricted Likelihood Methods: Conditioning on Insufficient Statistics in Bayesian Regression (with Discussion) 1393--1462
Owen Thomas and Ritabrata Dutta and Jukka Corander and Samuel Kaski and Michael U. Gutmann Likelihood-Free Inference by Ratio Estimation . . . . . . . . . . . . . . . 1--31 Alejandra Avalos-Pacheco and David Rossell and Richard S. Savage Heterogeneous Large Datasets Integration Using Bayesian Factor Regression . . . . 33--66 Marie-Pier Côté and Christian Genest and David A. Stephens A Bayesian Approach to Modeling Multivariate Multilevel Insurance Claims in the Presence of Unsettled Claims . . 67--93 Guilherme Lopes de Oliveira and Raffaele Argiento and Rosangela Helena Loschi and Renato Martins Assunção and Fabrizio Ruggeri and Márcia D'Elia Branco Bias Correction in Clustered Underreported Data . . . . . . . . . . . 95--126 Jonathan R. Bradley Joint Bayesian Analysis of Multiple Response-Types Using the Hierarchical Generalized Transformation Model . . . . 127--164 Louis Raynal and Sixing Chen and Antonietta Mira and Jukka-Pekka Onnela Scalable Approximate Bayesian Computation for Growing Network Models via Extrapolated and Sampled Summaries 165--192 Evgeny Levi and Radu V. Craiu Finding our Way in the Dark: Approximate MCMC for Approximate Bayesian Methods 193--221 Christopher Drovandi and Richard G. Everitt and Andrew Golightly and Dennis Prangle Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using the Ensemble Kalman Filter 223--260 Bruno Buonaguidi and Antonietta Mira and Herbert Bucheli and Viton Vitanis Bayesian Quickest Detection of Credit Card Fraud . . . . . . . . . . . . . . . 261--290 Brian Kidd and Matthias Katzfuss Bayesian Nonstationary and Nonparametric Covariance Estimation for Large Spatial Data (with Discussion) . . . . . . . . . 291--351
Ben Lambert and Aki Vehtari $ R^\ast $: a Robust MCMC Convergence Diagnostic with Uncertainty Using Decision Tree Classifiers . . . . . . . 353--379 Marcos A. Capistrán and J. Andrés Christen and María L. Daza-Torres and Hugo Flores-Arguedas and J. Cricelio Montesinos-López Error Control of the Numerical Posterior with Bayes Factors in Bayesian Uncertainty Quantification . . . . . . . 381--403 Sara Wade and Raffaella Piccarreta and Andrea Cremaschi and Isadora Antoniano-Villalobos Colombian Women's Life Patterns: a Multivariate Density Regression Approach 405--433 Samuel I. Berchuck and Mark Janko and Felipe A. Medeiros and William Pan and Sayan Mukherjee Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces . . . 435--464 Stephen R. Johnson and Daniel A. Henderson and Richard J. Boys On Bayesian inference for the Extended Plackett--Luce model . . . . . . . . . . 465--490 Ilsang Ohn and Yongdai Kim Posterior Consistency of Factor Dimensionality in High-Dimensional Sparse Factor Models . . . . . . . . . . 491--514 Hugh A. Chipman and Edward I. George and Robert E. McCulloch and Thomas S. Shively mBART: Multidimensional Monotone BART 515--544 Yasuyuki Hamura and Kaoru Irie and Shonosuke Sugasawa On Global-Local Shrinkage Priors for Count Data . . . . . . . . . . . . . . . 545--564 David Rossell Concentration of Posterior Model Probabilities and Normalized . . . . . . 565--591 David J. Warne and Scott A. Sisson and Christopher Drovandi Vector Operations for Accelerating Expensive Bayesian Computations --- A Tutorial Guide . . . . . . . . . . . . . 593--622 Max Goplerud Fast and Accurate Estimation of Non-Nested Binomial Hierarchical Models Using Variational Inference . . . . . . 623--650 Angelos Alexopoulos and Petros Dellaportas and Omiros Papaspiliopoulos Bayesian Prediction of Jumps in Large Panels of Time Series Data . . . . . . . 651--683
Sergio Bacallado and Stefano Favaro and Samuel Power and Lorenzo Trippa Perfect Sampling of the Posterior in the Hierarchical Pitman--Yor Process . . . . 685--709 Vasileios Maroulas and Cassie Putman Micucci and Farzana Nasrin Bayesian Topological Learning for Classifying the Structure of Biological Networks . . . . . . . . . . . . . . . . 711--736 David E. Jones and Robert N. Trangucci and Yang Chen Quantifying Observed Prior Impact . . . 737--764 Daniel Ayala and Leonardo Jofré and Luis Gutiérrez and Ramsés H. Mena On a Dirichlet Process Mixture Representation of Phase-Type Distributions . . . . . . . . . . . . . 765--790 Terrance D. Savitsky and Matthew R. Williams Bayesian Dependent Functional Mixture Estimation for Area and Time-Indexed Data: an Application for the Prediction of Monthly County Employment . . . . . . 791--815 Wei Shi and Ming-Hui Chen and Lynn Kuo and Paul O. Lewis Bayesian Concentration Ratio and Dissonance . . . . . . . . . . . . . . . 817--847 William Hua and Hongyuan Mei and Sarah Zohar and Magali Giral and Yanxun Xu Personalized Dynamic Treatment Regimes in Continuous Time: a Bayesian Approach for Optimizing Clinical Decisions with Timing . . . . . . . . . . . . . . . . . 849--878 Jin Wang and Yunbo Ouyang and Yuan Ji and Feng Liang An Ensemble EM Algorithm for Bayesian Variable Selection . . . . . . . . . . . 879--900 Yucong Ma and Jun S. Liu On Posterior Consistency of Bayesian Factor Models in High Dimensions . . . . 901--929 Richard L. Warr and David B. Dahl and Jeremy M. Meyer and Arthur Lui The Attraction Indian Buffet Distribution . . . . . . . . . . . . . . 931--967 Alejandro Murua and Fernando Andrés Quintana Biclustering via Semiparametric Bayesian Inference . . . . . . . . . . . . . . . 969--995 Antonio R. Linero and Piyali Basak and Yinpu Li and Debajyoti Sinha Bayesian Survival Tree Ensembles with Submodel Shrinkage . . . . . . . . . . . 997--1020
Antony Overstall and James McGree Bayesian Decision-Theoretic Design of Experiments Under an Alternative Model 1021--1041 Yuling Yao and Gregor Pirs and Aki Vehtari and Andrew Gelman Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful . . . . . 1043--1071 Dimitris Fouskakis and Ioannis Ntzoufras Power-Expected-Posterior Priors as Mixtures of $g$-Priors in Normal Linear Models . . . . . . . . . . . . . . . . . 1073--1099 Yaozhong Hu and Junxi Zhang Functional Central Limit Theorems for Stick-Breaking Priors . . . . . . . . . 1101--1120 Tianyu Cui and Aki Havulinna and Pekka Marttinen and Samuel Kaski Informative Bayesian Neural Network Priors for Weak Signals . . . . . . . . 1121--1151 Fan Yin and Weining Shen and Carter T. Butts Finite Mixtures of ERGMs for Modeling Ensembles of Networks . . . . . . . . . 1153--1191 Fangzheng Xie and Joshua Cape and Carey E. Priebe and Yanxun Xu Bayesian Sparse Spiked Covariance Model with a Continuous Matrix Shrinkage Prior 1193--1217 Mengyang Gu and Hanmo Li Gaussian Orthogonal Latent Factor Processes for Large Incomplete Matrices of Correlated Data . . . . . . . . . . . 1219--1244 Matthew Heiner and Athanasios Kottas Bayesian Nonparametric Density Autoregression with Lag Selection . . . 1245--1273 Sharmistha Guha and Jerome P. Reiter and Andrea Mercatanti Bayesian Causal Inference with Bipartite Record Linkage . . . . . . . . . . . . . 1275--1299 Sébastien Marmin and Maurizio Filippone Deep Gaussian Processes for Calibration of Computer Models (with Discussion) . . 1301--1350
Nathan Sandholtz and Yohsuke Miyamoto and Luke Bornn and Maurice A. Smith Inverse Bayesian Optimization: Learning Human Acquisition Functions in an Exploration vs Exploitation Search Task 1--24 Kyoungjae Lee and Lizhen Lin Scalable Bayesian High-dimensional Local Dependence Learning . . . . . . . . . . 25--47 Joshua Daniel Loyal and Yuguo Chen A Bayesian Nonparametric Latent Space Approach to Modeling Evolving Communities in Dynamic Networks . . . . 49--77 Jonathan H. Huggins and Jeffrey W. Miller Reproducible Model Selection Using Bagged Posteriors . . . . . . . . . . . 79--104 Pei-Shien Wu and Ryan Martin A Comparison of Learning Rate Selection Methods in Generalized Bayesian Inference . . . . . . . . . . . . . . . 105--132 Dennis Prangle and Sophie Harbisher and Colin S. Gillespie Bayesian Experimental Design Without Posterior Calculations: an Adversarial Approach . . . . . . . . . . . . . . . . 133--163 Samuel E. Jackson and Ian Vernon Efficient Emulation of Computer Models Utilising Multiple Known Boundaries of Differing Dimension . . . . . . . . . . 165--191 Olli Saarela and Christian Rohrbeck and Elja Arjas Bayesian Non-Parametric Ordinal Regression Under a Monotonicity Constraint . . . . . . . . . . . . . . . 193--221 Luiz M. Carvalho and Daniel A. M. Villela and Flavio C. Coelho and Leonardo S. Bastos Bayesian Inference for the Weights in Logarithmic Pooling . . . . . . . . . . 223--251 Riccardo Passeggeri On Quasi-Infinitely Divisible Random Measures . . . . . . . . . . . . . . . . 253--286 Ryan Giordano and Runjing Liu and Michael I. Jordan and Tamara Broderick Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian Nonparametrics (with Discussion) . . . . 287--366
Akihiko Nishimura and Marc A. Suchard Shrinkage with Shrunken Shoulders: Gibbs Sampling Shrinkage Model Posteriors with Guaranteed Convergence Rates . . . . . . 367--390 Marta Crispino and Isadora Antoniano-Villalobos Informative Priors for the Consensus Ranking in the Bayesian Mallows Model 391--414 Brandon Berman and Wesley O. Johnson and Weining Shen Normal Approximation for Bayesian Mixed Effects Binomial Regression Models . . . 415--435 Wael A. J. Al-Taie and Malcolm Farrow Bayes Linear Bayes Networks with an Application to Prognostic Indices . . . 437--463 Eunice Okome Obiang and Pascal Jézéquel and Frédéric Pro\"\ia A Bayesian Approach for Partial Gaussian Graphical Models With Sparsity . . . . . 465--490 Henry Shaowu Yuchi and Simon Mak and Yao Xie Bayesian Uncertainty Quantification for Low-Rank Matrix Completion . . . . . . . 491--518 Andrew Chapple and Yussef Bennani and Meredith Clement A Multi-Armed Bayesian Ordinal Outcome Utility-Based Sequential Trial with a Pairwise Null Clustering Prior . . . . . 519--546 Beniamino Hadj-Amar and Jack Jewson and Mark Fiecas Bayesian Approximations to Hidden Semi-Markov Models for Telemetric Monitoring of Physical Activity . . . . 547--577 Guanyu Hu and Junxian Geng and Yishu Xue and Huiyan Sang Bayesian Spatial Homogeneity Pursuit of Functional Data: An Application to the U.S. Income Distribution . . . . . . . . 579--605 Alexander Buchholz and Daniel Ahfock and Sylvia Richardson Distributed Computation for Marginal Likelihood based Model Choice . . . . . 607--638 David A. Stephens and Widemberg S. Nobre and Erica E. M. Moodie and Alexandra M. Schmidt Causal Inference Under Mis-Specification: Adjustment Based on the Propensity Score (with Discussion) 639--694
Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Editorial Board . . . . . . . . . . . . ?? Xi Chen and Farhan Feroz and Michael Hobson Bayesian Posterior Repartitioning for Nested Sampling . . . . . . . . . . . . 695--721 Hunanyan Sona and Rue Håvard and Plummer Martyn and Roos Ma\lgorzata Quantification of Empirical Determinacy: The Impact of Likelihood Weighting on Posterior Location and Spread in Bayesian Meta-Analysis Estimated with JAGS and INLA . . . . . . . . . . . . . 723--751 Andrea Cremaschi and Raffaele Argiento and Maria De Iorio and Cai Shirong and Yap Seng Chong and Michael Meaney and Michelle Kee Seemingly Unrelated Multi-State Processes: a Bayesian Semiparametric Approach . . . . . . . . . . . . . . . . 753--775 Andrés F. Barrientos and Deborshee Sen and Garritt L. Page and David B. Dunson Bayesian Inferences on Uncertain Ranks and Orderings: Application to Ranking Players and Lineups . . . . . . . . . . 777--806 Andrew A. Manderson and Robert J. B. Goudie Combining Chains of Bayesian Models with Markov Melding . . . . . . . . . . . . . 807--840 Philippe Gagnon Robustness Against Conflicting Prior Information in Regression . . . . . . . 841--864 L. F. South and C. J. Oates and A. Mira and C. Drovandi Regularized Zero-Variance Control Variates . . . . . . . . . . . . . . . . 865--888 Philip Greengard and Jeremy Hoskins and Charles C. Margossian and Jonah Gabry and Andrew Gelman and Aki Vehtari Fast Methods for Posterior Inference of Two-Group Normal-Normal Models . . . . . 889--907 Matthias Sachs and Deborshee Sen and Jianfeng Lu and David Dunson Posterior Computation with the Gibbs Zig-Zag Sampler . . . . . . . . . . . . 909--927 Michele Zemplenyi and Jeffrey W. Miller Bayesian Optimal Experimental Design for Inferring Causal Structure . . . . . . . 929--956 Mélodie Monod and Alexandra Blenkinsop and Andrea Brizzi and Yu Chen and Carlos Cardoso Correia Perello and Vidoushee Jogarah and Yuanrong Wang and Seth Flaxman and Samir Bhatt and Oliver Ratmann Regularised B-splines Projected Gaussian Process Priors to Estimate Time-trends in Age-specific COVID-19 Deaths . . . . 957--987 Matias Quiroz and David J. Nott and Robert Kohn Gaussian Variational Approximations for High-dimensional State Space Models . . 989--1016 Kwangmin Lee and Kyoungjae Lee and Jaeyong Lee Post-Processed Posteriors for Banded Covariances . . . . . . . . . . . . . . 1017--1040
Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Editorial Board . . . . . . . . . . . . ?? Yuexi Wang and Nicholas Polson and Vadim O. Sokolov Data Augmentation for Bayesian Deep Learning . . . . . . . . . . . . . . . . 1041--1069 Gemma E. Moran and John P. Cunningham and David M. Blei The Posterior Predictive Null . . . . . 1071--1097 Umberto Picchini and Umberto Simola and Jukka Corander Sequentially Guided MCMC Proposals for Synthetic Likelihoods and Correlated Synthetic Likelihoods . . . . . . . . . 1099--1129 Sharmistha Guha and Abel Rodriguez High-Dimensional Bayesian Network Classification with Network Global-Local Shrinkage Priors . . . . . . . . . . . . 1131--1160 Daniel R. Kowal and Antonio Canale Semiparametric Functional Factor Models with Bayesian Rank Selection . . . . . . 1161--1189 Xiaotian Zheng and Athanasios Kottas and Bruno Sansó Nearest-Neighbor Mixture Models for Non-Gaussian Spatial Processes . . . . . 1191--1222 Rafael Cabral and David Bolin and Håvard Rue Controlling the Flexibility of Non-Gaussian Processes Through Shrinkage Priors . . . . . . . . . . . . . . . . . 1223--1246 Danna L. Cruz-Reyes and Renato M. Assunção and Rosangela H. Loschi Inducing High Spatial Correlation with Randomly Edge-Weighted Neighborhood Graphs . . . . . . . . . . . . . . . . . 1247--1281 Georgios Aristotelous and Theodore Kypraios and Philip D. O'Neill Posterior Predictive Checking for Partially Observed Stochastic Epidemic Models . . . . . . . . . . . . . . . . . 1283--1310 Willem van den Boom and Maria De Iorio and Alexandros Beskos Bayesian Learning of Graph Substructures 1311--1339 Hongmei Zhang and Xianzheng Huang and Hasan Arshad Comparing Dependent Undirected Gaussian Networks . . . . . . . . . . . . . . . . 1341--1366 Ian Vernon and John Paul Gosling A Bayesian Computer Model Analysis of Robust Bayesian Analyses . . . . . . . . 1367--1399
Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Editorial Board . . . . . . . . . . . . ?? Asael Fabian Martínez Bayesian Estimation of Topological Features of Persistence Diagrams . . . . 1--20 José J. Quinlan and Garritt L. Page and Luis M. Castro Joint Random Partition Models for Multivariate Change Point Analysis . . . 21--48 Giorgio Paulon and Peter Müller and Victor G. Sal y Rosas Bayesian Nonparametric Bivariate Survival Regression for Current Status Data . . . . . . . . . . . . . . . . . . 49--75 Yasuyuki Hamura and Takahiro Onizuka and Shintaro Hashimoto and Shonosuke Sugasawa Sparse Bayesian Inference on Gamma-Distributed Observations Using Shape-Scale Inverse-Gamma Mixtures . . . 77--97 Xuan Cao and Kyoungjae Lee Bayesian Inference on Hierarchical Nonlocal Priors in Generalized Linear Models . . . . . . . . . . . . . . . . . 99--122 Fadhel Ayed and Juho Lee and François Caron The Normal-Generalised Gamma-Pareto Process: A Novel Pure-Jump Lévy Process with Flexible Tail and Jump-Activity Properties . . . . . . . . . . . . . . . 123--152 Chetkar Jha and Dongchu Sun A General Scheme for Deriving Conditional Reference Priors . . . . . . 153--179 Henrique Bolfarine and Carlos M. Carvalho and Hedibert F. Lopes and Jared S. Murray Decoupling Shrinkage and Selection in Gaussian Linear Factor Analysis . . . . 181--203 Yuki Ohnishi and Arman Sabbaghi A Bayesian Analysis of Two-Stage Randomized Experiments in the Presence of Interference, Treatment Nonadherence, and Missing Outcomes . . . . . . . . . . 205--234 Zijian Zeng and Meng Li and Marina Vannucci Bayesian Image-on-Scalar Regression with a Spatial Global-Local Spike-and-Slab Prior . . . . . . . . . . . . . . . . . 235--260 Christian Staerk and Maria Kateri and Ioannis Ntzoufras A Metropolized Adaptive Subspace Algorithm for High-Dimensional Bayesian Variable Selection . . . . . . . . . . . 261--291 Dennis Christensen Inference for Bayesian Nonparametric Models with Binary Response Data via Permutation Counting . . . . . . . . . . 293--318 Arash Amini and Marina Paez and Lizhen Lin Hierarchical Stochastic Block Model for Community Detection in Multiplex Networks . . . . . . . . . . . . . . . . 319--345
Anonymous Table of Contents . . . . . . . . . . . ?? Anonymous Editorial Board . . . . . . . . . . . . ?? Federico Camerlenghi and Riccardo Corradin and Andrea Ongaro Contaminated Gibbs-Type Priors . . . . . 347--376 Roberto Ascari and Agnese Maria Di Brisco and Sonia Migliorati and Andrea Ongaro A Multivariate Mixture Regression Model for Constrained Responses . . . . . . . 377--405 Hyun Bin Kang and Yeo Jin Jung and Jaewoo Park Fast Bayesian Functional Regression for Non-Gaussian Spatial Data . . . . . . . 407--438 Shai Gorsky and Cliburn Chan and Li Ma Coarsened Mixtures of Hierarchical Skew Normal Kernels for Flow and Mass Cytometry Analyses . . . . . . . . . . . 439--463 Yang Liu and Robert J. B. Goudie Generalized Geographically Weighted Regression Model within a Modularized Bayesian Framework . . . . . . . . . . . 465--500 Ioannis Papageorgiou and Ioannis Kontoyiannis Posterior Representations for Bayesian Context Trees: Sampling, Estimation and Convergence . . . . . . . . . . . . . . 501--529 Olha Bodnar and Taras Bodnar Objective Bayesian Meta-Analysis Based on Generalized Marginal Multivariate Random Effects Model . . . . . . . . . . 531--564 Andrew Magee and Michael Karcher and Frederick A. Matsen IV and Volodymyr M. Minin How Trustworthy Is Your Tree? Bayesian Phylogenetic Effective Sample Size Through the Lens of Monte Carlo Error 565--593 Qian Zhang and Faming Liang Bayesian Analysis of Exponential Random Graph Models Using Stochastic Gradient Markov Chain Monte Carlo . . . . . . . . 595--621 Maria Masotti and Lin Zhang and Gregory J. Metzger and Joseph S. Koopmeiners A General Bayesian Functional Spatial Partitioning Method for Multiple Region Discovery Applied to Prostate Cancer MRI 623--647 Karl L. Hallgren and Nicholas A. Heard and Melissa J. M. Turcotte Changepoint Detection on a Graph of Time Series . . . . . . . . . . . . . . . . . 649--676
Hugo L. Hammer and Michael A. Riegler and Håkon Tjelmeland Approximate Bayesian Inference Based on Expected Evaluation . . . . . . . . . . 677--698 Fabian Dablander and Don van den Bergh and Eric-Jan Wagenmakers and Alexander Ly Default Bayes Factors for Testing the (In)equality of Several Population Variances . . . . . . . . . . . . . . . 699--723 Marco Gramatica and Silvia Liverani and Peter Congdon Structure Induced by a Multiple Membership Transformation on the Conditional Autoregressive Model . . . . 725--749 Anna Pajor and Jacek Osiewalski and Justyna Wróblewska and Lukasz Kwiatkowski Bayesian ex Post Evaluation of Recursive Multi-Step-Ahead Density Prediction . . 751--783 Jonathan Boss and Jyotishka Datta and Xin Wang and Sung Kyun Park and Jian Kang and Bhramar Mukherjee Group Inverse-Gamma Gamma Shrinkage for Sparse Linear Models with Block-Correlated Regressors . . . . . . 785--814 Chirag Modi and Alex Barnett and Bob Carpenter Delayed rejection Hamiltonian Monte Carlo for sampling multiscale distributions . . . . . . . . . . . . . 815--842 Saverio Ranciati and Veronica Vinciotti and Ernst C. Wit and Giuliano Galimberti Mixtures of Probit Regression Models with Overlapping Clusters . . . . . . . 843--867 Kyoungjae Lee and Kisung You and Lizhen Lin Bayesian Optimal Two-Sample Tests for High-Dimensional Gaussian Populations 869--893 Xuan Cao and Kyoungjae Lee Consistent and Scalable Bayesian Joint Variable and Graph Selection for Disease Diagnosis Leveraging Functional Brain Network . . . . . . . . . . . . . . . . 895--923 Harlan Campbell and Paul Gustafson Defining a Credible Interval Is Not Always Possible with ``Point-Null'' Priors: a Lesser-Known Correlate of the Jeffreys--Lindley Paradox (with Discussion) . . . . . . . . . . . . . . 925--984
Erica M. Porter and Christopher T. Franck and Marco A. R. Ferreira Objective Bayesian Model Selection for Spatial Hierarchical Models with Intrinsic Conditional Autoregressive Priors . . . . . . . . . . . . . . . . . 985--1011 Mike West Perspectives on Constrained Forecasting 1013--1039 Rebecca Souza and Lilia Costa and Marina Paez and João Sato and Candida Barreto Dynamic Graphical Models with Variable Selection for Effective Connectivity . . 1041--1065 Mingrui Liang and Matthew D. Koslovsky and Emily T. Hébert and Michael S. Businelle and Marina Vannucci Functional Concurrent Regression Mixture Models Using Spiked Ewens--Pitman Attraction Priors . . . . . . . . . . . 1067--1095 Giorgio Paulon and Peter Müller and Abhra Sarkar Bayesian Semiparametric Hidden Markov Tensor Models for Time Varying Random Partitions with Local Variable Selection 1097--1127 Petrus Mikkola and Osvaldo A. Martin and Suyog Chandramouli and Marcelo Hartmann and Oriol Abril Pla and Owen Thomas and Henri Pesonen and Jukka Corander and Aki Vehtari and Samuel Kaski and Paul-Christian Bürkner and Arto Klami Prior Knowledge Elicitation: The Past, Present, and Future . . . . . . . . . . 1129--1161 Anupreet Porwal and Abel Rodríguez Laplace Power-Expected-Posterior Priors for Logistic Regression . . . . . . . . 1163--1186 Tin D. Nguyen and Jonathan Huggins and Lorenzo Masoero and Lester Mackey and Tamara Broderick Independent Finite Approximations for Bayesian Nonparametric Inference . . . . 1187--1224 Gwangsu Kim and Chang D Yoo and Yongdai Kim Bayesian Analysis of the Generalized Additive Proportional Hazards Model: Asymptotic Studies . . . . . . . . . . . 1225--1243 Felipe J Medina-Aguayo and Xavier Didelot and Richard G Everitt Speeding up Inference of Homologous Recombination in Bacteria . . . . . . . 1245--1275 Ilsang Ohn and Lizhen Lin and Yongdai Kim A Bayesian Sparse Factor Model with Adaptive Posterior Concentration . . . . 1277--1301