
A beginner’s guide to METAPOST for creating high-quality graphics

Troy Henderson
Department of Mathematical Sciences
United States Military Academy
West Point, NY 10996, USA
troy (at) tlhiv dot org

http://www.tlhiv.org

Abstract

Individuals that use TEX (or any of its derivatives) to typeset their documents
generally take extra measures to ensure paramount visual quality. Such doc-
uments often contain mathematical expressions and graphics to accompany the
text. Since TEX was designed “for the creation of beautiful books — and especially
for books that contain a lot of mathematics” [4], it is clear that it is sufficient
(and in fact exceptional) at dealing with mathematics and text. TEX was not
designed for creating graphics; however, certain add-on packages can be used to
create modest figures. TEX, however, is capable of including graphics created
with other utilities in a variety of formats. Because of their scalability, Encap-
sulated PostScript (EPS) graphics are the most common types used. This paper
introduces METAPOST and demonstrates the fundamentals needed to generate
high-quality EPS graphics for inclusion into TEX-based documents.

1 Introduction

To accompany TEX, Knuth developed METAFONT

as a method of “creating entire families of fonts
from a set of dimensional parameters and outline de-
scriptions” [1]. Approximately ten years later, John
Hobby began work on METAPOST — “a powerful
graphics language based on Knuth’s METAFONT,
but with PostScript output and facilities for includ-
ing typeset text” [3]. Although several packages
(e.g., PICTEX, XY-pic, and the native LATEX picture
environment to name a few) are available for cre-
ating graphics within TEX-based documents, they
all rely on TEX. Since TEX was designed to typeset
text, it seems natural that an external utility should
be used to generate graphics instead. Furthermore,
in the event that the graphics require typeset text,
then the utility should use TEX for this requirement.
This premise is exactly the philosophy of META-
POST.

Since METAPOST is a programming language,
it accommodates data structures and flow control,
and compilation of the METAPOST source code
yields EPS graphics. These features provide an
elegant method for generating graphics. Figure 1
illustrates how METAPOST can be used programat-

1 All graphics in this article (except Figure 2) are created
with METAPOST, and the source code and any required ex-
ternal data files for each of these graphics are embedded as
file attachments in the electronic PDF version of the article.

ically. The figure is generated by rotating one of
the circles multiple times to obtain the desired cir-
cular chain. The programming language constructs

Figure 1: Rotated circles

of METAPOST also deliver a graceful mechanism
for creating animations without having to manually
create each frame of the animation. The primary
advantage of EPS is that it can be scaled to any
resolution without a loss in quality. It can also
be easily converted to raster formats, e.g. Portable
Network Graphics (PNG) and Joint Photographic
Experts Group (JPEG), et al., or other vector for-
mats including Portable Document Format (PDF)
and Scalable Vector Graphics (SVG), et al.

84 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference


beginfig(-1);
	% Use 8 circles
	N:=8;

	% Compute the "correct" radius
	r:=54*sind(180/N)/(1+sind(180/N));

	% Define one of the cirlces
	path p;
	p:=fullcircle scaled (2*r);

	% Draw all 8 circles
	for n=0 upto N-1: draw p shifted (r/sind(180/N),0) rotated (360/N*n); endfor;
endfig;
end


mailto:troy (at) tlhiv dot org
http://www.tlhiv.org


A beginner’s guide to METAPOST for creating high-quality graphics

Figure 2: METAPOST Previewer

2 METAPOST compilation

A typical METAPOST source file consists of one or
more figures. Compilation of the source file gen-
erates an EPS graphic for each figure. These EPS

graphics are not self-contained in that fonts used in
labels are not embedded into the graphic.

If foo.mp is a typical METAPOST source file,
then its contents are of the following form:

beginfig(1);

draw commands
endfig;

beginfig(2);

draw commands
endfig;

...

beginfig(n);

draw commands
endfig;

end;

Executing

mpost foo.mp

yields the following output:

This is MetaPost, Version 〈version〉
(foo.mp [1] [2] . . . [n] )

n output files written: foo.1 .. foo.n

Transcript written on foo.log.

For users who just want to “get started” using
METAPOST, a METAPOST previewer is available
at http://www.tlhiv.org/MetaPostPreviewer.
This previewer (illustrated in Figure 2) is simply
a graphical interface to METAPOST itself. It gen-
erates a single graphic with the option to save the
output in both EPS and PDF formats. Users may
also choose to save the source code and can view
the compilation log to assist in debugging.

3 Data types

There are nine data types in METAPOST: numeric,
pair, path, transform, color, string, boolean, picture,
and pen. These data types allow users to store frag-
ments of the graphics for later use. We will briefly
discuss each of these data types and elaborate on
how they are used in a typical METAPOST program.

numeric — numbers
pair — ordered pairs of numerics
path — Bézier curves (and lines)
picture — pictures
transform — transformations such as shifts,
rotations, and slants
color — triplets in the unit cube with red,
green, and blue (RGB) components
string — strings to be labeled
boolean — “true” or “false” values
pen — stroke properties

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 85


beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end



beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end



beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end



beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end



beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end



beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end



beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end



beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end



beginfig(-1);
	% Draw the diamond
	draw (2,0)--(0,2)--(-2,0)--(0,-2)--cycle;
endfig;
end


http://www.tlhiv.org/MetaPostPreviewer


Troy Henderson

Virtually all programming languages provide a
way of storing and retrieving numerical values. This
is precisely the purpose of the numeric data type
in METAPOST. Since graphics drawn with META-
POST are simply two dimensional pictures, it is clear
that an ordered pair is needed to identify each point
in the picture. The pair data type provides this
functionality. Each point in the plane consists of an
x (i.e., abscissa) part and a y (i.e., ordinate) part.
METAPOST uses the standard syntax for defining
points in the plane, e.g., (x,y) where both x and y
are numeric data typed variables.

In order to store paths between points, the path
data type is used. All paths in METAPOST are
represented as cubic Bézier curves. Cubic Bézier
curves are simply parametric splines of the form
(x(t), y(t)) where both x(t) and y(t) are piecewise
cubic polynomials of a common parameter t. Since
Bézier curves are splines, they pairwise interpolate
the points. Furthermore, cubic Bézier curves are di-
verse enough to provide a “smooth” path between all
of the points for which it interpolates. METAPOST

provides several methods for affecting the Bézier
curve between a list of points. For example, piece-
wise linear paths (i.e., linear splines) can be drawn
between a list of points since all linear polynomials
are also cubic polynomials. Furthermore, if a spe-
cific direction for the path is desired at a given point,
this constraint can be forced on the Bézier curve.

The picture data type is used to store an entire
picture for later use. For example, in order to create
animations, usually there are objects that remain
the same throughout each frame of the animation.
So that these objects do not have to be manually
drawn for each frame, a convenient method for re-
drawing them is to store them into a picture variable
for later use.

When constructing pairs, paths, or pictures in
METAPOST, it is often convenient to apply affine
transformations to these objects. As mentioned
above, Figure 1 can be constructed by rotating the
same circle several times before drawing it. META-
POST provides built-in affine transformations as
“building blocks” from which other transformations
can be constructed. These include shifts, rotations,
horizontal and vertical scalings, and slantings.

There are five built-in colors in METAPOST:
black, white, red, green, and blue. However, cus-
tom colors can be defined using the color data type.
Colors in METAPOST are simply ordered triplets of
the form (r,g,b) where r, g, and b are numerics
between 0 and 1. These values r, g, and b identify
what fraction of the color is red, green, and blue,
respectively. For example, the built-in color red is

simply a synonym for (1, 0, 0) and black is a syn-
onym for (0, 0, 0). If a particular color is to be used
several times throughout a figure, it is natural to
store this color into a variable (of type color) for
multiple uses.

The most common application of string data
types is reusing a particular string that is typeset
(or labeled). The boolean data type is the same
as in other programming languages, used in con-
ditional statements for testing. Finally, the pen
data type is used to affect the actual stroke paths.
The default unit of measurement in METAPOST

is 1 bp = 1/72 in, and the default thickness of all
stroked paths is 0.5 bp. An example for using the
pen data type may include changing the thickness of
several stroked paths. This new pen can be stored
and then referenced for drawing each of the paths.

4 Common commands

The METAPOST manual [3] lists 26 built-in com-
mands along with 23 function-like macros for which
pictures can be drawn and manipulated using
METAPOST. We will not discuss each of these
commands here; however, we will focus on several of
the most common commands and provide examples
of their usage.

4.1 The draw command

The most common command in METAPOST is the
draw command. This command is used to draw
paths or pictures. In order to draw a path from
z1:=(0,0) to z2:=(54,18) to z3:=(72,72), we
should first decide how we want the path to look.
For example, if we want these points to simply be
connected by line segments, then we use

draw z1--z2--z3;

However, if we want a smooth path between these
points, we use

draw z1..z2..z3;

In order to specify the direction of the path at the
points, we use the dir operator. In Figure 3 we see
that the smooth path is horizontal at z1, a 45◦ angle
at z2, and vertical at z3. These constraints on the
Bézier curve are imposed by

draw z1{right}..z2{dir 45}..{up}z3;

Notice that z2{dir 45} forces the outgoing direc-
tion at z2 to be 45◦. This implies an incoming di-
rection at z2 of 45◦. In order to require different
incoming and outgoing directions, we would use

draw z1{right}..{dir θi}z2{dir θo}..{up}z3;

where θi and θo are the incoming and outgoing di-
rections, respectively.

86 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference



A beginner’s guide to METAPOST for creating high-quality graphics

Figure 3: draw examples

Figure 4: fill example

4.2 The fill Command

Another common command in METAPOST is the
fill command. This is used to fill closed paths (or
cycles). In order to construct a cycle, cycle may be
appended to the path declaration. For example,

path p;

p:=z1{right}..z2{dir 45}..{up}z3--cycle;

fill p withcolor red;

draw p;

produces Figure 4. Notice that p is essentially the
same curved path as in Figure 3 with the additional
piece that connects z3 back to z1 with a line segment
using --cycle.

Just as it is necessary to fill closed paths, it
may also be necessary to unfill closed paths. For
example, the annulus in Figure 5 can be constructed
by

color bbblue;

bbblue:=(3/5,4/5,1);

path p,q;

p:=fullcircle scaled (2*54);

q:=fullcircle scaled (2*27);

fill p withcolor bbblue;

unfill q;

draw p;

draw q;

The fullcircle path is a built-in path that closely
approximates a circle in METAPOST with diameter
1 bp traversed counter-clockwise. This path is not
exactly a circle since it is parameterized by a Bézier
curve and not by trigonometric functions; however,
visually it is essentially indistinguishable from an

Figure 5: unfill example

Figure 6: Avoiding an unfill

exact circle. Notice that p is a fullcircle of radius
54 bp (3/4 in) and q is a fullcircle of radius 27 bp
(3/8 in). The annulus is constructed by filling p with
the baby blue color bbblue and then unfilling q. The
unfill command above is equivalent to

fill q withcolor background;

where background is a built-in color which is white
by default.

Often the unfill command appears to be the
natural method for constructing figures like Figure
5. However, the fill and unfill commands in Fig-
ure 5 can be replaced by

fill p--reverse q--cycle withcolor bbblue;

The path p--reverse q--cycle travels around p
in a counter-clockwise directions (since this is the
direction that p traverses) followed by a line seg-
ment to connect to q. It then traverses clockwise
around q (using the reverse operator) and finally
returns to the starting point along a line segment
using --cycle. This path is illustrated in Figure 6.
One reason for using this method to construct the
annulus as opposed to the unfill command is to
ensure proper transparency when placing the figure
in an external document with a non-white back-
ground. If the former method is used and the an-
nulus is placed on a non-white background, say ma-
genta, then the result is Figure 7. It may be de-
sired to have the interior of q be magenta instead

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 87


verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Set unit size to 72bp = 1in
	u:=72;

	% Draw line segmented path
	draw (0,0)--(3*u/4,u/4)--(u,u) dashed evenly scaled 0.6;

	% Draw curved path
	draw (0,0){right}..{dir 45}(3*u/4,u/4){dir 45}..{up}(u,u);

	% Label the 3 points
	label.bot(btex \texttt{z1} etex,(0,0));
	label.lrt(btex \texttt{z2} etex,(3*u/4,u/4));
	label.rt(btex \texttt{z3} etex,(u,u));
endfig;
end



beginfig(-1);
	% Set unit size to 72bp = 1in
	u:=72;
	
	% Define path
	path p;
	p:=(0,0){right}..{dir 45}(3*u/4,u/4){dir 45}..{up}(u,u)--cycle;
	
	% Fill the path
	fill p withcolor red;

	% Draw the path
	draw p;
endfig;
end



beginfig(-1);
	% Set unit size to 54bp = 3/4in
	u:=54;

	path p,q;
	% Define circle of radius 3/4in
	p:=fullcircle scaled (2*u);
	% Define circle of radius 3/8in
	q:=fullcircle scaled u;

	% Fill annulus
	fill p--reverse q--cycle withcolor (3/5,4/5,1);
	
	% Draw big circle
	draw p;
	% Draw small circle
	draw q;
endfig;
end



verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Set unit size to 54bp = 3/4in
	u:=54;
	
	path p,q;
	% Define circle of radius 3/4in
	p:=fullcircle scaled (2*u);
	% Define circle of radius 3/8in
	q:=fullcircle scaled u;

	% Fill annulus
	fill p--reverse q--cycle withcolor (3/5,4/5,1);

	% This loop draws arrows around the big circle
	N:=12;
	for n=1 upto N:
		drawarrow subpath ((n-1)/N*length(p),n/N*length(p)) of p;
	endfor;
	
	% These 3 commands draw the "cut"
	drawarrow (u,0)--(5*u/6,0);
	draw (5*u/6,0)--(2*u/3,0);
	drawarrow (u/2,0)--(2*u/3,0);
	
	% This loop draws arrows around the small circle
	for n=1 upto N:
		drawarrow subpath ((n-1)/N*length(p),n/N*length(p)) of reverse q;
	endfor;

	% Label p and q
	label.urt(btex \texttt{p} etex,(u/sqrt(2),u/sqrt(2)));
	label.llft(btex \texttt{q} etex,(u/2/sqrt(2),u/2/sqrt(2)));
endfig;
end




Troy Henderson

Figure 7: Improper transparency using unfill

of white. This could be accomplished by redefining
background; however, the latter method described
above is a much simpler solution.

4.3 Arrow commands

When drawing simple graphs and other illustrations,
the use of arrows is often essential. There are two
arrow commands in METAPOST for accommodating
this need — drawarrow and drawdblarrow. Both of
these commands require a path argument. For ex-
ample,

drawarrow (0,0)--(72,72);

draws an arrow beginning at (0,0) and ending at
(72,72) along the line segment connecting these
points.

The path argument of both drawarrow and
drawdblarrow need not be line segmented paths —
they may be any METAPOST path. The only dif-
ference between drawarrow and drawdblarrow is
that drawarrow places an arrow head at the end of
the path and drawdblarrow places an arrow head
at the beginning and the end of the path. As an
example, to draw the curved path in Figure 3 with
an arrow head at the end of the path (i.e., at z3),
the following command can be used

drawarrow z1{right}..z2{dir 45}..{up}z3;

and is illustrated in Figure 8.

Figure 8: Using drawarrow along a path

4.4 The label command

One of the nicest features of METAPOST is that it
relies on TEX (or LATEX) to typeset labels within fig-
ures. Almost all figures in technical documents are
accompanied by labels which help clarify the situ-
ation for which the figure is assisting to illustrate.
Such labels may include anything from simple type-
setting as in Figures 3, 6, and 8 to typesetting func-
tion declarations and even axes labeling.

The label command requires two arguments —
a string to typeset and the point for which label is
placed. For example, the command

label("A",(0,0));

will place the letter “A” at the coordinate (0,0)
and the box around this label is centered vertically
and horizontally at this point. Simple strings like
"A" require no real typesetting to ensure that they
appear properly in the figure. However, many type-
set strings in technical figures require the assistance
of TEX to properly display them. For example, Fig-

Figure 9: Labeling text

ure 9 is an example where typesetting is preferred.
That is, the axes labels and the function declaration
look less than perfect if TEX is not used. For reasons
such as this, METAPOST provides a way to escape
to TEX in order to assist in typesetting the labels.
Therefore, instead of labeling the “A” as above,

label(btex A etex,(0,0));

provides a much nicer technique for typesetting the
label. The btex ... etex block instructs META-
POST to process everything in between btex and
etex using TEX. Therefore, the function declara-
tion in Figure 9 is labeled using

label(btex $f(x)=x^2$ etex,(a, b));

where (a, b) is the point for which the label is to be
centered.

Since many METAPOST users prefer to typeset
their labels using LATEX instead of plain TEX, META-
POST provides a convenient method for accommo-
dating this, done in the preamble of the META-
POST source file. The following code ensures that

88 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference


beginfig(-1);
	% Set unit size to 54bp = 3/4in
	u:=54;
	
	path p,q;
	% Define circle of radius 3/4in
	p:=fullcircle scaled (2*u);
	% Define circle of radius 3/8in
	q:=fullcircle scaled u;

	% Fill annulus
	fill p--reverse q--cycle withcolor (3/5,4/5,1);
	
	% Draw big circle
	draw p;
	% Draw small circle
	draw q;

	% Above is used to determine the bbox of the annulus
	picture h;
	h:=currentpicture; % Store the currentpicture
	currentpicture:=nullpicture; % Clear the currentpicture

	% Create magenta background
	fill bbox h withcolor (1,0,1);

	% Fill the big circle
	fill p withcolor (3/5,4/5,1);

	% Unfill the small circle
	unfill q;
	
	% Draw the big circle
	draw p;
	% Draw the small circle
	draw q;
endfig;
end



verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Set unit size to 72bp = 1in
	u:=72;
	
	% Draw arrow around curved path
	drawarrow (0,0){right}..{dir 45}(3*u/4,u/4){dir 45}..{up}(u,u);

	% Label the 3 points
	label.bot(btex \texttt{z1} etex,(0,0));
	label.lrt(btex \texttt{z2} etex,(3*u/4,u/4));
	label.rt(btex \texttt{z3} etex,(u,u));			
endfig;
end



verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Set unit size to 108pt = 3/2in
	u:=108;
	v:=2*u/(1+sqrt(5));

	% Determine the size of the default font
	w:=fontsize defaultfont;

	% Draw the parabola
	draw (-u,2*v){dir -angle(1*u,4*v)}..(-u/2,v/2){dir -angle(1*u,2*v)}..(0,0){right}..(u/2,v/2){dir angle(1*u,2*v)}..(u,2*v){dir angle(1*u,4*v)} withcolor red;

	% Label f(x)
	label.lft(btex $f(x)=x^2$ etex,(u/sqrt(2),v));
	
	% Draw x and y axes arrows
	drawarrow (-u,0)--(u+w/2,0);
	drawarrow (0,0)--(0,2*v+w/2);
	
	% Label the x and y axes
	label.rt(btex $x$ etex,(u+w/2,0));
	label.top(btex $y$ etex,(0,2*v+w/2));

	% Pad left size to horizontally center figure
	label.lft(btex $\phantom{x}$ etex,(-u-w/2,0));

	% Shrink figure
	currentpicture:=currentpicture scaled 0.75;
endfig;
end




A beginner’s guide to METAPOST for creating high-quality graphics

the btex...etex block escapes to LATEX (instead of
plain TEX) for text processing.

verbatimtex

%&latex

\documentclass{minimal}

\begin{document}

etex

beginfig(n);

〈draw commands〉
endfig;

end

Often times it is desirable to typeset labels with
a justification that is not centered. For example, one
may wish to place an “A” not centered horizontally
about (0,0) but placed above (0,0). METAPOST

provides eight suffixes to accommodate such needs.
The suffixes .lft, .rt, .bot, and .top align the la-
bel on the left, right, bottom, and top, respectively,
of the designated point. A hybrid of these four
justifications provide four additional ones, namely,
.llft, .ulft, .lrt, and .urt to align the label on
the lower left, upper left, lower right, and upper
right, respectively, of the designated point. For ex-
ample,

label.top(btex A etex,(0,0));

places the “A” directly above (0,0). Figure 10
demonstrates each of the suffixes and their corre-
sponding placement of the labels.

Figure 10: Label suffixes

5 Graphing functions

Among the most common types of figures for TEX
users are those which are the graphs of functions of
a single variable. Hobby recognized this and con-
structed a package to accomplish this task. It is
invoked by

input graph;

METAPOST has the ability to construct data (i.e.,
ordered pairs) for graphing simple functions. How-
ever, for more complicated functions, the data
should probably be constructed using external pro-
grams such as MATLAB (or Octave), Maple, Math-
ematica, Gnuplot, et. al.

A typical data file, say , to be used with
the graph package may have contents

0.0 0.0

0.2 0.447214

0.4 0.632456

0.6 0.774597

0.8 0.894427

1.0 1.0

This data represents the graph of f(x) =
√
x for six

equally spaced points in [0, 1]. To graph this data,
the size of the graph must first be decided. Choosing
a width of 144 bp and a height of 89 bp, a minimally
controlled plot (as in Figure 11) of this data can be
generated by

draw begingraph(144bp,89bp);

gdraw "data.d";

endgraph;

The graph package provides many commands used
to customize generated graphs, and these commands
are fully documented in the manual [2] for the graph
package.

Figure 11: f(x) =
√

x using the graph package

6 Including METAPOST figures in LATEX

In order to include a METAPOST figure in LATEX, the
graphicx package is suggested. Below is an example
of including a METAPOST figure (with name foo.1)
in a LATEX document.

\documentclass{article}

\usepackage{graphicx}

\usepackage{ifpdf}

\ifpdf

\DeclareGraphicsRule{*}{mps}{*}{}

\fi

\begin{document}

...

\includegraphics{foo.1}

...

\end{document}

TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference 89


verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Determine the size of the default font
	w:=fontsize defaultfont;

	% Place a "point" at (0,0)
   label(btex $\scriptscriptstyle\bullet$ etex,(0,0)) scaled 1.5;

	% Draw a square around the point
	draw (-7*w/16,-7*w/16)--(7*w/16,-7*w/16)--(7*w/16,7*w/16)--(-7*w/16,7*w/16)--cycle;

	% Draw vertical and horizontal lines through the point
	draw (0,-7*w/16)--(0,7*w/16);
	draw (-7*w/16,0)--(7*w/16,0);

	% Label the 4 positions
	label.lft(btex \texttt{lft} etex,(-w/4,0));
	label.rt(btex \texttt{rt} etex,(w/4,0));
	label.bot(btex \texttt{bot} etex,(0,-w/4));
	label.top(btex \texttt{top} etex,(0,w/4));

	% Manually set the bbox
	setbounds currentpicture to (-2*w,-2*w)--(2*w,-2*w)--(2*w,2*w)--(-2*w,2*w)--cycle;
endfig;
end



verbatimtex
%&latex
\documentclass{minimal}
\begin{document}
etex

beginfig(-1);
	% Determine the size of the default font
	w:=fontsize defaultfont;

	% Place a "point" at (0,0)
	label(btex $\scriptscriptstyle\bullet$ etex,(0,0)) scaled 1.5;

	% Draw a square around the point
	draw (-7*w/16,-7*w/16)--(7*w/16,-7*w/16)--(7*w/16,7*w/16)--(-7*w/16,7*w/16)--cycle;

	% Draw diagonals of the square through the point
	draw (-7*w/16,-7*w/16)--(7*w/16,7*w/16);
	draw (-7*w/16,7*w/16)--(7*w/16,-7*w/16);

	% Label the 4 positions
	label.llft(btex \texttt{llft} etex,(-w/4,-w/4));
	label.ulft(btex \texttt{ulft} etex,(-w/4,w/4));
	label.lrt(btex \texttt{lrt} etex,(w/4,-w/4));
	label.urt(btex \texttt{urt} etex,(w/4,w/4));

	% Manually set the bbox
	setbounds currentpicture to (-11/4*w,-2*w)--(11/4*w,-2*w)--(11/4*w,2*w)--(-11/4*w,2*w)--cycle;
endfig;
end



0.0	0.0
0.2	0.447214
0.4	0.632456
0.6	0.774597
0.8	0.894427
1.0	1.0



input graph;
beginfig(-1);
	draw begingraph(144bp,89bp);
		gdraw "data.d";
	endgraph;
endfig;
end




Troy Henderson

The ifpdf package and \ifpdf...\fi command is
used to prompt PDFLATEX to convert the META-
POST graphic to PDF “on the fly” using Hans Ha-
gen’s mptopdf. This conversion is necessary since
PDFLATEX performs no PostScript processing.

7 Conclusion

METAPOST is an elegant programming language,
and it produces beautiful graphics. The graphics are
vectorial and thus can be scaled to any resolution
without degradation. There are many advanced
topics that are not discussed in this article (e.g.,
loops, flow control, subpaths, intersections, etc.),
and the METAPOST manual [3] is an excellent re-
source for these advanced topics. However, the
METAPOST manual may seem daunting for begin-
ners. There are many websites containing META-
POST examples, and several of these are referenced
at http://www.tug.org/metapost. Finally, we
mention that Knuth uses nothing but METAPOST

for his diagrams.

References

[1] N. H. F. Beebe. Metafont. http://www.math.
utah.edu/~beebe/fonts/metafont.html,
2006.

[2] J. D. Hobby. Drawing graphs with MetaPost.
Technical Report 164, AT&T Bell Laborato-
ries, Murray Hill, New Jersey, 1992. Also avail-
able at http://www.tug.org/docs/metapost/
mpgraph.pdf.

[3] J. D. Hobby. A user’s manual for MetaPost.
Technical Report 162, AT&T Bell Laborato-
ries, Murray Hill, New Jersey, 1992. Also avail-
able at http://www.tug.org/docs/metapost/
mpman.pdf.

[4] D. E. Knuth. The TEXbook, volume A of Com-
puters and Typesetting. Addison Wesley, Boston,
1986.

90 TUGboat, Volume 28 (2007), No. 1 — Proceedings of the Practical TEX 2006 Conference

http://www.tug.org/metapost
http://www.math.utah.edu/~beebe/fonts/metafont.html
http://www.math.utah.edu/~beebe/fonts/metafont.html
http://www.tug.org/docs/metapost/mpgraph.pdf
http://www.tug.org/docs/metapost/mpgraph.pdf
http://www.tug.org/docs/metapost/mpman.pdf
http://www.tug.org/docs/metapost/mpman.pdf

	Introduction
	Metapost compilation
	Data types
	Common commands
	The draw command
	The fill Command
	Arrow commands
	The label command

	Graphing functions
	Including Metapost figures in LaTeX
	Conclusion

