% \iffalse meta-comment % %% File: l3text.dtx % % Copyright (C) 2020-2024 The LaTeX Project % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "l3kernel bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/latex3/latex3 % % for those people who are interested. % %<*driver> \documentclass[full,kernel]{l3doc} \begin{document} \DocInput{\jobname.dtx} \end{document} % % \fi % % \title{^^A % The \pkg{l3text} module\\ Text processing^^A % } % % \author{^^A % The \LaTeX{} Project\thanks % {^^A % E-mail: % \href{mailto:latex-team@latex-project.org} % {latex-team@latex-project.org}^^A % }^^A % } % % \date{Released 2024-11-02} % % \maketitle % % \begin{documentation} % % This module deals with manipulation of (formatted) text; such material is % comprised of a restricted set of token list content. The functions provided % here concern conversion of textual content for example in case changing, % generation of bookmarks and extraction to tags. All of the major functions % operate by expansion. Begin-group and end-group tokens in the \meta{text} % are normalized and become |{| and |}|, respectively. % % \section{Expanding text} % % \begin{function}[EXP, added = 2020-01-02, updated = 2023-06-09] % {\text_expand:n} % \begin{syntax} % \cs{text_expand:n} \Arg{text} % \end{syntax} % Takes user input \meta{text} and expands the content. % Protected commands (typically % formatting) are left in place, and no processing of % math mode material (as delimited by pairs given in % \cs{l_text_math_delims_tl} or as the argument to commands listed % in \cs{l_text_math_arg_tl}) takes place. Commands which are neither engine- % nor \LaTeX{}-protected are expanded exhaustively. % Any commands listed in \cs{l_text_expand_exclude_tl} are excluded from % expansion, as are those in \cs{l_text_case_exclude_arg_tl} and % \cs{l_text_math_arg_tl}. % \end{function} % % \begin{function}[added = 2020-01-22] % { % \text_declare_expand_equivalent:Nn , % \text_declare_expand_equivalent:cn % } % \begin{syntax} % \cs{text_declare_expand_equivalent:Nn} \meta{cmd} \Arg{replacement} % \end{syntax} % Declares that the \meta{replacement} tokens should be used whenever the % \meta{cmd} (a single token) is encountered. The \meta{replacement} tokens % should be expandable. A token can be \enquote{replaced} by itself if % the defined replacement wraps it in \cs{exp_not:n}, for example % \begin{verbatim} % \text_declare_expand_equivalent:Nn \' { \exp_not:n { \' } } % \end{verbatim} % \end{function} % % \section{Case changing} % % \begin{function}[EXP, added = 2019-11-20, updated = 2023-07-08] % { % \text_lowercase:n, \text_uppercase:n, \text_titlecase_all:n, % \text_titlecase_first:n, % \text_lowercase:nn, \text_uppercase:nn, \text_titlecase_all:nn, % \text_titlecase_first:nn % } % \begin{syntax} % \cs{text_uppercase:n} \Arg{tokens} % \cs{text_uppercase:nn} \Arg{BCP-47} \Arg{tokens} % \end{syntax} % Takes user input \meta{text} first applies \cs{text_expand:n}, then % transforms the case of character tokens as specified by the % function name. The category code of letters are not changed by this % process when Unicode engines are used; in $8$-bit engines, case changed % charters in the ASCII range will have the current prevailing category code, % while those outside of it will be represented by active characters. % \end{function} % % Upper- and lowercase have the obvious meanings. Titlecasing may be regarded % informally as converting the first \emph{non-space} character of the % \meta{tokens} to uppercase. However, the process is more complex % than this as there are some situations where a single lowercase character % maps to a special form, for example \texttt{ij} in Dutch which becomes % \texttt{IJ}. There are two functions available for titlecasing: one which % applies the change to each \enquote{word} and a second which only applies % at the start of the input. (Here, \enquote{word} boundaries are spaces: % at present, full Unicode word breaking is not attempted.) % % Importantly, notice that these functions are intended for working with % user \emph{text for typesetting}. For case changing programmatic data see % the \pkg{l3str} module and discussion there of \cs{str_lowercase:n}, % \cs{str_uppercase:n} and \cs{str_casefold:n}. % % Case changing does not take place within math mode material so for example % \begin{verbatim} % \text_uppercase:n { Some~text~$y = mx + c$~with~{Braces} } % \end{verbatim} % becomes % \begin{verbatim} % SOME TEXT $y = mx + c$ WITH {BRACES} % \end{verbatim} % % The first mandatory argument of commands listed in % \cs{l_text_case_exclude_arg_tl} % is excluded from case changing; the latter are entirely non-textual % content (such as labels). % % The standard mappings % here follow those defined by the \href{http://www.unicode.org}^^A % {Unicode Consortium} in \texttt{UnicodeData.txt} and % \texttt{SpecialCasing.txt}. For \pTeX{}, only the ASCII range is % covered as the engine treats input outside of this range as east Asian. % % Locale-sensitive conversions are enabled using the \meta{BCP-47} % argument, and follow Unicode Consortium guidelines. Currently, the % locale strings recognized for special handling are as follows. % \begin{itemize} % \item Armenian (\texttt{hy} and \texttt{hy-x-yiwn}) % The setting \texttt{hy} maps the codepoint U+0587, the ligature of % letters ech and yiwn, to the codepoints for capital ech and vew % when uppercasing: this follows the spelling reform which is used % in Armenia. The alternative \texttt{hy-x-yiwn} maps U+0587 to % capital ech and yiwn on uppercasing (also the output if Armenian % is not selected at all). % \item Azeri and Turkish (\texttt{az} and \texttt{tr}). % The case pairs I/i-dotless and I-dot/i are activated for these % languages. The combining dot mark is removed when lowercasing % I-dot and introduced when upper casing i-dotless. % \item German (\texttt{de-x-eszett}). % An alternative mapping for German in which the lowercase % \emph{Eszett} maps to a \emph{gro\ss{}es Eszett}. % \item Greek (\texttt{el}). % Removes accents from Greek letters when uppercasing; titlecasing % leaves accents in place. A variant \texttt{el-x-iota} is available % which converts the \textit{ypogegrammeni} (subscript muted iota) % to capital iota when uppercasing: the standard version retains the % subscript versions. % \item Lithuanian (\texttt{lt}). % The lowercase letters i and j should retain a dot above when the % accents grave, acute or tilde are present. This is implemented for % lowercasing of the relevant uppercase letters both when input as % single Unicode codepoints and when using combining accents. The % combining dot is removed when uppercasing in these cases. Note that % \emph{only} the accents used in Lithuanian are covered: the behaviour % of other accents are not modified. % \item Medieval Latin (\texttt{la-x-medieval}). % The characters |u| and |V| are interchanged on case changing. % \item Dutch (\texttt{nl}). % Capitalisation of \texttt{ij} at the beginning of titlecased % input produces \texttt{IJ} rather than \texttt{Ij}. % \end{itemize} % % Determining whether non-letter characters at the start of text should count % as the uppercase element is controllable. When % \cs{l_text_titlecase_check_letter_bool} is \texttt{true}, codepoints which are % not letters (Unicode general category \texttt{L}) are not changed, and only % the first \emph{letter} is uppercased. % When \cs{l_text_titlecase_check_letter_bool} is \texttt{false}, the first % codepoint is uppercased, irrespective of the general code of the character. % % \begin{function}[added = 2022-07-04] % {\text_declare_case_equivalent:Nn} % \begin{syntax} % \cs{text_declare_case_equivalent:Nn} \meta{cmd} \Arg{replacement} % \end{syntax} % Declares that the \meta{replacement} tokens should be used whenever the % \meta{cmd} (a single token) is encountered during case changing. % \end{function} % % \begin{function}[added = 2023-04-11, updated = 2023-04-20] % { % \text_declare_lowercase_mapping:nn , % \text_declare_lowercase_mapping:nnn , % \text_declare_titlecase_mapping:nn , % \text_declare_titlecase_mapping:nnn , % \text_declare_uppercase_mapping:nn , % \text_declare_uppercase_mapping:nnn % } % \begin{syntax} % \cs{text_declare_lowercase_mapping:nn} \Arg{codepoint} \Arg{replacement} % \cs{text_declare_lowercase_mapping:nnn} \Arg{BCP-47} \Arg{codepoint} \\ % ~~\Arg{replacement} % \end{syntax} % Declares that the \meta{replacement} tokens should be used when case mapping % the \meta{codepoint}, rather than the standard mapping given in the % Unicode data files. The \texttt{nnn} version takes a BCP-47 tag, which % can be used to specify that the customisation only applies to that % locale. % \end{function} % % \begin{function}[EXP, added = 2022-07-04]{\text_case_switch:nnnn} % \begin{syntax} % \cs{text_case_switch:nnnn} \Arg{normal} \Arg{upper} \Arg{lower} \Arg{title} % \end{syntax} % Context-sensitive function which will expand to one of the \meta{normal}, % \meta{upper}, \meta{lower} or \meta{title} tokens depending on the current % case changing operation. Outside of case changing, the \meta{normal} tokens % are produced. Within case changing, the appropriate mapping tokens are % inserted. % \end{function} % % \section{Removing formatting from text} % % \begin{function}[EXP, added = 2020-03-05, updated = 2020-05-14]{\text_purify:n} % \begin{syntax} % \cs{text_purify:n} \Arg{text} % \end{syntax} % Takes user input \meta{text} and expands as described for % \cs{text_expand:n}, then removes all functions from the resulting % text. Math mode material (as delimited by pairs given in % \cs{l_text_math_delims_tl} or as the argument to commands listed in % \cs{l_text_math_arg_tl}) is left contained in a pair of |$| delimiters. % Non-expandable functions present in the \meta{text} must either have a % defined equivalent (see \cs{text_declare_purify_equivalent:Nn}) or will % be removed from the result. Implicit tokens are converted to their % explicit equivalent. % \end{function} % % \begin{function}[added = 2020-03-05] % { % \text_declare_purify_equivalent:Nn , % \text_declare_purify_equivalent:Ne % } % \begin{syntax} % \cs{text_declare_purify_equivalent:Nn} \meta{cmd} \Arg{replacement} % \end{syntax} % Declares that the \meta{replacement} tokens should be used whenever the % \meta{cmd} (a single token) is encountered. The \meta{replacement} tokens % should be expandable. % \end{function} % % \section{Control variables} % % \begin{variable}{\l_text_math_arg_tl} % Lists commands present in the \meta{text} where the argument of the % command should be treated as math mode material. The treatment here is % similar to \cs{l_text_math_delims_tl} but for a command rather than % paired delimiters. % \end{variable} % % \begin{variable}{\l_text_math_delims_tl} % Lists pairs of tokens which delimit (in-line) math mode content; such % content \emph{may} be excluded from processing. % \end{variable} % % \begin{variable}{\l_text_case_exclude_arg_tl} % Lists commands where the first mandatory argument is excluded from % case changing. % \end{variable} % % \begin{variable}{\l_text_expand_exclude_tl} % Lists commands which are excluded from expansion. This protection % includes everything up to and including their first braced argument. % \end{variable} % % \begin{variable}{\l_text_titlecase_check_letter_bool} % Controls how the start of titlecasing is handled: when \texttt{true}, the % first \emph{letter} in text is considered. The standard setting is % \texttt{true}. % \end{variable} % % \section{Mapping to graphemes} % % Grapheme splitting is implemented using the algorithm described in Unicode % Standard Annex \#29. This includes support for extended grapheme clusters. % Text starting with a line feed or carriage return character will drop this % due to standard \TeX{} processing. At present extended pictograms are % not supported: these may be added in a future release. % % \begin{function}[rEXP, added = 2022-08-04]{\text_map_function:nN} % \begin{syntax} % \cs{text_map_function:nN} \Arg{text} \meta{function} % \end{syntax} % Takes user input \meta{text} and expands as described for % \cs{text_expand:n}, then maps over the \emph{graphemes} within the % result, passing each grapheme to the \meta{function}. % Broadly a grapheme is a \enquote{user perceived character}: % the Unicode Consortium describe the decomposition of input to % graphemes in depth, and the approach used here implements that % algorithm. The \meta{function} should accept one argument as \meta{balanced % text}: this may be comprise codepoints or may be a control sequence. % With $8$-bit engines, the codepoint(s) themselves may of course be % made up of multiple bytes: the mapping will pass the correct codepoints % independent of the engine in use. % See also \cs{text_map_inline:nn}. % \end{function} % % \begin{function}[added = 2022-08-04]{\text_map_inline:nn} % \begin{syntax} % \cs{text_map_inline:nn} \Arg{text} \Arg{inline function} % \end{syntax} % Takes user input \meta{text} and expands as described for % \cs{text_expand:n}, then maps over the \emph{graphemes} within the % result, passing each grapheme to the \meta{inline function}. % Broadly a grapheme is a \enquote{user perceived character}: % the Unicode Consortium describe the decomposition of input to % graphemes in depth, and the approach used here implements that % algorithm. The \meta{inline function} should consist of code which % receives the grapheme as \meta{balanced % text}: this may be comprise codepoints or may be a control sequence. % With $8$-bit engines, the codepoint(s) themselves may of course be % made up of multiple bytes: the mapping will pass the correct codepoints % independent of the engine in use. % See also \cs{text_map_function:nN}. % \end{function} % % \begin{function}[rEXP, added = 2022-08-04] % {\text_map_break:, \text_map_break:n} % \begin{syntax} % \cs{text_map_break:} % \cs{text_map_break:n} \Arg{code} % \end{syntax} % Used to terminate a \cs[no-index]{text_map_\ldots} function before all % entries in the \meta{text} have been processed. This % normally takes place within a conditional statement. % \end{function} % % \end{documentation} % % \begin{implementation} % % \section{\pkg{l3text} implementation} % % \begin{macrocode} %<*package> % \end{macrocode} % % \begin{macrocode} %<@@=text> % \end{macrocode} % % \begin{macrocode} \cs_generate_variant:Nn \tl_if_head_eq_meaning_p:nN { o } % \end{macrocode} % % \subsection{Internal auxiliaries} % % \begin{variable}{\s_@@_stop} % Internal scan marks. % \begin{macrocode} \scan_new:N \s_@@_stop % \end{macrocode} % \end{variable} % % \begin{variable}{\q_@@_nil} % Internal quarks. % \begin{macrocode} \quark_new:N \q_@@_nil % \end{macrocode} % \end{variable} % % \begin{macro}[pTF]{\@@_quark_if_nil:n} % Branching quark conditional. % \begin{macrocode} \__kernel_quark_new_conditional:Nn \@@_quark_if_nil:n { TF } % \end{macrocode} % \end{macro} % % \begin{variable}{\q_@@_recursion_tail,\q_@@_recursion_stop} % Internal recursion quarks. % \begin{macrocode} \quark_new:N \q_@@_recursion_tail \quark_new:N \q_@@_recursion_stop % \end{macrocode} % \end{variable} % % \begin{macro}[EXP]{\@@_use_i_delimit_by_q_recursion_stop:nw} % Functions to gobble up to a quark. % \begin{macrocode} \cs_new:Npn \@@_use_i_delimit_by_q_recursion_stop:nw #1 #2 \q_@@_recursion_stop {#1} % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_if_q_recursion_tail_stop_do:Nn} % \begin{macro}[EXP]{\@@_if_q_recursion_tail_stop_do:nn} % Functions to query recursion quarks. % \begin{macrocode} \__kernel_quark_new_test:N \@@_if_q_recursion_tail_stop_do:Nn \__kernel_quark_new_test:N \@@_if_q_recursion_tail_stop_do:nn % \end{macrocode} % \end{macro} % \end{macro} % % \begin{variable}{\s_@@_recursion_tail,\s_@@_recursion_stop} % Internal scan marks quarks. % \begin{macrocode} \scan_new:N \s_@@_recursion_tail \scan_new:N \s_@@_recursion_stop % \end{macrocode} % \end{variable} % % \begin{macro}[EXP]{\@@_use_i_delimit_by_s_recursion_stop:nw} % Functions to gobble up to a scan mark. % \begin{macrocode} \cs_new:Npn \@@_use_i_delimit_by_s_recursion_stop:nw #1 #2 \s_@@_recursion_stop {#1} % \end{macrocode} % \end{macro} % % \begin{macro}[EXP]{\@@_if_s_recursion_tail_stop_do:Nn} % Functions to query recursion scan marks. Slower than a quark % test but needed to avoid issues in the outer expansion loop % with unterminated \tn{romannumeral} primitives. % \begin{macrocode} \cs_new:Npn \@@_if_s_recursion_tail_stop_do:Nn #1 { \bool_lazy_and:nnTF { \cs_if_eq_p:NN \s_@@_recursion_tail #1 } { \str_if_eq_p:nn { \s_@@_recursion_tail } {#1} } { \@@_use_i_delimit_by_s_recursion_stop:nw } { \use_none:n } } % \end{macrocode} % \end{macro} % % \subsection{Utilities} % % \begin{macro}[EXP] % { % \@@_token_to_explicit:N , % \@@_token_to_explicit_char:N , % \@@_token_to_explicit_cs:N , % \@@_token_to_explicit_cs_aux:N % } % \begin{macro}[EXP]{\@@_token_to_explicit:n} % \begin{macro}[EXP] % { % \@@_token_to_explicit_auxi:w , % \@@_token_to_explicit_auxii:w , % \@@_token_to_explicit_auxiii:w % } % The idea here is to take a token and ensure that if it's an implicit % char, we output the explicit version. Otherwise, the token needs to be % unchanged. First, we have to split between control sequences and everything % else. % \begin{macrocode} \group_begin: \char_set_catcode_active:n { 0 } \cs_new:Npn \@@_token_to_explicit:N #1 { \if_catcode:w \exp_not:N #1 \if_catcode:w \scan_stop: \exp_not:N #1 \scan_stop: \else: \exp_not:N ^^@ \fi: \exp_after:wN \@@_token_to_explicit_cs:N \else: \exp_after:wN \@@_token_to_explicit_char:N \fi: #1 } \group_end: % \end{macrocode} % For control sequences, we can check for macros versus other cases using % \cs{if_meaning:w}, then explicitly check for \tn{chardef} and % \tn{mathchardef}. % \begin{macrocode} \cs_new:Npn \@@_token_to_explicit_cs:N #1 { \exp_after:wN \if_meaning:w \exp_not:N #1 #1 \exp_after:wN \use:nn \exp_after:wN \@@_token_to_explicit_cs_aux:N \else: \exp_after:wN \exp_not:n \fi: {#1} } \cs_new:Npn \@@_token_to_explicit_cs_aux:N #1 { \bool_lazy_or:nnTF { \token_if_chardef_p:N #1 } { \token_if_mathchardef_p:N #1 } { \char_generate:nn {#1} { \if_int_compare:w \char_value_catcode:n {#1} = 10 \exp_stop_f: 10 \else: 12 \fi: } } {#1} } % \end{macrocode} % For character tokens, we need to filter out the implicit characters from % those that are explicit. That's done here, then if necessary we work out % the category code and generate the char. To avoid issues with alignment % tabs, that one is done by elimination rather than looking up the code % explicitly. The trick with finding the charcode is that the \TeX{} % messages are either \texttt{the \meta{something} character \meta{char}} % or \texttt{the \meta{type} \meta{char}}. % \begin{macrocode} \cs_new:Npn \@@_token_to_explicit_char:N #1 { \if:w \if_catcode:w ^ \exp_args:No \str_tail:n { \token_to_str:N #1 } ^ \token_to_str:N #1 #1 \else: AB \fi: \exp_after:wN \exp_not:n \else: \exp_after:wN \@@_token_to_explicit:n \fi: {#1} } \cs_new:Npn \@@_token_to_explicit:n #1 { \exp_after:wN \@@_token_to_explicit_auxi:w \int_value:w \if_catcode:w \c_group_begin_token #1 1 \else: \if_catcode:w \c_group_end_token #1 2 \else: \if_catcode:w \c_math_toggle_token #1 3 \else: \if_catcode:w ## #1 6 \else: \if_catcode:w ^ #1 7 \else: \if_catcode:w \c_math_subscript_token #1 8 \else: \if_catcode:w \c_space_token #1 10 \else: \if_catcode:w A #1 11 \else: \if_catcode:w + #1 12 \else: 4 \fi: \fi: \fi: \fi: \fi: \fi: \fi: \fi: \fi: \exp_after:wN ; \token_to_meaning:N #1 \s_@@_stop } \cs_new:Npn \@@_token_to_explicit_auxi:w #1 ; #2 \s_@@_stop { \char_generate:nn { \if_int_compare:w #1 < 9 \exp_stop_f: \exp_after:wN \@@_token_to_explicit_auxii:w \else: \exp_after:wN \@@_token_to_explicit_auxiii:w \fi: #2 } {#1} } \exp_last_unbraced:NNNNo \cs_new:Npn \@@_token_to_explicit_auxii:w #1 { \tl_to_str:n { character ~ } } { ` } \cs_new:Npn \@@_token_to_explicit_auxiii:w #1 ~ #2 ~ { ` } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_char_catcode:N} % An idea from \pkg{l3char}: we need to get the category code of % a specific token, not the general case. % \begin{macrocode} \cs_new:Npn \@@_char_catcode:N #1 { \if_catcode:w \exp_not:N #1 \c_math_toggle_token 3 \else: \if_catcode:w \exp_not:N #1 \c_alignment_token 4 \else: \if_catcode:w \exp_not:N #1 \c_math_superscript_token 7 \else: \if_catcode:w \exp_not:N #1 \c_math_subscript_token 8 \else: \if_catcode:w \exp_not:N #1 \c_space_token 10 \else: \if_catcode:w \exp_not:N #1 \c_catcode_letter_token 11 \else: \if_catcode:w \exp_not:N #1 \c_catcode_other_token 12 \else: 13 \fi: \fi: \fi: \fi: \fi: \fi: \fi: } % \end{macrocode} % \end{macro} % % \begin{macro}[EXP, TF]{\@@_if_expandable:N} % Test for tokens that make sense to expand here: that is more % restrictive than the engine view. % \begin{macrocode} \prg_new_conditional:Npnn \@@_if_expandable:N #1 { T , F , TF } { \token_if_expandable:NTF #1 { \bool_lazy_any:nTF { { \token_if_protected_macro_p:N #1 } { \token_if_protected_long_macro_p:N #1 } { \token_if_eq_meaning_p:NN \q_@@_recursion_tail #1 } } { \prg_return_false: } { \prg_return_true: } } { \prg_return_false: } } % \end{macrocode} % \end{macro} % % \subsection{Codepoint utilities} % % For working with codepoints in an engine-neutral way. % % \begin{macro}[EXP]{\@@_codepoint_process:nN, \@@_codepoint_process_aux:nN} % \begin{macro}[EXP]{\@@_codepoint_process:nNN} % \begin{macro}[EXP]{\@@_codepoint_process:nNNN} % \begin{macro}[EXP]{\@@_codepoint_process:nNNNN} % Grab a codepoint and apply some code to it: here |#1| should expect one % following \emph{balanced text}. % \begin{macrocode} \bool_lazy_or:nnTF { \sys_if_engine_luatex_p: } { \sys_if_engine_xetex_p: } { \cs_new:Npn \@@_codepoint_process:nN #1#2 { #1 {#2} } } { \cs_new:Npe \@@_codepoint_process:nN #1#2 { \exp_not:N \int_compare:nNnTF {`#2} > { "80 } { \sys_if_engine_pdftex:TF { \exp_not:N \@@_codepoint_process_aux:nN } { \exp_not:N \int_compare:nNnTF {`#2} > { "FF } { \exp_not:N \use:n } { \exp_not:N \@@_codepoint_process_aux:nN } } } { \exp_not:N \use:n } {#1} #2 } \cs_new:Npn \@@_codepoint_process_aux:nN #1#2 { \int_compare:nNnTF { `#2 } < { "E0 } { \@@_codepoint_process:nNN } { \int_compare:nNnTF { `#2 } < { "F0 } { \@@_codepoint_process:nNNN } { \@@_codepoint_process:nNNNN } } {#1} #2 } \cs_new:Npn \@@_codepoint_process:nNN #1#2#3 { #1 {#2#3} } \cs_new:Npn \@@_codepoint_process:nNNN #1#2#3#4 { #1 {#2#3#4} } \cs_new:Npn \@@_codepoint_process:nNNNN #1#2#3#4#5 { #1 {#2#3#4#5} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}[EXP, pTF]{\@@_codepoint_compare:nNn} % \begin{macro}[EXP] % {\@@_codepoint_from_chars:Nw, \@@_codepoint_from_chars_aux:Nw} % \begin{macro}[EXP]{\@@_codepoint_from_chars:N} % \begin{macro}[EXP]{\@@_codepoint_from_chars:NN} % \begin{macro}[EXP]{\@@_codepoint_from_chars:NNN} % \begin{macro}[EXP]{\@@_codepoint_from_chars:NNNN} % Allows comparison for all engines using a first \enquote{character} followed % by a codepoint. % \begin{macrocode} \bool_lazy_or:nnTF { \sys_if_engine_luatex_p: } { \sys_if_engine_xetex_p: } { \prg_new_conditional:Npnn \@@_codepoint_compare:nNn #1#2#3 { TF , p } { \int_compare:nNnTF {`#1} #2 {#3} \prg_return_true: \prg_return_false: } \cs_new:Npn \@@_codepoint_from_chars:Nw #1 {`#1} } { \prg_new_conditional:Npnn \@@_codepoint_compare:nNn #1#2#3 { TF , p } { \int_compare:nNnTF { \@@_codepoint_from_chars:Nw #1 } #2 {#3} \prg_return_true: \prg_return_false: } \cs_new:Npe \@@_codepoint_from_chars:Nw #1 { \exp_not:N \if_int_compare:w `#1 > "80 \exp_not:N \exp_stop_f: \sys_if_engine_pdftex:TF { \exp_not:N \exp_after:wN \exp_not:N \@@_codepoint_from_chars_aux:Nw } { \exp_not:N \if_int_compare:w `#1 > "FF \exp_not:N \exp_stop_f: \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN \exp_not:N \@@_codepoint_from_chars:N \exp_not:N \else: \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN \exp_not:N \exp_after:wN \exp_not:N \@@_codepoint_from_chars_aux:Nw \exp_not:N \fi: } \exp_not:N \else: \exp_not:N \exp_after:wN \exp_not:N \@@_codepoint_from_chars:N \exp_not:N \fi: #1 } \cs_new:Npn \@@_codepoint_from_chars_aux:Nw #1 { \if_int_compare:w `#1 < "E0 \exp_stop_f: \exp_after:wN \@@_codepoint_from_chars:NN \else: \if_int_compare:w `#1 < "F0 \exp_stop_f: \exp_after:wN \exp_after:wN \exp_after:wN \@@_codepoint_from_chars:NNN \else: \exp_after:wN \exp_after:wN \exp_after:wN \@@_codepoint_from_chars:NNNN \fi: \fi: #1 } \cs_new:Npn \@@_codepoint_from_chars:N #1 {`#1} \cs_new:Npn \@@_codepoint_from_chars:NN #1#2 { (`#1 - "C0) * "40 + `#2 - "80 } \cs_new:Npn \@@_codepoint_from_chars:NNN #1#2#3 { (`#1 - "E0) * "1000 + (`#2 - "80) * "40 + `#3 - "80 } \cs_new:Npn \@@_codepoint_from_chars:NNNN #1#2#3#4 { (`#1 - "F0) * "40000 + (`#2 - "80) * "1000 + (`#3 - "80) * "40 + `#4 - "80 } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Configuration variables} % % \begin{variable}[deprecated]{\l_text_accents_tl, \l_text_letterlike_tl} % Used to be used for excluding these ideas from expansion: now deprecated. % \begin{macrocode} \tl_new:N \l_text_accents_tl \tl_new:N \l_text_letterlike_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_text_case_exclude_arg_tl} % Non-text arguments, including covering the case of \tn{protected@edef} % applied to \cs{cite}. % \begin{macrocode} \tl_new:N \l_text_case_exclude_arg_tl \tl_set:Ne \l_text_case_exclude_arg_tl { \exp_not:n { \begin \cite \end \label \ref } \exp_not:c { cite ~ } \exp_not:n { \babelshorthand } } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_text_math_arg_tl} % Math mode as arguments. % \begin{macrocode} \tl_new:N \l_text_math_arg_tl \tl_set:Nn \l_text_math_arg_tl { \ensuremath } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_text_math_delims_tl} % Paired math mode delimiters. % \begin{macrocode} \tl_new:N \l_text_math_delims_tl \tl_set:Nn \l_text_math_delims_tl { $ $ \( \) } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_text_expand_exclude_tl} % Commands which need not to expand. We start with a somewhat historical % list, and tidy up if possible. % \begin{macrocode} \tl_new:N \l_text_expand_exclude_tl \tl_set:Nn \l_text_expand_exclude_tl { \begin \cite \end \label \ref } \bool_lazy_and:nnT { \str_if_eq_p:Vn \fmtname { LaTeX2e } } { \tl_if_exist_p:N \@expl@finalise@setup@@@@ } { \tl_gput_right:Nn \@expl@finalise@setup@@@@ { \tl_gput_right:Nn \@kernel@after@begindocument { \group_begin: \cs_set_protected:Npn \@@_tmp:w #1 { \tl_clear:N \l_text_expand_exclude_tl \tl_map_inline:nn {#1} { \bool_lazy_any:nF { { \token_if_protected_macro_p:N ##1 } { \token_if_protected_long_macro_p:N ##1 } { \str_if_eq_p:ee { \cs_replacement_spec:N ##1 } { \exp_not:n { \protect ##1 } \c_space_tl } } } { \tl_put_right:Nn \l_text_expand_exclude_tl {##1} } } } \exp_args:NV \@@_tmp:w \l_text_expand_exclude_tl \exp_args:NNNV \group_end: \tl_set:Nn \l_text_expand_exclude_tl \l_text_expand_exclude_tl } } } % \end{macrocode} % \end{variable} % % \begin{macro}{\l_@@_math_mode_tl} % Used to control math mode output: internal as there is a dedicated % setter. % \begin{macrocode} \tl_new:N \l_@@_math_mode_tl % \end{macrocode} % \end{macro} % % \subsection{Expansion to formatted text} % % \begin{variable}{\c_@@_chardef_space_token, \c_@@_mathchardef_space_token} % \begin{variable} % {\c_@@_chardef_group_begin_token, \c_@@_mathchardef_group_begin_token} % \begin{variable} % {\c_@@_chardef_group_end_token, \c_@@_mathchardef_group_end_token} % Markers for implicit char handling. % \begin{macrocode} \tex_global:D \tex_chardef:D \c_@@_chardef_space_token = `\ % \tex_global:D \tex_mathchardef:D \c_@@_mathchardef_space_token = `\ % \tex_global:D \tex_chardef:D \c_@@_chardef_group_begin_token = `\{ % `\} \tex_global:D \tex_mathchardef:D \c_@@_mathchardef_group_begin_token = `\{ % `\} `\{ \tex_global:D \tex_chardef:D \c_@@_chardef_group_end_token = `\} % `\{ \tex_global:D \tex_mathchardef:D \c_@@_mathchardef_group_end_token = `\} % % \end{macrocode} % \end{variable} % \end{variable} % \end{variable} % % \begin{macro}[EXP]{\text_expand:n, \@@_expand:n} % \begin{macro}[EXP]{\@@_expand_result:n} % \begin{macro}[EXP]{\@@_expand_store:n, \@@_expand_store:o} % \begin{macro}[EXP]{\@@_expand_store:nw} % \begin{macro}[EXP]{\@@_expand_end:w} % \begin{macro}[EXP]{\@@_expand_loop:w} % \begin{macro}[EXP]{\@@_expand_group:n} % \begin{macro}[EXP]{\@@_expand_space:w} % \begin{macro}[EXP]{\@@_expand_N_type:N} % \begin{macro}[EXP]{\@@_expand_math_search:NNN} % \begin{macro}[EXP]{\@@_expand_math_loop:Nw} % \begin{macro}[EXP]{\@@_expand_math_N_type:NN} % \begin{macro}[EXP]{\@@_expand_math_group:Nn} % \begin{macro}[EXP]{\@@_expand_math_space:Nw} % \begin{macro}[EXP] % { % \@@_expand_explicit:N , % \@@_expand_exclude:N % } % \begin{macro}[EXP]{\@@_expand_exclude_switch:Nnnnn} % \begin{macro}[EXP]{\@@_expand_exclude:nN} % \begin{macro}[EXP]{\@@_expand_exclude:NN} % \begin{macro}[EXP]{\@@_expand_exclude:Nw} % \begin{macro}[EXP]{\@@_expand_exclude:Nnn} % \begin{macro}[EXP]{\@@_expand_accent:N} % \begin{macro}[EXP]{\@@_expand_accent:NN} % \begin{macro}[EXP]{\@@_expand_letterlike:N} % \begin{macro}[EXP]{\@@_expand_letterlike:NN} % \begin{macro}[EXP]{\@@_expand_cs:N} % \begin{macro}[EXP]{\@@_expand_protect:w} % \begin{macro}[EXP]{\@@_expand_protect:N} % \begin{macro}[EXP]{\@@_expand_protect:nN} % \begin{macro}[EXP]{\@@_expand_protect:Nw} % \begin{macro}[EXP]{\@@_expand_testopt:N} % \begin{macro}[EXP]{\@@_expand_testopt:NNn} % \begin{macro}[EXP]{\@@_expand_encoding:N, \@@_expand_encoding_escape:N} % \begin{macro}[EXP]{\@@_expand_replace:N} % \begin{macro}[EXP]{\@@_expand_replace:n} % \begin{macro}[EXP]{\@@_expand_cs_expand:N} % \begin{macro}[EXP]{\@@_expand_unexpanded:w} % \begin{macro}[EXP]{\@@_expand_unexpanded_test:w} % \begin{macro}[EXP]{\@@_expand_unexpanded:N} % \begin{macro}[EXP]{\@@_expand_unexpanded:n} % After precautions against |&| tokens, start a simple loop: that of % course means that \enquote{text} cannot contain the two recursion % quarks. The loop here must be \texttt{f}-type expandable; we have % arbitrary user commands which might be protected \emph{and} take % arguments, and if the expansion code is used in a typesetting % context, that will otherwise explode. (The same issue applies more % clearly to case changing: see the example there.) The outer % loop has to use scan marks as delimiters to protect against % unterminated \tn{romannumeral} usage in the input. % \begin{macrocode} \cs_new:Npn \text_expand:n #1 { \__kernel_exp_not:w \exp_after:wN { \exp:w \@@_expand:n {#1} } } \cs_new:Npn \@@_expand:n #1 { \group_align_safe_begin: \@@_expand_loop:w #1 \s_@@_recursion_tail \s_@@_recursion_stop \@@_expand_result:n { } } % \end{macrocode} % The approach to making the code \texttt{f}-type expandable is to usee % a marker result token and to shuffle the collected tokens % \begin{macrocode} \cs_new:Npn \@@_expand_store:n #1 { \@@_expand_store:nw {#1} } \cs_generate_variant:Nn \@@_expand_store:n { o } \cs_new:Npn \@@_expand_store:nw #1#2 \@@_expand_result:n #3 { #2 \@@_expand_result:n { #3 #1 } } \cs_new:Npn \@@_expand_end:w #1 \@@_expand_result:n #2 { \group_align_safe_end: \exp_end: #2 } % \end{macrocode} % The main loop is a standard \enquote{tl action}; groups are handled % recursively, while spaces are just passed through. Thus all of the % action is in handling \texttt{N}-type tokens. % \begin{macrocode} \cs_new:Npn \@@_expand_loop:w #1 \s_@@_recursion_stop { \tl_if_head_is_N_type:nTF {#1} { \@@_expand_N_type:N } { \tl_if_head_is_group:nTF {#1} { \@@_expand_group:n } { \@@_expand_space:w } } #1 \s_@@_recursion_stop } \cs_new:Npn \@@_expand_group:n #1 { \@@_expand_store:o { \exp_after:wN { \exp:w \@@_expand:n {#1} } } \@@_expand_loop:w } \exp_last_unbraced:NNo \cs_new:Npn \@@_expand_space:w \c_space_tl { \@@_expand_store:n { ~ } \@@_expand_loop:w } % \end{macrocode} % The first step in dealing with \texttt{N}-type tokens is to look for % math mode material: that needs to be left alone. The starting function % has to be split into two as we need \cs{quark_if_recursion_tail_stop:N} % first before we can trigger the search. We then look for matching % pairs of delimiters, allowing for the case where math mode starts % but does not end. Within math mode, we simply pass all the tokens % through unchanged, just checking the \texttt{N}-type ones against the % end marker. % \begin{macrocode} \cs_new:Npn \@@_expand_N_type:N #1 { \@@_if_s_recursion_tail_stop_do:Nn #1 { \@@_expand_end:w } \exp_after:wN \@@_expand_math_search:NNN \exp_after:wN #1 \l_text_math_delims_tl \q_@@_recursion_tail \q_@@_recursion_tail \q_@@_recursion_stop } \cs_new:Npn \@@_expand_math_search:NNN #1#2#3 { \@@_if_q_recursion_tail_stop_do:Nn #2 { \@@_expand_explicit:N #1 } \token_if_eq_meaning:NNTF #1 #2 { \@@_use_i_delimit_by_q_recursion_stop:nw { \@@_expand_store:n {#1} \@@_expand_math_loop:Nw #3 } } { \@@_expand_math_search:NNN #1 } } \cs_new:Npn \@@_expand_math_loop:Nw #1#2 \s_@@_recursion_stop { \tl_if_head_is_N_type:nTF {#2} { \@@_expand_math_N_type:NN } { \tl_if_head_is_group:nTF {#2} { \@@_expand_math_group:Nn } { \@@_expand_math_space:Nw } } #1#2 \s_@@_recursion_stop } \cs_new:Npn \@@_expand_math_N_type:NN #1#2 { \@@_if_s_recursion_tail_stop_do:Nn #2 { \@@_expand_end:w } \token_if_eq_meaning:NNF #2 \exp_not:N { \@@_expand_store:n {#2} } \token_if_eq_meaning:NNTF #2 #1 { \@@_expand_loop:w } { \@@_expand_math_loop:Nw #1 } } \cs_new:Npn \@@_expand_math_group:Nn #1#2 { \@@_expand_store:n { {#2} } \@@_expand_math_loop:Nw #1 } \exp_after:wN \cs_new:Npn \exp_after:wN \@@_expand_math_space:Nw \exp_after:wN # \exp_after:wN 1 \c_space_tl { \@@_expand_store:n { ~ } \@@_expand_math_loop:Nw #1 } % \end{macrocode} % At this stage, either we have a control sequence or a simple character: % split and handle. The need to check for non-protected actives arises % from handling of legacy input encodings: they need to end up in a % representation we can deal with in further processing. The tests for % explicit parts of the \LaTeXe{} UTF-8 mechanism cover the case of % bookmarks, where definitions change and are no longer protected. The % same is true for \pkg{babel} shorthands. % \begin{macrocode} \cs_new:Npn \@@_expand_explicit:N #1 { \token_if_cs:NTF #1 { \@@_expand_exclude:N #1 } { \bool_lazy_and:nnTF { \token_if_active_p:N #1 } { ! \bool_lazy_any_p:n { { \token_if_protected_macro_p:N #1 } { \token_if_protected_long_macro_p:N #1 } { \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@two@octets } { \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@three@octets } { \tl_if_head_eq_meaning_p:oN {#1} \UTFviii@four@octets } { \tl_if_head_eq_meaning_p:oN {#1} \active@prefix } } } { \exp_after:wN \@@_expand_loop:w #1 } { \@@_expand_store:n {#1} \@@_expand_loop:w } } } % \end{macrocode} % Next we exclude math commands: this is mainly as there \emph{might} be an % \cs{ensuremath}. The switching command for case needs special handling % as it has to work by meaning. % \begin{macrocode} \cs_new:Npn \@@_expand_exclude:N #1 { \cs_if_eq:NNTF #1 \text_case_switch:nnnn { \@@_expand_exclude_switch:Nnnnn #1 } { \exp_args:Ne \@@_expand_exclude:nN { \exp_not:V \l_text_math_arg_tl \exp_not:V \l_text_expand_exclude_tl \exp_not:V \l_text_case_exclude_arg_tl } #1 } } \cs_new:Npn \@@_expand_exclude_switch:Nnnnn #1#2#3#4#5 { \@@_expand_store:n { #1 {#2} {#3} {#4} {#5} } \@@_expand_loop:w } \cs_new:Npn \@@_expand_exclude:nN #1#2 { \@@_expand_exclude:NN #2 #1 \q_@@_recursion_tail \q_@@_recursion_stop } \cs_new:Npn \@@_expand_exclude:NN #1#2 { \@@_if_q_recursion_tail_stop_do:Nn #2 { \@@_expand_accent:N #1 } \str_if_eq:nnTF {#1} {#2} { \@@_use_i_delimit_by_q_recursion_stop:nw { \@@_expand_exclude:Nw #1 } } { \@@_expand_exclude:NN #1 } } \cs_new:Npn \@@_expand_exclude:Nw #1#2# { \@@_expand_exclude:Nnn #1 {#2} } \cs_new:Npn \@@_expand_exclude:Nnn #1#2#3 { \@@_expand_store:n { #1#2 {#3} } \@@_expand_loop:w } % \end{macrocode} % Accents. % \begin{macrocode} \cs_new:Npn \@@_expand_accent:N #1 { \exp_after:wN \@@_expand_accent:NN \exp_after:wN #1 \l_text_accents_tl \q_@@_recursion_tail \q_@@_recursion_stop } \cs_new:Npn \@@_expand_accent:NN #1#2 { \@@_if_q_recursion_tail_stop_do:Nn #2 { \@@_expand_letterlike:N #1 } \cs_if_eq:NNTF #2 #1 { \@@_use_i_delimit_by_q_recursion_stop:nw { \@@_expand_store:n {#1} \@@_expand_loop:w } } { \@@_expand_accent:NN #1 } } % \end{macrocode} % Another list of exceptions: these ones take no arguments so are % easier to handle. % \begin{macrocode} \cs_new:Npn \@@_expand_letterlike:N #1 { \exp_after:wN \@@_expand_letterlike:NN \exp_after:wN #1 \l_text_letterlike_tl \q_@@_recursion_tail \q_@@_recursion_stop } \cs_new:Npn \@@_expand_letterlike:NN #1#2 { \@@_if_q_recursion_tail_stop_do:Nn #2 { \@@_expand_cs:N #1 } \cs_if_eq:NNTF #2 #1 { \@@_use_i_delimit_by_q_recursion_stop:nw { \@@_expand_store:n {#1} \@@_expand_loop:w } } { \@@_expand_letterlike:NN #1 } } % \end{macrocode} % \LaTeXe{}'s \cs{protect} makes life interesting. Where possible, we % simply remove it and replace with the \enquote{parent} command; of course, % the \cs{protect} might be explicit, in which case we need to leave it alone. % That includes the case where it's not even followed by an \texttt{N}-type % token. There is also the case of a straight \tn{@protected@testopt} to % cover. % \begin{macrocode} \cs_new:Npe \@@_expand_cs:N #1 { \exp_not:N \str_if_eq:nnTF {#1} { \exp_not:N \protect } { \exp_not:N \@@_expand_protect:w } { \bool_lazy_and:nnTF { \cs_if_exist_p:N \fmtname } { \str_if_eq_p:Vn \fmtname { LaTeX2e } } { \exp_not:N \@@_expand_testopt:N #1 } { \exp_not:N \@@_expand_replace:N #1 } } } \cs_new:Npn \@@_expand_protect:w #1 \s_@@_recursion_stop { \tl_if_head_is_N_type:nTF {#1} { \@@_expand_protect:N } { \@@_expand_store:n { \protect } \@@_expand_loop:w } #1 \s_@@_recursion_stop } \cs_new:Npn \@@_expand_protect:N #1 { \@@_if_s_recursion_tail_stop_do:Nn #1 { \@@_expand_store:n { \protect } \@@_expand_end:w } \exp_args:Ne \@@_expand_protect:nN { \cs_to_str:N #1 } #1 } \cs_new:Npn \@@_expand_protect:nN #1#2 { \@@_expand_protect:Nw #2 #1 \q_@@_nil #1 ~ \q_@@_nil \q_@@_nil \s_@@_stop } \cs_new:Npn \@@_expand_protect:Nw #1 #2 ~ \q_@@_nil #3 \q_@@_nil #4 \s_@@_stop { \@@_quark_if_nil:nTF {#4} { \cs_if_exist:cTF {#2} { \exp_args:Ne \@@_expand_store:n { \exp_not:c {#2} } } { \@@_expand_store:n { \protect #1 } } } { \@@_expand_store:n { \protect #1 } } \@@_expand_loop:w } \cs_new:Npn \@@_expand_testopt:N #1 { \token_if_eq_meaning:NNTF #1 \@protected@testopt { \@@_expand_testopt:NNn } { \@@_expand_encoding:N #1 } } \cs_new:Npn \@@_expand_testopt:NNn #1#2#3 { \@@_expand_store:n {#1} \@@_expand_loop:w } % \end{macrocode} % Deal with encoding-specific commands % \begin{macrocode} \cs_new:Npn \@@_expand_encoding:N #1 { \bool_lazy_or:nnTF { \cs_if_eq_p:NN #1 \@current@cmd } { \cs_if_eq_p:NN #1 \@changed@cmd } { \exp_after:wN \@@_expand_loop:w \@@_expand_encoding_escape:NN } { \@@_expand_replace:N #1 } } \cs_new:Npn \@@_expand_encoding_escape:NN #1#2 { \exp_not:n {#1} } % \end{macrocode} % See if there is a dedicated replacement, and if there is, insert it. % \begin{macrocode} \cs_new:Npn \@@_expand_replace:N #1 { \bool_lazy_and:nnTF { \cs_if_exist_p:c { l_@@_expand_ \token_to_str:N #1 _tl } } { \bool_lazy_or_p:nn { \token_if_cs_p:N #1 } { \token_if_active_p:N #1 } } { \exp_args:Nv \@@_expand_replace:n { l_@@_expand_ \token_to_str:N #1 _tl } } { \@@_expand_cs_expand:N #1 } } \cs_new:Npn \@@_expand_replace:n #1 { \@@_expand_loop:w #1 } % \end{macrocode} % Finally, expand any macros which can be: this then loops back around to % deal with what they produce. The only issue is if the token is % \cs{exp_not:n}, as that must apply to the following balanced text. % \begin{macrocode} \cs_new:Npn \@@_expand_cs_expand:N #1 { \@@_if_expandable:NTF #1 { \token_if_eq_meaning:NNTF #1 \exp_not:n { \@@_expand_unexpanded:w } { \exp_after:wN \@@_expand_loop:w #1 } } { \@@_expand_store:n {#1} \@@_expand_loop:w } } % \end{macrocode} % Since \cs{exp_not:n} is actually a primitive, it allows a strange syntax % and it particular the primitive expands what follows and discards spaces % and \cs{scan_stop:} until finding a braced argument (the opening brace % can be implicit but we will not support this here). Here, we repeatedly % |f|-expand after such an \cs{exp_not:n}, and test what follows. If % it is a brace group, then we found the intended argument of % \cs{exp_not:n}. If it is a space, then the next |f|-expansion will % eliminate it. If it is an |N|-type token then % \cs{@@_expand_unexpanded:N} leaves the token to be expanded if it is % expandable, and otherwise removes it, assuming that it is % \cs{scan_stop:}. This silently hides errors when \cs{exp_not:n} is % incorrectly followed by some non-expandable token other than % \cs{scan_stop:}, but this should be pretty rare, and there is no good % error recovery anyways. % \begin{macrocode} \cs_new:Npn \@@_expand_unexpanded:w { \exp_after:wN \@@_expand_unexpanded_test:w \exp:w \exp_end_continue_f:w } \cs_new:Npn \@@_expand_unexpanded_test:w #1 \s_@@_recursion_stop { \tl_if_head_is_group:nTF {#1} { \@@_expand_unexpanded:n } { \@@_expand_unexpanded:w \tl_if_head_is_N_type:nT {#1} { \@@_expand_unexpanded:N } } #1 \s_@@_recursion_stop } \cs_new:Npn \@@_expand_unexpanded:N #1 { \exp_after:wN \if_meaning:w \exp_not:N #1 #1 \else: \exp_after:wN #1 \fi: } \cs_new:Npn \@@_expand_unexpanded:n #1 { \@@_expand_store:n {#1} \@@_expand_loop:w } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro} % { % \text_declare_expand_equivalent:Nn , % \text_declare_expand_equivalent:cn % } % Create equivalents to allow replacement. % \begin{macrocode} \cs_new_protected:Npn \text_declare_expand_equivalent:Nn #1#2 { \tl_clear_new:c { l_@@_expand_ \token_to_str:N #1 _tl } \tl_set:cn { l_@@_expand_ \token_to_str:N #1 _tl } {#2} } \cs_generate_variant:Nn \text_declare_expand_equivalent:Nn { c } % \end{macrocode} % \end{macro} % % Prevent expansion of various standard values. % \begin{macrocode} \tl_map_inline:nn { \` \' \^ \~ \= \u \. \" \r \H \v \d \c \k \b \t } { \text_declare_expand_equivalent:Nn #1 { \exp_not:n {#1} } } \tl_map_inline:nn { \AA \aa \AE \ae \DH \dh \DJ \dj \IJ \ij \L \l \NG \ng \O \o \OE \oe \SS \ss \TH \th } { \text_declare_expand_equivalent:Nn #1 { \exp_not:n {#1} } } % \end{macrocode} % % \begin{macrocode} % % \end{macrocode} % % \end{implementation} % % \PrintIndex