linopt::Transparent::result
-- get the
basic feasible solution belonging to the given simplex tableaulinopt::Transparent::result(
tableau)
returns the basic feasible solution belonging to the given simplex
tableau tableau
.
linopt::Transparent::result(tableau)
tableau |
- | a simplex tableau of domain type
linopt::Transparent |
a set containing the values of the user defined variables for the feasible solution.
linopt::Transparent
, linopt::Transparent::dual_prices
linopt::Transparent::dual_prices
.We first compute an edge for an initial simplex tableau:
>> k := [[x <= 1, y <= 1, x + y >= 2], 0, NonNegative]: t := linopt::Transparent(k): linopt::Transparent::result(t)
{x = 0, y = 0}
Now we compute the edge for the final tableau, which is
identical to the optimal solution of the linear program given by
k
. We get the final simplex tableau by using linopt::Transparent::simplex
:
>> t := linopt::Transparent(k): t := linopt::Transparent::simplex(t): linopt::Transparent::result(t)
{x = 1, y = 1}
>> linopt::minimize(k)
[OPTIMAL, {x = 1, y = 1}, 0]
>> delete k, t:
Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms and Complexity. Prentice-Hall, 1982.
Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization. New York, Wiley, 1988.
Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-Holland, 1989.
Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.
Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre Anwendungen. Munich, Hanser, 1992.
Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of Operational Research 72(1994)312-322. North-Holland, 1994.
Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston, Kluwer Academic Publishers, 1994.