cc [ flags ] -I/usr/local/include file(s) -L/usr/local/lib -lmcw [ ... ] #include <mathcw.h> #include <cxcw.h> extern void cxexpm1f (cx_float result, cx_float z); extern void cxexpm1 (cx_double result, cx_double z); extern void cxexpm1l (cx_long_double result, cx_long_double z); extern void cxexpm1w (cx_float80 result, cx_float80 z); extern void cxexpm1q (cx_float128 result, cx_float128 z); extern void cxexpm1ll (cx_long_long_double result, cx_long_long_double z); extern void cxexpm1df (cx_decimal_float result, cx_decimal_float z); extern void cxexpm1d (cx_decimal_double result, cx_decimal_double z); extern void cxexpm1dl (cx_decimal_long_double result, cx_decimal_long_double z); extern void cxexpm1dll (cx_decimal_long_long_double result, cx_decimal_long_long_double z);
NB: Functions with prototypes containing underscores in type names may be available only with certain extended compilers.
Imaginary parts of large magnitude require argument reduction in the trigonometric functions, and most implementations of those functions fail to provide exact argument reduction, producing wildly-inaccurate trigonometric functions that propagate to the complex exponential.
Trigonometric argument reduction in the MathCW library is always exact, so the components of the complex exponential should suffer at most three rounding errors each.
The cx family of functions provide limited support for complex arithmetic when compiler or language support for a complex type is lacking.