
Benchmarking bibsql

Nelson H. F. Beebe
University of Utah

Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA

Email: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org

WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254

FAX: +1 801 581 4148

17 March 2011

Abstract

This report summarizes the results of benchmarking bibsql with SQL
servers running on SAS and SCSI disk storage, and on Fusion-io solid-state
storage.

1 Introduction

The bibsql1 utility [1] provides a Structured Query Language (SQL) interface
to data stored in, and served by, three commonly-used, and freely-available,
relational databases: MySQL [6], PostgreSQL [5], and SQLite [2].

At this author’s site, bibsql provides access to the TEX User Group (TUG)
collection of more than a half-million bibliographic records in BIBTEX markup
covering major areas of computer science, computer hardware and software,
cryptography, history and philosophy of science, markup languages, net-
works, numerical mathematics, SQL, symbolic algebra, typesetting, Unix, and
selected others. The data have largely been prepared, and continue to be main-
tained and updated, by this author, and are freely available on the Web.2

Of the three supported databases, MySQL usually has the highest perfor-
mance, and SQLite the lowest.

1Article and software are freely available at http://www.math.utah.edu/pub/bibsql.
2See http://www.math.utah.edu/pub/tex/bib/index-table.html.

1

2 A BIT ABOUT BIBTEX 2

Both MySQL and PostgreSQL are client/server databases that require con-
siderable effort to administer, create, manage, and secure. They also need
constantly-running server daemons on a machine with adequate CPU, mem-
ory, and I/O resources.

By contrast, SQLite requires only a single database file that is byte-order and
architecture independent, and is easily created from a stream of BIBTEX files by
the bibtosql utility that is part of the bibsql distribution. SQLite needs no
database administration, no running daemon, and no network. Its only security
issue is handled trivially by normal filesystem protections: if the database file
is made read-only, and owned by a user other than that of the bibsql user, then
it cannot be modified. Read-only status can also be achieved by storage of the
database file on write-once media, such as CD-ROM or DVD.

2 A bit about BIBTEX

The BIBTEX system is part of all TEX distributions, and like them, is freely avail-
able. BIBTEX and TEX have been ported to all major computing platforms,
including desktops, micros, minis, mainframes, and supercomputers. At the
TUG’2010 conference in San Francisco, an AT&T Bell Laboratories researcher
reported a successful port of the TEX system to the Apple iPhone (cell phone)
and iPad (tablet).

BIBTEX files are plain text files, and are understandable even to English-
literate humans who have never seen a BIBTEX entry before. A preamble for
communicating with TEX, some string definitions, and two sample entries give
a flavor of the markup:

@Preamble{
"\input texnames.sty"

"\def \TUB {TUGboat}"
}

@String{j-TUGboat = "{\TUB{}}"}
@String{pub-AW = "Ad{\-d}i{\-s}on-Wes{\-l}ey"}
@String{pub-AW:adr = "Reading, MA, USA"}

@Article{Beebe:2009:BMR,
author = "Nelson H. F. Beebe",
title = "{{\BibTeX}} meets relational databases:

Dedicated to the memory of {Edgar Frank
‘‘Ted’’ Codd (1923--2003)} and {James
Nicholas ‘‘Jim’’ Gray (1944--2007)}",

journal = j-TUGboat,
volume = "30",
number = "1",
pages = "252--271",

2 A BIT ABOUT BIBTEX 3

year = "2009",
bibdate = "Fri Oct 23 16:59:25 2009",
note = "TUG 2009 Conference Proceedings volume.",
acknowledgement = ack-nhfb,
pagecount = "20",
remark = "Submitted 22 November 2008.",

}

@Book{Knuth:2011:ACP,
author = "Donald Ervin Knuth",
title = "The Art of Computer Programming: Volume 4,

{Combinatorial} algorithms. {Part 1}",
volume = "4A",
publisher = pub-AW,
address = pub-AW:adr,
pages = "xv + 883",
year = "2011",
ISBN = "0-201-03804-8",
ISBN-13 = "978-0-201-03804-0",
LCCN = "QA76.6 .K64 2011",
bibdate = "Fri Mar 4 17:53:38 MST 2011",
bibsource = "z3950.gbv.de:20011/gvk",
series = "The art of computer programming",
acknowledgement = ack-nhfb,

}

Each document entry begins with @, followed by a document type, then a left
brace, a label used to cite the entry, a comma, a series of field/value assign-
ments in any convenient order, followed by a right brace. Field values are
normally quoted or braced strings, but may also be string-abbreviation names
that are frequently used to standardize certain fields, such as journal names,
publishers, and addresses. Braces inside value strings protect against the letter
downcasing of many bibliographic styles. Whitespace in BIBTEX entries adds
readability for humans, but, outside of field values, is insignificant.

When the document is typeset, each TEX (or LATEX) run produces a new aux-
iliary file that contains information about the document, including sectional
titles, citation keys, bibliography style, and bibliography database names. A
subsequent BIBTEX run reads the auxiliary file, finds the cited entries in one
or more database files, formats them according to the specified bibliography
style, and outputs a reference list in TEX markup. That file is read on the next
typesetting run to produce the reference list that normally appears at the end
of the typeset document.

Although about a dozen field names are standardized, and recognized by
all BIBTEX styles, BIBTEX does not complain if a field name is not defined in
the selected style file. Some recent style files have been extended to recog-
nize several new field names that have proved useful for recording values

3 BENCHMARK HARDWARE AND SOFTWARE 4

for reference lists, or for bibliographic searching. The new fields include ab-
stract, CODEN (Chemical Abstracts periodical number), ISSN (International
Standard Serial Number), ISBN (International Standard Book Number — orig-
inal 10-digit style), ISBN-13 (new 13-digit style), keywords, LCCN (US Library
of Congress call number), remark, and subject. Indeed, more than 500 different
field names have been used in the TUG bibliography collection.

One particular new field is important for SQL database use: bibdate. It
records the date and time of the last important update to the entry, in the form
produced by the Unix (and POSIX) date command. bibtosql parses its value,
and converts it to a timestamp of the form 2011.03.04 17:53:38 MST that is
convenient for specifying SQL search ranges. The timezone is optional. For ex-
ample, an SQL query could include the phrase bibtimestamp > ’2010.01.01
00:00:00 AAA’ to select entries created, or last modified, in the year 2010 or
later.

3 Benchmark hardware and software

The server on which the client benchmarks were run, and the Fusion-io3 stor-
age was installed, is a 2007-vintage Sun Fire X4600 M2 x64 with four AMD
Opteron 8218 2.6GHz dual-core CPUs, 16GB DDR2-667 RAM, and two 73 GB
SAS drives.

The remote MySQL server is a 2005-vintage Sun Fire V40z with four AMD
Opteron 850 single-core 2.4GHz CPUs, 8GB DDR1/333 RAM, and two 74GB
10K rpm SCSI disks.

The remote PostgreSQL server is a 2006-vintage Dell PowerEdge 3250
with two Intel Itanium-2 1.4GHz CPUs, 4GB RAM, and two Maxtor Atlas
10K4_36SCA 60GB SCSI disks.

The operating system on all three servers is Red Hat Enterprise Linux Client
release 5.5 (Tikanga).

The SQL client software versions are:

% bibsql --version
This is bibsql version 0.02 of 26-Oct-2010

% mysql --version
mysql Ver 14.12 Distrib 5.0.67, for redhat-linux-gnu (x86_64)
using EditLine wrapper

% psql --version
psql (PostgreSQL) 9.0.0
contains support for command-line editing

% sqlite3 --version
3.7.2

3See www.fusionio.com.

4 SQL BENCHMARK COMMANDS 5

Because bibsql is a simple wrapper around the various database clients,
it has no effect on their performance. All input goes directly to the client pro-
gram, and the sole function of the wrapper is to simplify the interface by sup-
plying username, database name, and SQL connection information.

4 SQL benchmark commands

One of the important maintenance tasks for large collections of bibliographic
data is ensuring correctness and consistency of the data. Correctness guar-
antees are difficult: while publisher Web sites are now a common source of
data that are converted automatically by various software tools to BIBTEX form,
the original data were entered by humans, and errors of typing or omission
are likely to be present. Bibliographic tools are available to allow merging of
BIBTEX data from multiple independent sources, and reporting discrepancies in
field values. For journal bibliographies, additional checks for missing volumes
or issues, overlapping page ranges, or unusual page gaps, help to identify er-
rors.

With the power of SQL searches, further checks are possible on BIBTEX en-
tries after they have been entered into an SQL database, and a portion of those
checks have been used for the queries made for the benchmarks documented
in this report.

About two dozen separate tests are present in the sanity-checks.sql file
that is run several times a year to detect and report unusual data. We show
only a few of them here:

-- Find files and entries that are missing ISBN-13 data
select filename, label from bibtab

where isbn is not null
and isbn13 is null

order by filename, year, label;

-- Find files and entries that have confused ISBN-13 data
-- (e.g., ISBN-10 value in ISBN-13 field)
select distinct filename from bibtab

where isbn13 regexp ’^[0-9Xx]{10}$’
or isbn13 regexp ’^[0-9Xx]{10}[^0-9]’
or isbn13 regexp ’[^0-9Xx][0-9Xx]{10}$’
or isbn13 regexp ’[^0-9Xx][0-9Xx]{10}[^0-9Xx]’

order by filename;

-- Find files and entries with old-style 5-character CODENs
select filename, label from bibtab

where coden regexp ’^.....$’
order by filename, year, label;

5 SEQUENTIAL BENCHMARKS 6

-- Find files and entries with entries containing missing years
select filename, label from bibtab

where year is null
order by filename, year, label;

-- Find files and entries with entries containing suspect years
select filename,label from bibtab where

((substring(year, 1, 4) != ’19xx’) and
(substring(year, 1, 4) != ’20xx’))

and ((substring(year, 1, 4) < ’1492’) or
(’2012’ < substring(year, 1, 4)))

order by filename, year, label;

-- Find missing bibdate in recent entries
select filename,label from bibtab

where year >= ’2010’
and bibdate is NULL

order by filename, label;

Because the S in SQL means Structured, rather than Standard, slightly different
versions of the sanity checks are needed for each of the backend databases. The
queries shown here are for MySQL, and their output is intentionally kept short
so that it is insignificant for the benchmark times.

To speed searches, all three databases have separate indexes for each im-
portant BIBTEX field. For example, the last sample query requires finding first
those entries with years 2010 to date from the year index, and then locating the
corresponding null (empty) entries in the bibdate index, and finally reporting
their filename and label values, sorted in ascending order. Those two values
suffice to identify the defective BIBTEX entries.

Once the defects are repaired in their corresponding BIBTEX files, cron jobs
that run several times daily for each of the backend databases discover the
changed files by virtue of their last-write dates being newer than a timestamp
file saved at the end of the most-recent database update. Those jobs invoke
bibtosql to convert all of the entries in each changed file from BIBTEX format
to SQL commands that delete all database entries from those files, then reinsert
them. Deletion before insertion is necessary for some of the databases to avoid
unnecessary duplication of bibliographic records.

5 Sequential benchmarks

The benchmark of sequential database access was constructed by concatenat-
ing 100 copies of the sanity-check file for each database into a single bench-
mark file. For each backend database, the benchmark first used the disk-based
remote SQL server, and then repeated the same queries on the local Fusion-io
280GB solid-state storage device. The only relevant time for database queries

6 PARALLEL BENCHMARKS 7

Table 1: Sequential SQL benchmark wall-clock times (minutes) and speedups
of solid-state storage over disk.

SQL server disk Fusion-io speedup
MySQL 88.28 75.25 1.17
PostgreSQL 213.88 80.84 2.65
SQLite 2682.88 44.28 60.58

is wall-clock time, because that is the delay suffered by humans. The results
are collected in Table 1.

Because only one query from one client is in effect during the benchmark,
the SQL server spends most of its time waiting for data from the filesystem.
Evidently, SQLite makes inefficient use of the disk, with many small random
reads in its 2.13GB database file. The MySQL database tree contains 1.1GB, and
the PostgreSQL database tree contains 3.5GB.

For SQLite, the solid-state device is a huge win because it does not have the
rotational latency of a magnetic disk. The other two databases have reasonably
well-tuned I/O and internal table relations that place fewer demands on the
filesystem. Solid-state storage costs several times as much as magnetic disk
storage, so for MySQL and PostgreSQL, disk is more cost effective.

The long search times for SQLite show the importance of database software
design for achieving high performance. Most uses of that system are for small
applications, like managing Web-browser user preferences and caches, where
the performance is adequate.

As described in [1], during development of bibsql, commercial database
backends from IBM (DB2), Ingres, and Microsoft (SQL Express) were evalu-
ated, and rejected because they place severe restrictions on the sizes of data-
base cells, or the number of rows or columns in the database. Some have an
alternate cell type that permits unlimited string length, but cells of that type
cannot be searched with normal SQL commands. This author had no access to
an Oracle database [3] to make a similar evaluation. In a time of low-cost ter-
abyte disk storage and gigabyte computer memories, database products with
draconian limits like 8-kilobyte cells deserve no place in the market.

6 Parallel benchmarks

A more realistic benchmark of a multiuser database requires (nearly) simulta-
neous queries from many separate processes, such as would be experienced
by an online order system, or Web-based bibliographic search systems such as
those provided by several journal publishers.

We use the same sanity-check data as before, without the 100-fold replica-
tion, but this time, we use a shell-script loop to start MAXTEST simultaneous
background processes:

6 PARALLEL BENCHMARKS 8

secin=‘date +%s‘
echo "SECONDS IN = $secin"

for n in ‘seq 1 $MAXTEST‘
do

/usr/local/bin/time bibsql-fusionio -s m \
< sanity-checks.sql \
> sanity-checks.out.mysql-fusionio.$n &

done

wait
secout=‘date +%s‘
echo "SECONDS OUT = $secout"
echo "SECONDS ELAPSED = ‘expr $secout - $secin‘"

The wait command causes the enclosing script to wait until all of the back-
ground processes have completed, and then the difference in wall clock times
is reported as the elapsed time.

The tests were repeated for various values of MAXTEST, and that soon ex-
posed a serious problem with MySQL: its default server configuration allows
only 100 simultaneous connections, and each query apparently represents mul-
tiple connections, because with 16 parallel bibsql jobs, the queries immedi-
ately failed with

ERROR 1040 (00000): Too many connections.

A Web search turned up an explanation, and a simple fix. Edit the local MySQL
configurtion file, /etc/my.cnf, on each server, and in the [mysqld] section, add
the assignment

max_connections=1000

Then, as the root user on each server host, restart the MySQL server with

/etc/init.d/mysql restart

The restarted MySQL daemons then incorporate the changed limit, a fact that
can be verified like this:

mysqladmin variables | grep max_connection
| max_connections | 1000 |

The benchmarks were then resumed and completed successfully. As the num-
ber of parallel jobs increased, the PostgreSQL server also reported exceeding
a default connection limit. That value was increased from 100 to 1000 in the
files /usr/local/pgsql/data/bibtex/postgresql.conf and /fusionio/usr/
local/pgsql/data/bibtex/postgresql.conf, and the servers restarted.

Table 2 summarizes the results for several benchmark runs with varying
numbers of parallel queries.

7 ENLARGING THE DATABASE 9

Table 2: Parallel SQL benchmark wall-clock times (seconds) and speedups of
solid-state storage over disk.

SQL server disk Fusion-io speedup
MAXTEST = 8

MySQL 178 184 0.96
PostgreSQL 240 45 5.33
SQLite 1704 159 10.72

MAXTEST = 16
MySQL 376 397 0.95
PostgreSQL 757 135 5.61
SQLite 2261 303 7.46

MAXTEST = 32
MySQL 743 775 0.96
PostgreSQL 1052 309 3.40
SQLite 2663 643 4.14

MAXTEST = 64
MySQL 1387 1484 0.93
PostgreSQL 2131 583 3.66
SQLite 3542 887 3.99

MAXTEST = 128
MySQL 2724 2057 1.32
PostgreSQL 4802 1227 3.91
SQLite 6959 3211 2.17

MAXTEST = 256
MySQL 5495 6199 0.88
PostgreSQL 8554 2852 3.00
SQLite 12900 6529 1.98

7 Enlarging the database

In each of the tests so far, the database size is well below that of main memory,
so the SQL daemons, or the operating system, could potentially use memory-
mapped I/O to move all of the data into memory. MySQL seems to do just
that, as shown by this fragment of the report from the Unix top utility:

% top -U mysql
last pid: 17084; load avg: 1.05, 3.59, 19.0; up 22+00:50:05 14:14:55
445 processes: 1 running, 444 sleeping
CPU states: 13.1% user, 0.0% nice, 1.0% system, 86.0% idle, 0.0% iowait
Kernel: 1189 ctxsw, 1026 intr
Memory: 11G used, 4536M free, 732M buffers, 7182M cached
Swap: 32M used, 31G free, 9796K cached

PID USERNAME THR PRI NICE SIZE RES SHR STATE TIME CPU COMMAND
2987 mysql 9 18 0 597M 98M 4228K sleep 150:07 0.00% mysqld

7 ENLARGING THE DATABASE 10

Notice that the server has 9 threads running, and is using about 0.6GB of RAM,
of which only 0.1GB is currently resident

The lsof utility exposes details of the total memory use:
% lsof -p 2987
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
mysqld 2987 mysql cwd DIR 9,0 4096 22282244 /fusionio/mysql/var/lib/mysql
mysqld 2987 mysql rtd DIR 8,1 4096 2 /
mysqld 2987 mysql txt REG 8,1 6613619 5047885 /home/local/libexec/mysqld
mysqld 2987 mysql mem REG 8,1 139504 13762571 /lib64/ld-2.5.so
mysqld 2987 mysql mem REG 8,1 1722304 13762573 /lib64/libc-2.5.so
mysqld 2987 mysql mem REG 8,1 615136 13762607 /lib64/libm-2.5.so
mysqld 2987 mysql mem REG 8,1 23360 13762605 /lib64/libdl-2.5.so
mysqld 2987 mysql mem REG 8,1 145824 13762599 /lib64/libpthread-2.5.so
mysqld 2987 mysql mem REG 8,1 53448 13762600 /lib64/librt-2.5.so
mysqld 2987 mysql mem REG 8,1 114352 13762604 /lib64/libnsl-2.5.so
mysqld 2987 mysql mem REG 8,1 48600 13762622 /lib64/libcrypt-2.5.so
mysqld 2987 mysql mem REG 8,1 58400 13762750 /lib64/libgcc_s-4.1.2-20080825.so.1
mysqld 2987 mysql mem REG 8,1 43040 16649675 /lib64/libnss_compat-2.5.so
mysqld 2987 mysql mem REG 8,1 53432 16649683 /lib64/libnss_nis-2.5.so
mysqld 2987 mysql mem REG 8,1 53880 16649679 /lib64/libnss_files-2.5.so
mysqld 2987 mysql mem REG 8,1 102982 14060840 /home/local/lib64/libz.so.1.2.5
mysqld 2987 mysql mem REG 8,1 4488456 5448910 /home/local/lib64/libstdc++.so.5.0.7
mysqld 2987 mysql 0r CHR 1,3 1832 /dev/null
mysqld 2987 mysql 1w REG 8,1 5161 26575167 /var/log/mysqld.log
mysqld 2987 mysql 2w REG 8,1 5161 26575167 /var/log/mysqld.log
mysqld 2987 mysql 3uW REG 9,0 10485760 22282245 /fusionio/mysql/var/lib/mysql/ibdata1
mysqld 2987 mysql 4u REG 8,1 0 25034762 /tmp/ibgYByjI (deleted)
mysqld 2987 mysql 5u REG 8,1 0 25034763 /tmp/ib2a313f (deleted)
mysqld 2987 mysql 6u REG 8,1 0 25034764 /tmp/ibJsSvON (deleted)
mysqld 2987 mysql 7u REG 8,1 0 25034768 /tmp/ibHSzrzl (deleted)
mysqld 2987 mysql 8uW REG 9,0 5242880 22282310 /fusionio/mysql/var/lib/mysql/ib_logfile0
mysqld 2987 mysql 9uW REG 9,0 5242880 22282298 /fusionio/mysql/var/lib/mysql/ib_logfile1
mysqld 2987 mysql 10u IPv4 6559078 TCP *:mysql (LISTEN)
mysqld 2987 mysql 11u REG 8,1 0 25034769 /tmp/ibf9mrlT (deleted)
mysqld 2987 mysql 12u unix ... 6559079 /var/lib/mysql/mysql.sock
mysqld 2987 mysql 13u REG 9,0 694737740 22282302 /fusionio/mysql/var/lib/mysql/bibtex/bibtab.MYD
mysqld 2987 mysql 15u REG 9,0 694737740 22282302 /fusionio/mysql/var/lib/mysql/bibtex/bibtab.MYD
...
mysqld 2987 mysql 256u REG 9,0 694737740 22282302 /fusionio/mysql/var/lib/mysql/bibtex/bibtab.MYD
mysqld 2987 mysql 260u REG 9,0 694737740 22282302 /fusionio/mysql/var/lib/mysql/bibtex/bibtab.MYD

The many similar lines at the end show that the 694MB bibtab.MYD database
file has been mapped into memory, with about 250 file handles pointing at
parts of the data.

Similar measurements during the PostgreSQL benchmark shows that its
daemon forks one single-threaded copy of itself for each incoming connection,
contributing to the overhead compared to MySQL’s multithreaded single dae-
mon. Each copy has only one or two open files. A single PostgreSQL data-
base consists of many separate files: there are 1047 files for the BIBTEX data-
base in these benchmarks. That too supplies additional overhead compared to
MySQL.

SQLite shows quite different characteristics:

% top
...
PID USERNAME THR PRI NICE SIZE RES SHR STATE TIME CPU COMMAND

11707 beebe 1 18 0 26M 4388K 1344K disk 1:01 1.80% sqlite3
11233 beebe 1 18 0 26M 4384K 1344K run 1:03 1.60% sqlite3
11848 beebe 1 18 0 26M 4388K 1344K disk 1:03 1.60% sqlite3
...

Each of its single-threaded processes is only 26MB, and there is only one open
database file with a 4MB block loaded into memory.

8 SUMMARY AND CONCLUSIONS 11

To better show the throughput improvement possible with solid-state stor-
age compared to magnetic disk, it is necessary to increase the database size
beyond the RAM available to the CPU.

In this particular application, it is difficult to increase the database size with
real data: the TUG collection so far represents about 15 years of intermittent
human effort.

We could increase the database size arbitrarily by replicating and random-
izing the output of bibtosql, so that new entries added to the database have
additional field/value pairs, without disturbing their original contents. How-
ever, we have chosen not to do so, because it would require modifying the
already-existing, and in-use, disk-based databases, or else replicating them to
new servers before expanding them. The required effort was more than this
human benchmarker cared to undertake.

8 Summary and conclusions

Benchmarking and analyzing performance of real computer systems is diffi-
cult, because there are so many variables over which one has little control,
including filesystem design, O/S and database software design, network con-
nections, and kernel device drivers.

The results discussed and tabulated in this report show that there is great
variability in performance between different databases with almost identical
contents and similar search queries. When the contents and queries are held
constant, and only the source of the data — disk or solid-state storage — is
changed, then the Fusion-io storage device is a good choice for PostgreSQL
and SQLite, but makes little difference for MySQL, most likely because of its
use of memory-mapped I/O.

The results show that databases need to be benchmarked against one an-
other before a commitment is made to one of them for a real-world application.
It is important to include other kinds of benchmarking too — our results reflect
only read performance, not create or write performance, both of which are likely
to be important in transactional databases.

It is imperative to understand the ACID (Atomicity, Consistency, Isolation,
and Durability) model of databases, because not all of them can provide those
guarantees in all circumstances. A failure of cooling, electrical power, hard-
ware, networking, or software that leads to database corruption is likely to
be extremely costly in a real-world application, particularly if it occurs during
peak client demands, when server hardware is most vulnerable.

Database backup is also important [4, 6], but doing so may require shutting
down the database server for extended periods in order to provide a consistent
stable disk image for backup software. Some advanced filesystems provide
a snapshot capability, so that can be used after a database flush operation to
freeze the state of the filesystem within a few seconds. The faster the I/O sys-
tem that holds the database, and the smaller the database storage is, the sooner
client services can be restored. We saw that the same input data required from

REFERENCES 12

1.1GB to 3.5GB, depending on the database. Changing databases could dra-
matically change the cost of online storage, backup storage, and backup time.

References

[1] Nelson H. F. Beebe. BIBTEX meets relational databases: Dedicated to the
memory of Edgar Frank “Ted” Codd (1923–2003) and James Nicholas “Jim”
Gray (1944–2007). TUGboat, 30(2):252–271, 2009. URL http://www.tug.
org/TUGboat/tb30-2/tb95beebe.pdf. TUG 2009 Conference Proceedings
volume.

[2] Sibsankar Haldar. Inside SQLite. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 2007. ISBN 0-596-55006-5. LCCN QA76.73.S67 H35 2007eb;
QA76.73.S67. URL http://www.oreilly.com/catalog/9780596550066.

[3] Sanjay Mishra and Alan Beaulieu. Mastering Oracle SQL. O’Reilly Media,
Inc., Sebastopol, CA, USA, second edition, 2004. ISBN 0-596-00632-2. xvii
+ 472 pp. LCCN QA76.9.D3 M5787 2004. URL http://www.oreilly.com/
catalog/9780596006327.

[4] W. Curtis Preston. Backup and recovery. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA, 2007. ISBN 0-596-10246-1 (paperback). xxviii + 729
pp. LCCN QA76.9.B32 P74 2007. URL http://www.oreilly.com/catalog/
9780596102463.

[5] John C. Worsley and Joshua D. Drake. Practical PostgreSQL. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2002. ISBN 1-56592-846-6. xiv +
619 pp. LCCN QA76.9.D3 W67 2002; QA76.9.D3 W72 2002. US$44.95.
URL http://www.oreilly.com/catalog/9781565928466. CD-ROM con-
tains LXP version 0.8.0 and PostgreSQL version 7.1.3.

[6] Jeremy D. Zawodny and Derek J. Balling. High performance MySQL: op-
timization, backups, replication, and load balancing. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2004. ISBN 0-596-00306-4. xvi + 276 pp.
LCCN QA76.73.S67 Z39 2004. URL http://www.oreilly.com/catalog/
9780596003067.

