beginfig(1); a=.7in; b=0.5in; z0=(0,0); z1=(a,0); z2=(0,b); z0=.5[z1,z3]=.5[z2,z4]; draw z1..z2..z3..z4..cycle; drawarrow z0..z1; drawarrow z0..z2; label.top(btex $a$ etex, .5[z0,z1]); label.lft(btex $b$ etex, .5[z0,z2]); endfig; beginfig(2); h=2in; w=2.7in; path p[], q[], pp; for i=1.5,2,4: ii := i**2; p[i] = (w/ii,h){1/ii,-1}...(w/i,h/i)...(w,h/ii){1,-1/ii}; endfor for i=.5,1.5: q[i] = origin..(w,i*h) cutafter p1.5; endfor pp = buildcycle(q0.5, p2, q1.5, p4); fill pp withcolor .8white; z0=center pp; picture lab; lab=thelabel(btex $f>0$ etex, z0); unfill bbox lab; draw lab; draw q0.5; draw p2; draw q1.5; draw p4; makelabel.top(btex $P$ etex, p2 intersectionpoint q0.5); makelabel.rt(btex $Q$ etex, p2 intersectionpoint q1.5); endfig; beginfig(3); 3.2scf = 2.4in; path fun; # = .1; % Keep the function single-valued fun = ((0,-1#)..(1,.5#){right}..(1.9,.2#){right}..{curl .1}(3.2,2#)) scaled scf yscaled(1/#); vardef vertline primary x = (x,-infinity)..(x,infinity) enddef; primarydef f atx x = (f intersectionpoint vertline x) enddef; primarydef f whenx x = xpart(f intersectiontimes vertline x) enddef; z1a = (2.5scf,0); z1 = fun atx x1a; y2a=0; z1-z2a=whatever*direction fun whenx x1 of fun; z2 = fun atx x2a; y3a=0; z2-z3a=whatever*direction fun whenx x2 of fun; draw fun withpen pencircle scaled 1pt; drawarrow (0,0)..(3.2scf,0); label.bot(btex $x_1$ etex, z1a); draw z1a..z1 dashed evenly; makelabel(nullpicture, z1); draw z1..z2a withpen pencircle scaled .3; label.bot(btex $x_2$ etex, z2a); draw z2a..z2 dashed evenly; makelabel(nullpicture, z2); draw z2..z3a withpen pencircle scaled .3; label.bot(btex $x_3$ etex, z3a); endfig; beginfig(4); for i=0 upto 2: z[i]=(0,40i); z[i+3]-z[i]=(100,30); endfor pickup pencircle scaled 18; def gray = withcolor .8white enddef; draw z0..z3 gray; linecap:=butt; draw z1..z4 gray; linecap:=squared; draw z2..z5 gray; labels.top(0,1,2,3,4,5); endfig; linecap:=rounded; beginfig(5); for i=0 upto 2: z[i]=(0,50i); z[i+3]-z[i]=(60,40); z[i+6]-z[i]=(120,0); endfor pickup pencircle scaled 24; def gray = withcolor .8white enddef; draw z0--z3--z6 gray; linejoin:=mitered; draw z1..z4--z7 gray; linejoin:=beveled; draw z2..z5--z8 gray; labels.bot(0,1,2,3,4,5,6,7,8); endfig; linejoin:=rounded; input boxes \beginfig(6); fill unitsquare xscaled 1.1in yscaled .7in withcolor .9white; boxit(currentpicture); dx = dy = .25in; clearit; drawboxed(); forsuffixes $=n,c: makelabel.top(str $, $); endfor makelabel.bot("s",s); forsuffixes $=ne,e,se: makelabel.rt(str $, $); endfor forsuffixes $=nw,w,sw: makelabel.lft(str $, $); endfor pickup pencircle scaled .3bp; vardef larrow@#(expr a, da, s) = drawdblarrow a..a+da; label@#(s,a+.5da); enddef; larrow.rt(n, (0,-dy), "dy"); larrow.rt(s, (0,dy), "dy"); larrow.top(e, (-dx,0), "dx"); larrow.top(w, (dx,0), "dx"); endfig; beginfig(7); boxjoin(a.se=b.sw; a.ne=b.nw ); boxit.a(btex $\cdots$ etex); boxit.ni(btex $n_i$ etex); boxit.di(btex $d_i$ etex); boxit.nii(btex $n_{i+1}$ etex); boxit.dii(btex $d_{i+1}$ etex); boxit.aa(pic_.a); boxit.nk(btex $n_k$ etex); boxit.dk(btex $d_k$ etex); di.dy = 2; drawboxed(a,ni,di,nii,dii,aa,nk,dk); label.lft("ndtable:", a.w); boxjoin(a.sw=b.nw; a.se=b.ne); interim defaultdy:=7; boxit.ba(); boxit.bb(); boxit.bc(); boxit.bd(btex $\vdots$ etex); boxit.be(); boxit.bf(); bd.dx = 8; ba.ne = a.sw - (15,10); drawboxed(ba,bb,bc,bd,be,bf); label.lft("hashtab:", ba.w); def ndblock suffix $ = boxjoin(a.sw=b.nw; a.se=b.ne); forsuffixes $$=$a,$b,$c: boxit$$(); ($$dx,$$dy)=(5.5,4); endfor; enddef; ndblock nda; ndblock ndb; ndblock ndc; nda.a.c - bb.c = ndb.a.c - nda.c.c = (whatever,0); xpart ndb.c.se = xpart ndc.a.ne = xpart di.c; ndc.a.c - be.c = (whatever,0); drawboxes(nda.a,nda.b,nda.c, ndb.a,ndb.b,ndb.c, ndc.a,ndc.b,ndc.c); drawarrow bb.c .. nda.a.w; drawarrow be.c .. ndc.a.w; drawarrow nda.c.c .. ndb.a.w; drawarrow nda.a.c{right}..{curl0}ni.c cutafter bpath ni; drawarrow nda.b.c{right}..{curl0}di.c cutafter bpath di; drawarrow ndc.a.c{right}..{curl0}nii.c cutafter bpath nii; drawarrow ndc.b.c{right}..{curl0}dii.c cutafter bpath dii; drawarrow ndb.a.c{right}..nk.c cutafter bpath nk; drawarrow ndb.b.c{right}..dk.c cutafter bpath dk; x.ptr = xpart aa.c; y.ptr = ypart ndc.a.ne; drawarrow subpath (0,.7) of (z.ptr..{left}ndc.c.c) dashed evenly; label.rt(btex ndblock etex, z.ptr); endfig; beginfig(8) interim circmargin := .07in; fill unitsquare xscaled 1.1in yscaled .7in withcolor .9white; circleit(currentpicture); dx = dy; clearit; drawboxed(); forsuffixes $=n,c: makelabel.top(str $, $); endfor makelabel.bot("s",s); makelabel.rt("e", e); makelabel.lft("w", w); pickup pencircle scaled .3bp; vardef larrow@#(expr a, da, s) = drawdblarrow a..a+da; label@#(s,a+.5da); enddef; larrow.rt(n, (0,-dy), "dy"); larrow.rt(s, (0,dy), "dy"); larrow.top(e, (-dx,0), "dx"); larrow.top(w, (dx,0), "dx"); endfig; beginfig(9); vardef cuta(suffix a,b) expr p = drawarrow p cutbefore bpath.a cutafter bpath.b; point .5*length p of p enddef; vardef self@# expr p = cuta(@#,@#) @#.c{curl0}..@#.c+p..{curl0}@#.c enddef; verbatimtex \def\stk#1#2{$\displaystyle{\matrix{#1\cr#2\cr}}$} etex circleit.aa("Start"); aa.dx=aa.dy; circleit.bb(btex \stk B{(a|b)^*a} etex); circleit.cc(btex \stk C{b^*} etex); circleit.dd(btex \stk D{(a|b)^*ab} etex); circleit.ee("Stop"); ee.dx=ee.dy; numeric hsep; bb.c-aa.c = dd.c-bb.c = ee.c-dd.c = (hsep,0); cc.c-bb.c = (0,.8hsep); xpart(ee.e - aa.w) = 3.8in; drawboxed(aa,bb,cc,dd,ee); label.ulft(btex$b$etex, cuta(aa,cc) aa.c{dir50}..cc.c); label.top(btex$b$etex, self.cc(0,30pt)); label.rt(btex$a$etex, cuta(cc,bb) cc.c..bb.c); label.top(btex$a$etex, cuta(aa,bb) aa.c..bb.c); label.llft(btex$a$etex, self.bb(-20pt,-35pt)); label.top(btex$b$etex, cuta(bb,dd) bb.c..dd.c); label.top(btex$b$etex, cuta(dd,ee) dd.c..ee.c); label.lrt(btex$a$etex, cuta(dd,bb) dd.c..{dir140}bb.c); label.bot(btex$a$etex, cuta(ee,bb) ee.c..tension1.3 ..{dir115}bb.c); label.urt(btex$b$etex, cuta(ee,cc) ee.c{(cc.c-ee.c)rotated-15}..cc.c); endfig; end