VSBK 3CW "22 April 2008" "mathcw-1.00"

Table of contents


NAME

vsbkf, vsbk, vsbkl, vsbkw, vsbkq, vsbkll, vsbkdf, vsbkd, vsbkdl, vsbkdll - vector of modified spherical Bessel functions of second kind and orders 0 to n

SYNOPSIS

cc [ flags ] -I/usr/local/include file(s) -L/usr/local/lib -lmcw [ ... ]

#include <mathcw.h>

extern void vsbkf (int n, float k[/* n+1 */], float x);

extern void vsbk (int n, double k[/* n+1 */], double x);

extern void vsbkl (int n, long double k[/* n+1 */], long double x);

extern void vsbkw (int n, __float80 k[/* n+1 */], __float80 x);

extern void vsbkq (int n, __float128 k[/* n+1 */], __float128 x);

extern void vsbkll (int n, long_long_double k[/* n+1 */], long_long_double x);

extern void vsbkdf (int n, decimal_float k[/* n+1 */], decimal_float x);

extern void vsbkd (int n, decimal_double k[/* n+1 */], decimal_double x);

extern void vsbkdl (int n, decimal_long_double decimal_long_double k[/* n+1 */],
                  decimal_long_double x);

extern void vsbkdll (int n, decimal_long_long_double decimal_long_long_double k[/* n+1 */],
                   decimal_long_long_double x);

NB: Functions with prototypes containing underscores in type names may be available only with certain extended compilers.


DESCRIPTION

Compute the modified spherical Bessel function of the second kind and orders 0 through n, k(0,x) through k(n,x).

This function is considerably faster than one that simply invokes bkn(k,x) for each element.

The modified Bessel functions provided by these software implementations are defined according to Chapter 9, Bessel Functions of Integer Order, of the Handbook of Mathematical Functions, edited by Milton Abramowitz and Irene A. Stegun, National Bureau of Standards Applied Mathematics Series #55, US Department of Commerce, Washington, DC (1964).


CAVEAT

Although in mathematics, uppercase letters name the ordinary and modified Bessel functions, and lowercase letters name the spherical Bessel functions, the lowercase names of the POSIX Bessel functions mean the former, not the latter.

The K(n,x) functions fall exponentially with increasing x, and underflow even with moderate x values. For that reason, there is a related family of functions that return values of this Bessel function increased by a factor of exp(+x); see vsbks(3CW).


RETURN VALUES

If the argument is finite, its first n + 1 Bessel function values of the first kind are returned in the output array, k[]. Otherwise, quiet NaNs are returned in that array.

ERRORS

If the argument x is a NaN, errno is set to EDOM, and that NaN is returned in the elements of the output array.

If the argument is negative, errno is set to EDOM, and a quiet NaN is returned in the output array.

If the argument is zero, errno is set to ERANGE, and a positive Infinity (or the largest floating-point magnitude, if Infinity is not available) is returned in the output array.


SEE ALSO

bi0(3CW), bi1(3CW), bin(3CW), bis0(3CW), bis1(3CW), bisn(3CW), bk0(3CW), bk1(3CW), bkn(3CW), bks0(3CW), bks1(3CW), bksn(3CW), j0(3CW), j1(3CW), jn(3CW), sbi0(3CW), sbi1(3CW), sbin(3CW), sbis0(3CW), sbis1(3CW), sbisn(3CW), sbj0(3CW), sbj1(3CW), sbjn(3CW), sbk0(3CW), sbk1(3CW), sbkn(3CW), sbks0(3CW), sbks1(3CW), sbksn(3CW), sby0(3CW), sby1(3CW), sbyn(3CW), vbi(3CW), vbis(3CW), vbj(3CW), vbk(3CW), vbks(3CW), vby(3CW), vsbi(3CW), vsbis(3CW), vsbj(3CW), vsbks(3CW), vsby(3CW), y0(3CW), y1(3CW), yn(3CW).