import tensorflow as tf import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # Create 100 phony x, y data points in Numpy, y = x * 0.1 + 0.3 x_data = np.random.random(100).astype("float32") y_data = x_data * 0.1 + 0.3 # Try to find values for W and b that compute y_data = W * x_data + b W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = W * x_data + b # Minimize the mean squared errors. loss = tf.reduce_mean(tf.square(y -y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss) # Before starting, initialize the variables. We will 'run' this first init = tf.global_variables_initializer() # Launch the graph. sess = tf.Session() sess.run(init) # Fit the line. for step in range(201): sess.run(train) if step % 20 == 0: print(step, sess.run(W), sess.run(b))