ELLEC 3CW "11 October 2007" "mathcw-1.00"

Table of contents


NAME

ellecf, ellec, ellecl, ellecw, ellecq, ellecll, ellecdf, ellecd, ellecdl, ellecdll - complementary complete elliptic integral function of the second kind

SYNOPSIS

cc [ flags ] -I/usr/local/include file(s) -L/usr/local/lib -lmcw [ ... ]

#include <mathcw.h>

extern float ellecf (float x);

extern double ellec (double x);

extern long double ellecl (long double x);

extern __float80 ellecw (__float80 x);

extern __float128 ellecq (__float128 x);

extern long_long_double ellecll (long_long_double x);

extern decimal_float ellecdf (decimal_float x);

extern decimal_double ellecd (decimal_double x);

extern decimal_long_double ellecdl (decimal_long_double x);

extern decimal_long_long_double ellecdll (decimal_long_long_double x);

NB: Functions with prototypes containing underscores in type names may be available only with certain extended compilers.


DESCRIPTION

Compute the complementary complete elliptic integral function of the second kind, defined by
ellec(x) = integral(t=0:pi/2) sqrt(1 - (1 - x**2) * sin(t)**2) dt
where x is in [-1,+1].

Equivalents in other systems are:

Abramowitz & Stegun NBS Handbook #55: E'(m) = ellec(sqrt(m)) Mathematica: EllipticE[x] = ellec(sqrt(1 - x)) Maple: EllipticCE(x) = ellec(x)

RETURN VALUES

Return the complementary complete elliptic integral function of the second kind.

ERRORS

If the argument is a NaN, set errno to EDOM and return that argument. If the argument is out of the range [-1,+1], set errno to EDOM and return a NaN.

SEE ALSO

agm(3CW), elk(3CW), elkm1(3CW), elle(3CW), ellk(3CW), ellkc(3CW), elq(3CW), elq1p(3CW), elqc(3CW), elqc1p(3CW).